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Missing Data Problems: Segmentation

You are given an image and want to assign 
foreground/background pixels.

Challenge: Segment the image into figure and 
ground without knowing what the foreground 
looks like in advance.

Foreground

Background
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Missing Data Problems: Segmentation

Challenge: Segment the image into figure and ground 
without knowing what the foreground looks like in advance.

Three steps:

1. If we had labels, how could we model the appearance of 
foreground and background?

2. Once we have modeled the fg/bg appearance, how do we 
compute the likelihood that a pixel is foreground?

3. How can we get both labels and appearance models at 
once?

Foreground

Background
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Maximum Likelihood Estimation

1. If we had labels, how could we model the appearance 

of foreground and background?

Foreground

Background
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Maximum Likelihood Estimation
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Maximum Likelihood Estimation
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Maximum Likelihood Estimation
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Example: MLE

>> mu_fg = mean(im(labels))

mu_fg = 0.6012

>> sigma_fg = sqrt(mean((im(labels)-mu_fg).^2))

sigma_fg = 0.1007

>> mu_bg = mean(im(~labels))

mu_bg = 0.4007

>> sigma_bg = sqrt(mean((im(~labels)-mu_bg).^2))

sigma_bg = 0.1007

>> pfg = mean(labels(:));

labelsim

fg: mu=0.6, sigma=0.1

bg: mu=0.4, sigma=0.1

Parameters used to Generate
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Probabilistic Inference

2. Once we have modeled the fg/bg appearance, how 

do we compute the likelihood that a pixel is 

foreground?

Foreground

Background
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Probabilistic Inference

Compute the likelihood that a particular 

model generated a sample

component or label

),|( θnn xmzp =
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Probabilistic Inference

Compute the likelihood that a particular 

model generated a sample

component or label
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Probabilistic Inference

Compute the likelihood that a particular 

model generated a sample

component or label
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Probabilistic Inference

Compute the likelihood that a particular 

model generated a sample

component or label

( )
( )θ

θ
θ

|

|,
),|(

n

mnn
nn

xp

xmzp
xmzp

=
==

( ) ( )
( ) ( )∑ ==

==
=

k

knknn

mnmnn

kzpkzxp

mzpmzxp

θθ
θθ
|,|

|,|

( )
( )∑ =

=
=

k

knn

mnn

xkzp

xmzp

θ
θ
|,

|,

Slide: Derek Hoiem



Example: Inference

>> pfg = 0.5;

>> px_fg = normpdf(im, mu_fg, sigma_fg);

>> px_bg = normpdf(im, mu_bg, sigma_bg);

>> pfg_x = px_fg*pfg ./ (px_fg*pfg + px_bg*(1-pfg));

imfg: mu=0.6, sigma=0.1

bg: mu=0.4, sigma=0.1

Learned Parameters

p(fg | im)
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Dealing with Hidden Variables

3. How can we get both labels and appearance models 

at once?

Foreground

Background
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Segmentation with Mixture of Gaussians

Pixels come from one of several Gaussian 

components

– We don’t know which pixels come from which 

components

– We don’t know the parameters for the 

components
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Simple solution

1. Initialize parameters

2. Compute the probability of each hidden 

variable given the current parameters

3. Compute new parameters for each model, 

weighted by likelihood of hidden variables

4. Repeat 2-3 until convergence
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Mixture of Gaussians: Simple Solution

1. Initialize parameters

2. Compute likelihood of hidden variables for 

current parameters

3. Estimate new parameters for each model, 

weighted by likelihood 
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Expectation Maximization (EM) Algorithm

1. E-step: compute 

2. M-step: solve
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“Hard EM”

• Same as EM except compute z* as most likely 
values for hidden variables

• K-means is an example

• Advantages

– Simpler: can be applied when cannot derive EM

– Sometimes works better if you want to make hard 
predictions at the end

• But

– Generally, pdf parameters are not as accurate as EM
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What’s wrong with this prediction?

P(foreground | image)
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