09/26/11

Machine Learning: Classification

Computer Vision CS 143, Brown

James Hays

Slides from Lazebnik, Hoiem, and others

The machine learning framework

• Apply a prediction function to a feature representation of the image to get the desired output:

- Training: given a *training set* of labeled examples {(x₁,y₁), ..., (x_N,y_N)}, estimate the prediction function f by minimizing the prediction error on the training set
- Testing: apply f to a never before seen test example x and output the predicted value y = f(x)

Steps

Features

• Raw pixels

• Histograms

GIST descriptors

Classifiers: Nearest neighbor

$f(\mathbf{x})$ = label of the training example nearest to \mathbf{x}

- All we need is a distance function for our inputs
- No training required!

• Find a *linear function* to separate the classes:

 $f(\mathbf{x}) = sgn(\mathbf{w} \cdot \mathbf{x} + b)$

Many classifiers to choose from

- SVM
- Neural networks
- Naïve Bayes
- Bayesian network
- Logistic regression
- Randomized Forests
- Boosted Decision Trees
- K-nearest neighbor
- RBMs
- Etc.

Which is the best one?

Generalization

Training set (labels known)

Test set (labels unknown)

• How well does a learned model generalize from the data it was trained on to a new test set?

Generalization

- Components of generalization error
 - Bias: how much the average model over all training sets differ from the true model?
 - Error due to inaccurate assumptions/simplifications made by the model
 - Variance: how much models estimated from different training sets differ from each other
- **Underfitting:** model is too "simple" to represent all the relevant class characteristics
 - High bias and low variance
 - High training error and high test error
- **Overfitting:** model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance
 - Low training error and high test error

Bias-Variance Trade-off

- Models with too few parameters are inaccurate because of a large bias (not enough flexibility).
- Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample).

Bias-Variance Trade-off

See the following for explanations of bias-variance (also Bishop's "Neural Networks" book):

- <u>http://www.stat.cmu.edu/~larry/=stat707/notes3.pdf</u>
- <u>http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf</u>

Remember...

 No classifier is inherently better than any other: you need to make assumptions to generalize

- Three kinds of error
 - Inherent: unavoidable
 - Bias: due to over-simplifications
 - Variance: due to inability to perfectly estimate parameters from limited data

How to reduce variance?

- Choose a simpler classifier
- Regularize the parameters
- Get more training data

Very brief tour of some classifiers

- SVM
- Neural networks
- Naïve Bayes
- Bayesian network
- Logistic regression
- Randomized Forests
- Boosted Decision Trees
- K-nearest neighbor
- RBMs
- Etc.

Generative vs. Discriminative Classifiers

Generative Models

- Represent both the data and the labels
- Often, makes use of conditional independence and priors
- Examples
 - Naïve Bayes classifier
 - Bayesian network
- Models of data may apply to future prediction problems

Discriminative Models

- Learn to directly predict the labels from the data
- Often, assume a simple boundary (e.g., linear)
- Examples
 - Logistic regression
 - SVM
 - Boosted decision trees
- Often easier to predict a label from the data than to model the data

Classification

- Assign input vector to one of two or more classes
- Any decision rule divides input space into decision regions separated by decision boundaries

 \boldsymbol{x}_2

Nearest Neighbor Classifier

• Assign label of nearest training data point to each test data point

from Duda *et al.*

Voronoi partitioning of feature space for two-category 2D and 3D data

K-nearest neighbor

1-nearest neighbor

3-nearest neighbor

5-nearest neighbor

Using K-NN

- Simple, a good one to try first
- With infinite examples, 1-NN provably has error that is at most twice Bayes optimal error

Naïve Bayes

Using Naïve Bayes

- Simple thing to try for categorical data
- Very fast to train/test

Classifiers: Linear SVM

Classifiers: Linear SVM

Classifiers: Linear SVM

Nonlinear SVMs

• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard?

• We can map it to a higher-dimensional space:

Nonlinear SVMs

 General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

Slide credit: Andrew Moore

Nonlinear SVMs

 The kernel trick: instead of explicitly computing the lifting transformation φ(x), define a kernel function K such that

$$K(\mathbf{x}_i,\mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i) \cdot \boldsymbol{\varphi}(\mathbf{x}_j)$$

(to be valid, the kernel function must satisfy *Mercer's condition*)

• This gives a nonlinear decision boundary in the original feature space:

$$\sum_{i} \alpha_{i} y_{i} \varphi(\mathbf{x}_{i}) \cdot \varphi(\mathbf{x}) + b = \sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>, Data Mining and Knowledge Discovery, 1998

Nonlinear kernel: Example

• Consider the mapping $\varphi(x) = (x, x^2)$

$$\varphi(x) \cdot \varphi(y) = (x, x^2) \cdot (y, y^2) = xy + x^2 y^2$$
$$K(x, y) = xy + x^2 y^2$$

Summary: SVMs for image classification

- 1. Pick an image representation (in our case, bag of features)
- 2. Pick a kernel function for that representation
- 3. Compute the matrix of kernel values between every pair of training examples
- 4. Feed the kernel matrix into your favorite SVM solver to obtain support vectors and weights
- 5. At test time: compute kernel values for your test example and each support vector, and combine them with the learned weights to get the value of the decision function

What about multi-class SVMs?

- Unfortunately, there is no "definitive" multiclass SVM formulation
- In practice, we have to obtain a multi-class SVM by combining multiple two-class SVMs
- One vs. others
 - Traning: learn an SVM for each class vs. the others
 - Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value
- One vs. one
 - Training: learn an SVM for each pair of classes
 - Testing: each learned SVM "votes" for a class to assign to the test example

SVMs: Pros and cons

- Pros
 - Many publicly available SVM packages: <u>http://www.kernel-machines.org/software</u>
 - Kernel-based framework is very powerful, flexible
 - SVMs work very well in practice, even with very small training sample sizes
- Cons
 - No "direct" multi-class SVM, must combine two-class SVMs
 - Computation, memory
 - During training time, must compute matrix of kernel values for every pair of examples
 - Learning can take a very long time for large-scale problems

Classifiers: Decision Trees

Ensemble Methods: Boosting

Discrete AdaBoost(Freund & Schapire 1996b)

1. Start with weights $w_i = 1/N$, $i = 1, \ldots, N$.

2. Repeat for
$$m = 1, 2, ..., M$$
:

- (a) Fit the classifier $f_m(x) \in \{-1, 1\}$ using weights w_i on the training data.
- (b) Compute $\operatorname{err}_m = E_w[1_{(y \neq f_m(x))}], c_m = \log((1 \operatorname{err}_m)/\operatorname{err}_m).$
- (c) Set $w_i \leftarrow w_i \exp[c_m \cdot 1_{(y_i \neq f_m(x_i))}]$, i = 1, 2, ..., N, and renormalize so that $\sum_i w_i = 1$.

3. Output the classifier sign $\left[\sum_{m=1}^{M} c_m f_m(x)\right]$

Boosted Decision Trees

[Collins et al. 2002]

Using Boosted Decision Trees

- Flexible: can deal with both continuous and categorical variables
- How to control bias/variance trade-off
 - Size of trees
 - Number of trees
- Boosting trees often works best with a small number of well-designed features

What to remember about classifiers

- No free lunch: machine learning algorithms are tools, not dogmas
- Try simple classifiers first
- Better to have smart features and simple classifiers than simple features and smart classifiers
- Use increasingly powerful classifiers with more training data (bias-variance tradeoff)