Hidden Variables, the EM Algorithm, and Mixtures of Gaussians

Computer Vision CS 143, Brown

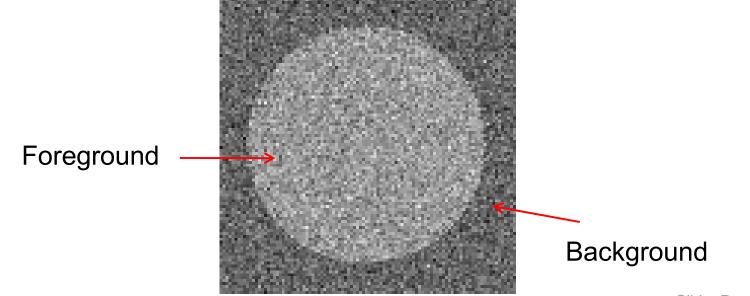
James Hays

Many slides from Derek Hoiem

Missing Data Problems: Segmentation

You are given an image and want to assign foreground/background pixels.

Challenge: Segment the image into figure and ground without knowing what the foreground looks like in advance.

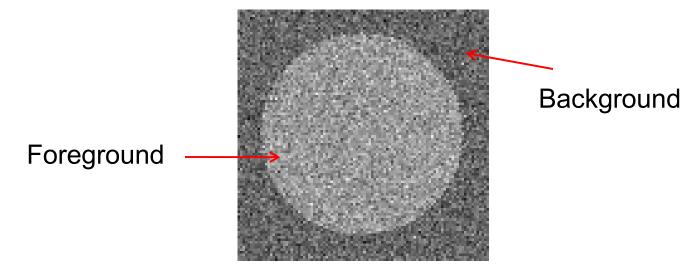


Missing Data Problems: Segmentation

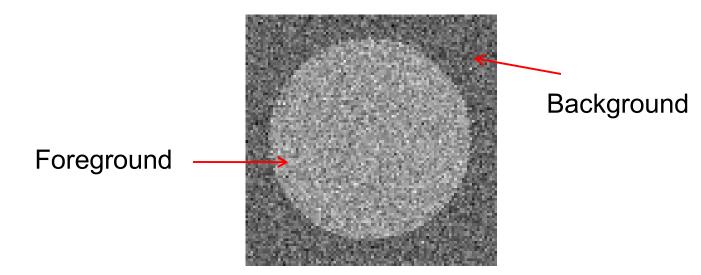
Challenge: Segment the image into figure and ground without knowing what the foreground looks like in advance.

Three steps:

- 1. If we had labels, how could we model the appearance of foreground and background?
- 2. Once we have modeled the fg/bg appearance, how do we compute the likelihood that a pixel is foreground?
- 3. How can we get both labels and appearance models at once?



1. If we had labels, how could we model the appearance of foreground and background?



data

$$\mathbf{x} = \{x_1 ... x_N\}$$
 parameters
 $\hat{\theta} = \underset{\theta}{\operatorname{argmax}} p(\mathbf{x} \mid \theta)$
 $\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \prod_n p(x_n \mid \theta)$

$$\mathbf{x} = \{x_1 ... x_N\}$$
$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} p(\mathbf{x} \mid \theta)$$
$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \prod_n p(x_n \mid \theta)$$

$$p(x_n \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_n - \mu)^2}{2\sigma^2}\right)$$

$$\mathbf{x} = \{x_1 .. x_N\}$$

$$\hat{\theta} = \operatorname*{argmax}_{\theta} p(\mathbf{x} \mid \theta)$$

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \prod_n p(x_n \mid \theta)$$

Gaussian Distribution

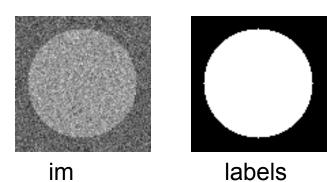
$$p(x_n \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_n - \mu)^2}{2\sigma^2}\right)$$

$$\hat{\mu} = \frac{1}{N} \sum_n x_n \qquad \hat{\sigma}^2 = \frac{1}{N} \sum_n (x_n - \hat{\mu})^2$$

Example: MLE

Parameters used to Generate

fg: mu=0.6, sigma=0.1 bg: mu=0.4, sigma=0.1

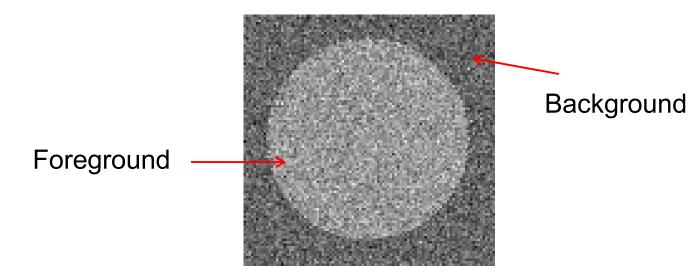


```
>> mu_fg = mean(im(labels))
        mu_fg = 0.6012
>> sigma_fg = sqrt(mean((im(labels)-mu_fg).^2))
        sigma_fg = 0.1007
```

>> mu_bg = mean(im(~labels))
 mu_bg = 0.4007

```
>> pfg = mean(labels(:));
```

2. Once we have modeled the fg/bg appearance, how do we compute the likelihood that a pixel is foreground?



Compute the likelihood that a particular model generated a sample

component or label

$$p(z_n = m \mid x_n, \theta)$$

Compute the likelihood that a particular model generated a sample

component or label

$$p(z_n = m \mid x_n, \theta) = \frac{p(z_n = m, x_n \mid \theta_m)}{p(x_n \mid \theta)}$$

Compute the likelihood that a particular model generated a sample

component or label

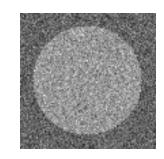
$$p(z_n = m \mid x_n, \theta) = \frac{p(z_n = m, x_n \mid \theta_m)}{p(x_n \mid \theta)}$$
$$= \frac{p(z_n = m, x_n \mid \theta_m)}{\sum_k p(z_n = k, x_n \mid \theta_k)}$$

Compute the likelihood that a particular model generated a sample

component or label

$$p(z_n = m \mid x_n, \theta) = \frac{p(z_n = m, x_n \mid \theta_m)}{p(x_n \mid \theta)}$$
$$= \frac{p(z_n = m, x_n \mid \theta_m)}{\sum_k p(z_n = k, x_n \mid \theta_k)}$$
$$= \frac{p(x_n \mid z_n = m, \theta_m)p(z_n = m \mid \theta_m)}{\sum_k p(x_n \mid z_n = k, \theta_k)p(z_n = k \mid \theta_k)}$$

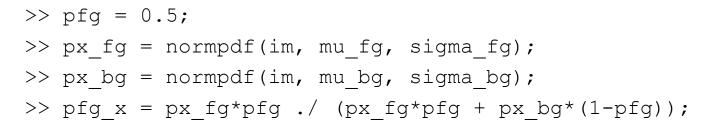
Example: Inference

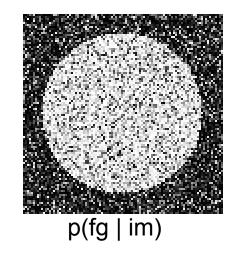


Learned Parameters

fg: mu=0.6, sigma=0.1 bg: mu=0.4, sigma=0.1

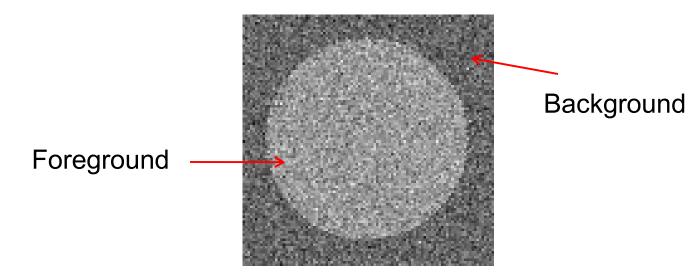
im





Dealing with Hidden Variables

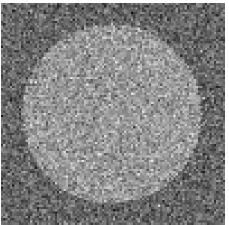
3. How can we get both labels and appearance models at once?



Segmentation with Mixture of Gaussians

Pixels come from one of several Gaussian components

- We don't know which pixels come from which components
- We don't know the parameters for the components



Simple solution

- 1. Initialize parameters
- 2. Compute the probability of each hidden variable given the current parameters
- 3. Compute new parameters for each model, weighted by likelihood of hidden variables
- 4. Repeat 2-3 until convergence

Mixture of Gaussians: Simple Solution

- 1. Initialize parameters
- 2. Compute likelihood of hidden variables for current parameters

$$\alpha_{nm} = p(z_n = m \mid x_n, \boldsymbol{\mu}^{(t)}, \boldsymbol{\sigma}^{2^{(t)}}, \boldsymbol{\pi}^{(t)})$$

3. Estimate new parameters for each model, weighted by likelihood

$$\hat{\mu}_{m}^{(t+1)} = \frac{1}{\sum_{n} \alpha_{nm}} \sum_{n} \alpha_{nm} x_{n} \qquad \hat{\sigma}_{m}^{2(t+1)} = \frac{1}{\sum_{n} \alpha_{nm}} \sum_{n} \alpha_{nm} (x_{n} - \hat{\mu}_{m})^{2} \qquad \hat{\pi}_{m}^{(t+1)} = \frac{\sum_{n} \alpha_{nm}}{N}$$

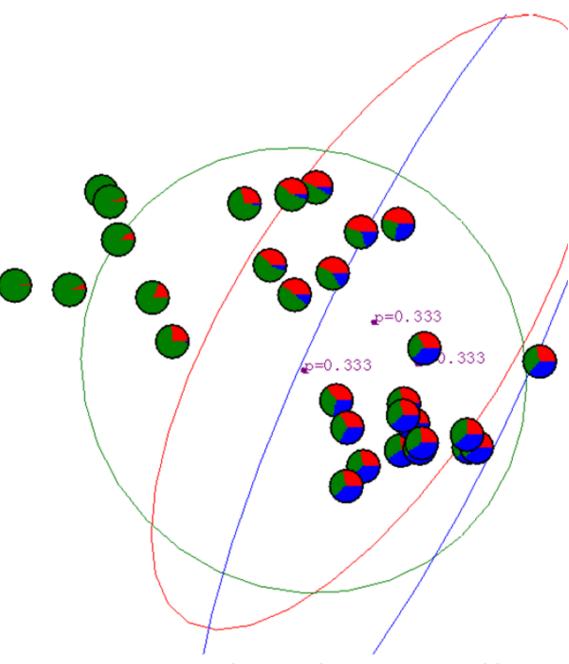
Expectation Maximization (EM) Algorithm

Goal:
$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \log \left(\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z} \mid \theta) \right)$$

1. E-step: compute $E_{z|x,\theta^{(t)}} \left[\log(p(\mathbf{x}, \mathbf{z} \mid \theta)) \right] = \sum_{\mathbf{z}} \log(p(\mathbf{x}, \mathbf{z} \mid \theta)) p(\mathbf{z} \mid \mathbf{x}, \theta^{(t)})$

2. M-step: solve $\theta^{(t+1)} = \underset{\theta}{\operatorname{argmax}} \sum_{\mathbf{z}} \log(p(\mathbf{x}, \mathbf{z} \mid \theta)) p(\mathbf{z} \mid \mathbf{x}, \theta^{(t)})$

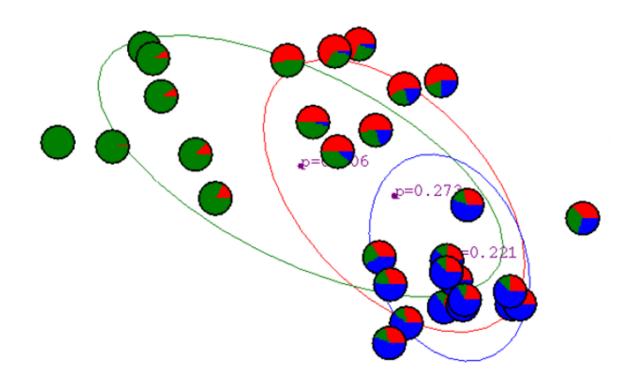
Gaussian Mixture Example: Start



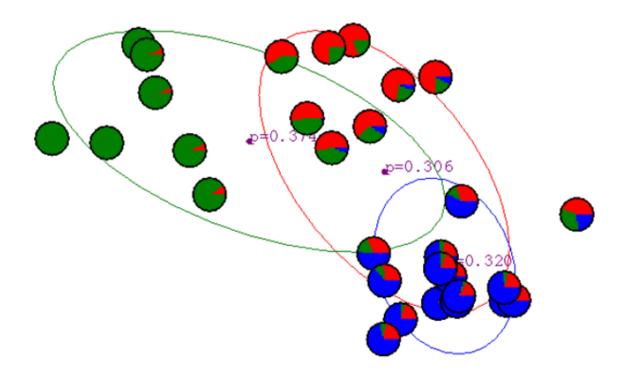
Advance apologies: in Black and White this example will be incomprehensible

Copyright © 2001, 2004, Andrew W. Moore

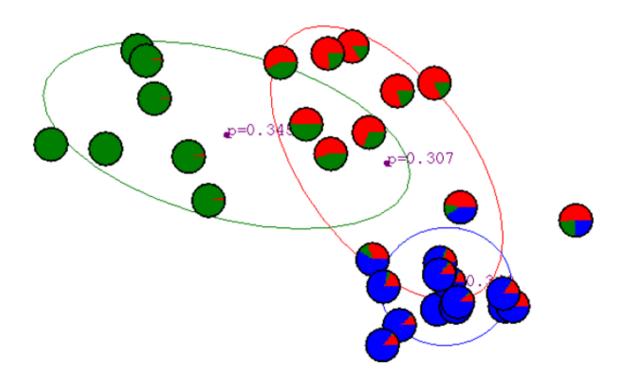
After first iteration



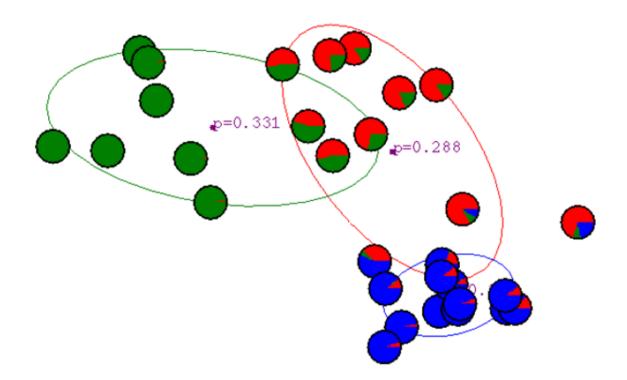
After 2nd iteration



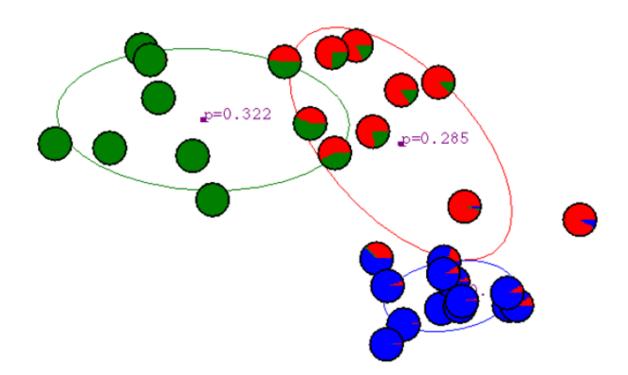
After 3rd iteration



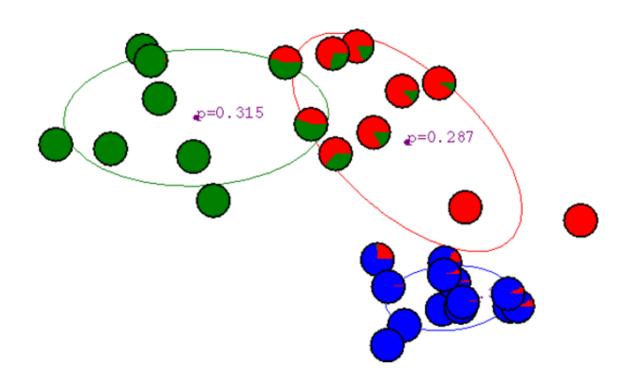
After 4th iteration



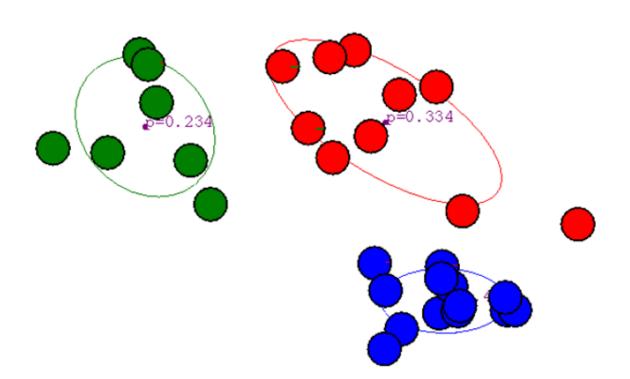
After 5th iteration



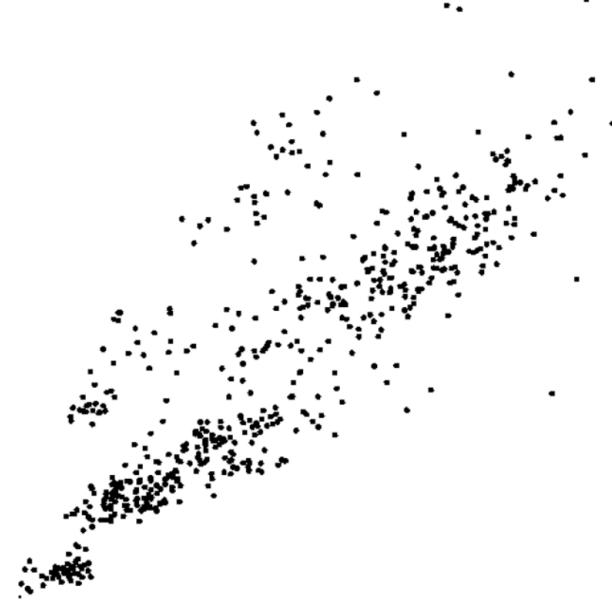
After 6th iteration



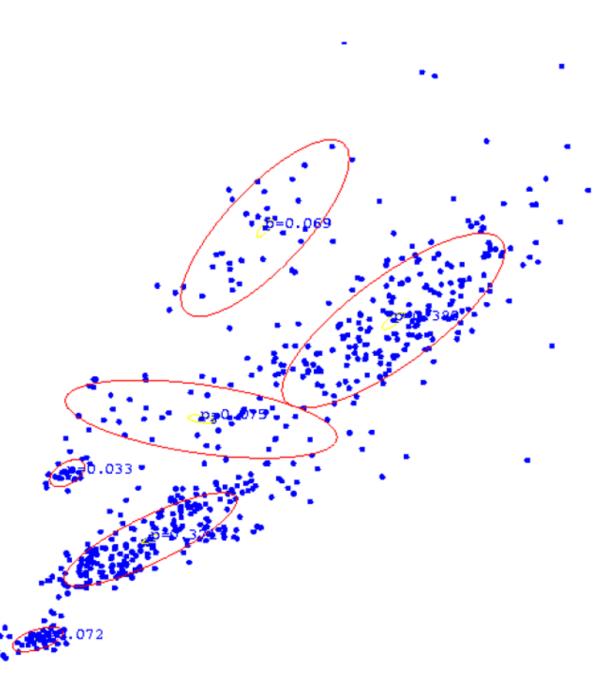
After 20th iteration



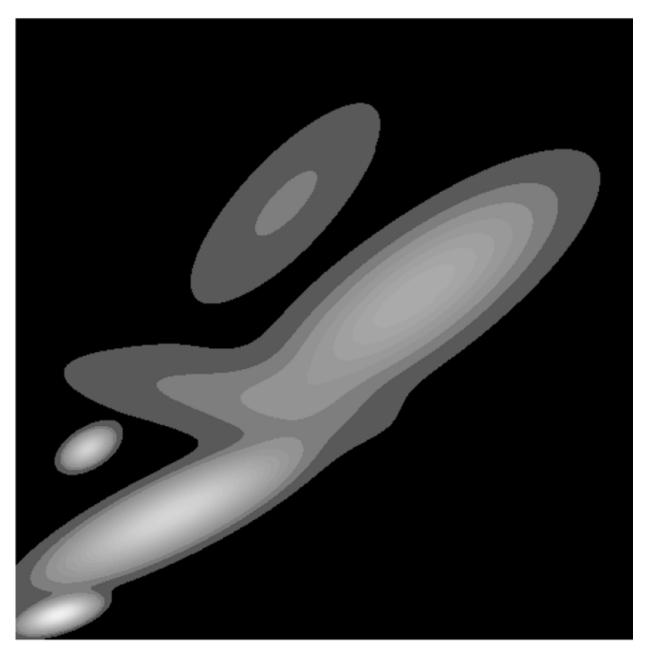
Some Bio Assay data



GMM clustering of the assay data



Resulting Density Estimator

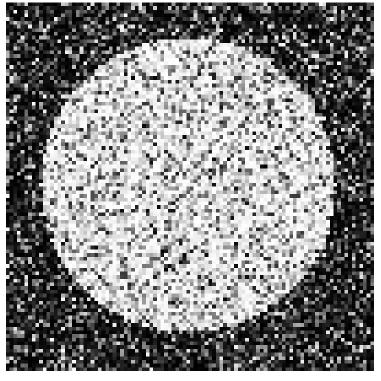


"Hard EM"

- Same as EM except compute z* as most likely values for hidden variables
- K-means is an example
- Advantages
 - Simpler: can be applied when cannot derive EM
 - Sometimes works better if you want to make hard predictions at the end
- But

- Generally, pdf parameters are not as accurate as EM

What's wrong with this prediction?



P(foreground | image)