12/05/2011

Computer Vision: Summary and Discussion

Computer Vision CS 143, Brown

James Hays

Many slides from Derek Hoiem

Computer Vision Builds On...

- Image Processing
 - to extract low-level information from images.
- Machine Learning
 - to make decisions based on data.

Fundamentals of Computer Vision

- Geometry
 - How to relate world coordinates and image coordinates
- Matching
 - How to measure the similarity of two regions
- Alignment
 - How to align points/patches
 - How to recover transformation parameters based on matched points
- Grouping
 - What points/regions/lines belong together?
- Categorization / Recognition
 - What similarities are important?

Geometry

- $\mathbf{x} = \mathbf{K} [\mathbf{R} \mathbf{t}] \mathbf{X}$
 - Maps 3d point \mathbf{X} to 2d point \mathbf{x}
 - Rotation ${\bf R}$ and translation t map into 3D camera coordinates
 - Intrinsic matrix ${\bf K}$ projects from 3D to 2D
- Parallel lines in 3D converge at the vanishing point in the image
 - A 3D plane has a vanishing line in the image
- $\mathbf{x}^{\mathbf{T}}\mathbf{F}\mathbf{x}=\mathbf{0}$
 - Points in two views that correspond to the same 3D point are related by the fundamental matrix ${\bf F}$

Matching

- Does this patch match that patch?
 - In two simultaneous views? (stereo)
 - In two successive frames? (tracking, flow, SFM)
 - In two pictures of the same object? (recognition)

Matching

Representation: be invariant/robust to expected deformations but nothing else

•Often assume that shape is constant

- Key cue: local differences in shading (e.g., gradients)
- •Change in viewpoint
 - Rotation invariance: rotate and/or affine warp patch according to dominant orientations
- •Change in lighting or camera gain
 - Average intensity invariance: oriented gradient-based matching
 - Contrast invariance: normalize gradients by magnitude
- •Small translations
 - Translation robustness: histograms over small regions

But can one representation do all of this? •SIFT: local normalized histograms of

oriented gradients provides robustness

Keypoint descriptor

in-plane orientation, lighting, contrast, translationHOG: like SIFT but does not rotate to dominant orientation

Alignment of points

Search: efficiently align matching patches

- Interest points: find repeatable, distinctive points
 - Long-range matching: e.g., wide baseline stereo, panoramas, object instance recognition
 - Harris: points with strong gradients in orthogonal directions (e.g., corners) are precisely repeatable in x-y
- Local search
 - Short range matching: e.g., tracking, optical flow
 - Gradient descent on patch SSD, often with image pyramid
- Windowed search
 - Long-range matching: e.g., recognition, stereo w/ scanline

Alignment of sets

Find transformation to align matching sets of points

- Geometric transformation (e.g., affine)
 - Least squares fit (SVD), if all matches can be trusted
 - Hough transform: each potential match votes for a range of parameters
 - Works well if there are very few parameters (3-4)
 - RANSAC: repeatedly sample potential matches, compute parameters, and check for inliers
 - Works well if fraction of inliers is high and few parameters (4-8)

Grouping

- Clustering: group items (patches, pixels, lines, etc.) that have similar appearance
 - Discretize continuous values; typically, represent points within cluster by center
 - Improve efficiency: e.g., cluster interest points before recognition
 - Summarize data
- Segmentation: group pixels into regions of coherent color, texture, motion, and/or label
 - Mean-shift clustering
 - Graph-based segmentation: e.g., MRF and graph cuts
- EM, mixture models: probabilistically group items that are likely to be drawn from the same distribution, while estimating the distributions' parameters

Categorization

Match objects, parts, or scenes that may vary in appearance

- Categories are typically defined by human and may be related by function, location, or other non-visual attributes
- Key problem: what are important similarities?
 - Can be learned from training examples

Categorization

Representation: ideally should be compact, comprehensive, direct

- Histograms of quantized local descriptors (SIFT, HOG), color, texture
 - Typical for image or region categorization
 - Degree of spatial encoding is controllable by using spatial pyramids

Object Categorization

Search by Sliding Window Detector

May work well for rigid objects

• Key idea: simple alignment for simple deformations

Object Categorization

Search by Parts-based model

- Key idea: more flexible alignment for articulated objects
- Defined by models of part appearance, geometry or spatial layout, and search algorithm

Vision as part of an intelligent system

3D Scene

Important open problems

Computer vision is potentially worth major \$\$\$, but there are major challenges to overcome first.

- Driver assistance
- Entertainment (Kinect, movies, etc.)
- Security
- Robot workers
- Many more

If you want to learn more...

- Read lots of papers: IJCV, PAMI, CVPR, ICCV, ECCV, NIPS, ICCP
- Related Classes
 - CS 2951B Data-driven Vision and Graphics (Spring '12)
 - CS 1950F Intro. Machine Learning (Spring '12)
 - ENGN 2520 Pattern Rec. and Machine Learning (Spring '12)
 - ENGN 2502 3d Photography (Spring '12)
 - CS 123 Computational Photography (Fall '12)
- Just implement stuff, try demos, see what works