Segmentation: MRFs and Graph Cuts

Computer Vision CS 143, Brown

James Hays

Many slides from Kristin Grauman and Derek

Image segmentation: toy example

- These intensities define the three groups.
- We could label every pixel in the image according to which of these primary intensities it is.
 - i.e., *segment* the image based on the intensity feature.
- What if the image isn't quite so simple?

Kristen Grauman

- Now how to determine the three main intensities that define our groups?
- We need to *cluster*.

Clustering

- With this objective, it is a "chicken and egg" problem:
 - If we knew the cluster centers, we could allocate points to groups by assigning each to its closest center.

 If we knew the group memberships, we could get the centers by computing the mean per group.

Smoothing out cluster assignments

• Assigning a cluster label per pixel may yield outliers:

Solution

L

P(foreground | image)

Encode dependencies between pixels

Normalizing constant

$$P(\mathbf{y}; \theta, data) = \frac{1}{Z} \prod_{i=1..N} f_1(y_i; \theta, data) \prod_{i,j \in edges} f_2(y_i, y_j; \theta, data)$$

$$f_1(y_i; \theta, data) = \frac{1}{Z} \prod_{i=1..N} f_1(y_i; \theta, data) \prod_{i,j \in edges} f_2(y_i, y_j; \theta, data)$$

$$f_2(y_i, y_j; \theta, data) = \frac{1}{Z} \prod_{i=1..N} f_1(y_i; \theta, data) \prod_{i,j \in edges} f_2(y_i, y_j; \theta, data)$$

$$f_2(y_i, y_j; \theta, data) = \frac{1}{Z} \prod_{i=1..N} f_1(y_i; \theta, data) \prod_{i,j \in edges} f_2(y_i, y_j; \theta, data)$$

$$f_2(y_i, y_j; \theta, data) = \frac{1}{Z} \prod_{i=1..N} f_1(y_i; \theta, data) \prod_{i,j \in edges} f_2(y_i, y_j; \theta, data)$$

$$f_2(y_i, y_j; \theta, data) = \frac{1}{Z} \prod_{i=1..N} f_1(y_i; \theta, data) \prod_{i,j \in edges} f_2(y_i, y_j; \theta, data)$$

$$f_2(y_i, y_j; \theta, data) = \frac{1}{Z} \prod_{i=1..N} f_1(y_i; \theta, data) \prod_{i,j \in edges} f_2(y_i, y_j; \theta, data)$$

Slide: Derek Hoiem

Writing Likelihood as an "Energy"

$$P(\mathbf{y};\theta,data) = \frac{1}{Z} \prod_{i=1..N} p_1(y_i;\theta,data) \prod_{i,j \in edges} p_2(y_i,y_j;\theta,data)$$

$$Energy(\mathbf{y};\theta,data) = \sum_i \psi_1(y_i;\theta,data) + \sum_{i,j \in edges} \psi_2(y_i,y_j;\theta,data)$$
"Cost" of assignment y_i
"Cost" of pairwise assignment y_i, y_j

Markov Random Fields

Markov Random Fields

• Example: "label smoothing" grid

Unary potential

$$Energy(\mathbf{y};\theta,data) = \sum_{i} \psi_{1}(y_{i};\theta,data) + \sum_{i,j \in edges} \psi_{2}(y_{i},y_{j};\theta,data)$$

Slide: Derek Hoiem

Solving MRFs with graph cuts

$$Energy(\mathbf{y};\theta,data) = \sum_{i} \psi_{1}(y_{i};\theta,data) + \sum_{i,j \in edges} \psi_{2}(y_{i},y_{j};\theta,data)$$

Slide: Derek Hoiem

Solving MRFs with graph cuts

$$Energy(\mathbf{y};\theta,data) = \sum_{i} \psi_{1}(y_{i};\theta,data) + \sum_{i,j \in edges} \psi_{2}(y_{i},y_{j};\theta,data)$$

Slide: Derek Hoiem