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Missing Data Problems: Segmentation

You are given an image and want to assign
foreground/background pixels.

Challenge: Segment the image into figure and

ground without knowing what the foreground
looks like in advance.

Foreground

Background
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Missing Data Problems: Segmentation

Challenge: Segment the image into figure and ground
without knowing what the foreground looks like in advance.

Three steps:

1. If we had labels, how could we model the appearance of
foreground and background?

2. Once we have modeled the fg/bg appearance, how do we
compute the likelihood that a pixel is foreground?

3. How can we get both labels and appearance models at
once?

Background

Foreground




Maximum Likelihood Estimation

1. If we had labels, how could we model the appearance
of foreground and background?

Background

Foreground
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Maximum Likelihood Estimation

data_,
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%

parameters
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Maximum Likelihood Estimation
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Maximum Likelihood Estimation
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Example: MLE

Parameters used to Generate

fg: mu=0.6, sigma=0.1
bg: mu=0.4, sigma=0.1

labels

>> mu_ fg = mean (im(labels))
mu fg = 0.6012

>> sigma fg = sqgrt(mean((im(labels)-mu fg)."2))
sigma fg = 0.1007

>> mu bg = mean (im(~labels))
mu bg = 0.4007

>> sigma bg = sqgrt(mean((im(~labels)-mu bg)."2))
sigma bg = 0.1007

>> pfg = mean(labels(:));



Probabilistic Inference

2. Once we have modeled the fg/bg appearance, how
do we compute the likelihood that a pixel is
foreground?

Background

Foreground
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Probabilistic Inference

Compute the likelihood that a particular
model generated a sample

component or label

\
p(z, =m|x,,0)



Probabilistic Inference

Compute the likelihood that a particular
model generated a sample

component or label
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Probabilistic Inference

Compute the likelihood that a particular
model generated a sample

component or label
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Probabilistic Inference

Compute the likelihood that a particular
model generated a sample

component or label
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Example: Inference

Learned Parameters
fg: mu=0.6, sigma=0.1

bg: mu=0.4, sigma=0.1

>>
>>
>>
>>

pfg =
px_fg
px_bg
pfg_x

.55

normpdf (im, mu fg, sigma fg);
normpdf (im, mu bg, sigma bg);

px fg*pfg ./ (px fg*pfg + px bg* (1l-pfg));




Dealing with Hidden Variables

3. How can we get both labels and appearance models
at once?

Background

Foreground

Slide: Derek Hoiem



Segmentation with Mixture of Gaussians

Pixels come from one of several Gaussian
components

— We don’t know which pixels come from which
components

— We don’t know the parameters for the
components




Simple solution

1. Initialize parameters

2. Compute the probability of each hidden
variable given the current parameters

3. Compute new parameters for each model,
weighted by likelihood of hidden variables

4. Repeat 2-3 until convergence



Mixture of Gaussians: Simple Solution

1. Initialize parameters

2. Compute likelihood of hidden variables for

current parameters

(1)
anm — p(zn = m | xnﬂu(t)ﬁcz ﬂn(t))

3. Estimate new parameters for each model,
weighted by likelihood

(z D _ 2(r+l) i
Za X, o, a,, x —,um 0D _n
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Expectation Maximization (EM) Algorithm

Goal: 0 = argmax log(Z p(x,z]| 0))
0 Z

1. E-step: compute
Z|x9()[log xz|¢9 Zlog (x,z]0)) (Z|X9(t))

2. M-step: solve
O\ = argmaXZlog(p(x,z | 9))p(z | x,@m)
9 Y/



Gaussian
Mixture
Example:
Start

Advance apologies: in Black
and White this example will be
incomprehensible
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After first
Iteration
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After 2nd
Iteration
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After 3rd
Iteration

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 43



: : .
teraton L _® .. “e __
‘. . \?..,ng. 288\

S—

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 44



After 5th
Iteration
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After 6th
Iteration
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Resulting
Density
Estimator
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“Hard EM”

 Same as EM except compute z* as most likely
values for hidden variables

 K-means is an example

* Advantages
— Simpler: can be applied when cannot derive EM

— Sometimes works better if you want to make hard
predictions at the end

* But
— Generally, pdf parameters are not as accurate as EM



P(foreground | image)

What’s wrong with this prediction?



