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The machine learning 

framework

• Apply a prediction function to a feature representation of 

the image to get the desired output:

f(    ) = “apple”

f(    ) = “tomato”

f(    ) = “cow”
Slide credit: L. Lazebnik



The machine learning 

framework

y = f(x)

• Training: given a training set of labeled examples {(x1,y1), 

…, (xN,yN)}, estimate the prediction function f by minimizing 

the prediction error on the training set

• Testing: apply f to a never before seen test example x and 

output the predicted value y = f(x)

output prediction 

function

Image 

feature

Slide credit: L. Lazebnik
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Features

• Raw pixels

• Histograms

• GIST descriptors

• …
Slide credit: L. Lazebnik



Classifiers: Nearest neighbor

f(x) = label of the training example nearest to x

• All we need is a distance function for our inputs

• No training required!

Test 

example
Training 

examples 

from class 1

Training 

examples 

from class 2

Slide credit: L. Lazebnik



Classifiers: Linear

• Find a linear function to separate the classes:

f(x) = sgn(w ⋅ x + b)

Slide credit: L. Lazebnik



Many classifiers to choose from

• SVM

• Neural networks

• Naïve Bayes

• Bayesian network

• Logistic regression

• Randomized Forests

• Boosted Decision Trees

• K-nearest neighbor

• RBMs

• Etc.

Which is the best one?

Slide credit: D. Hoiem



Generalization

• How well does a learned model generalize from 

the data it was trained on to a new test set?

Training set (labels known) Test set (labels 

unknown)

Slide credit: L. Lazebnik



Generalization
• Components of generalization error 

– Bias: how much the average model over all training sets differ 

from the true model?

• Error due to inaccurate assumptions/simplifications made by 

the model

– Variance: how much models estimated from different training 

sets differ from each other

• Underfitting: model is too “simple” to represent all the 

relevant class characteristics

– High bias and low variance

– High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant 

characteristics (noise) in the data

– Low bias and high variance

– Low training error and high test error

Slide credit: L. Lazebnik



Bias-Variance Trade-off

• Models with too few 
parameters are 
inaccurate because of a 
large bias (not enough 
flexibility).

• Models with too many 
parameters are 
inaccurate because of a 
large variance (too much 
sensitivity to the sample).

Slide credit: D. Hoiem



Bias-Variance Trade-off

E(MSE) = noise2  + bias2 + variance

See the following for explanations of bias-variance (also Bishop’s “Neural 

Networks” book): 

• http://www.stat.cmu.edu/~larry/=stat707/notes3.pdf

• http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

Unavoidable 

error

Error due to 

incorrect 

assumptions

Error due to 

variance of training 

samples

Slide credit: D. Hoiem



Remember…

• No classifier is inherently 
better than any other: you 
need to make assumptions to 
generalize

• Three kinds of error

– Inherent: unavoidable

– Bias: due to over-simplifications

– Variance: due to inability to 
perfectly estimate parameters 
from limited data

Slide credit: D. HoiemSlide credit: D. Hoiem



How to reduce variance?

• Choose a simpler classifier

• Regularize the parameters

• Get more training data

Slide credit: D. Hoiem



Very brief tour of some classifiers

• SVM

• Neural networks

• Naïve Bayes

• Bayesian network

• Logistic regression

• Randomized Forests

• Boosted Decision Trees

• K-nearest neighbor

• RBMs

• Etc.



Generative vs. Discriminative Classifiers

Generative Models

• Represent both the data and 

the labels

• Often, makes use of 

conditional independence 

and priors

• Examples

– Naïve Bayes classifier

– Bayesian network

• Models of data may apply to 

future prediction problems

Discriminative Models

• Learn to directly predict the 

labels from the data

• Often, assume a simple 

boundary (e.g., linear)

• Examples

– Logistic regression

– SVM

– Boosted decision trees

• Often easier to predict a 

label from the data than to 

model the data

Slide credit: D. Hoiem



Classification

• Assign input vector to one of two or more 

classes

• Any decision rule divides input space into 

decision regions separated by decision 

boundaries

Slide credit: L. Lazebnik



Nearest Neighbor Classifier

• Assign label of nearest training data point to each test data 

point 

Voronoi partitioning of feature space 
for two-category 2D and 3D data

from Duda et al.

Source: D. Lowe



K-nearest neighbor
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1-nearest neighbor
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3-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+



5-nearest neighbor
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Using K-NN

• Simple, a good one to try first

• With infinite examples, 1-NN provably has 

error that is at most twice Bayes optimal error



Naïve Bayes

x1 x2 x3

y



Using Naïve Bayes 

• Simple thing to try for categorical data

• Very fast to train/test



Classifiers: Linear SVM
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Classifiers: Linear SVM
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Classifiers: Linear SVM
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• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard? 

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

Slide credit: Andrew Moore



Φ:  x→→→→ φ(x)

Nonlinear SVMs

• General idea: the original input space can 

always be mapped to some higher-dimensional 

feature space where the training set is 

separable:

Slide credit: Andrew Moore



Nonlinear SVMs

• The kernel trick: instead of explicitly computing 

the lifting transformation φ(x), define a kernel 

function K such that

K(xi,xj) = φ(xi ) · φ(xj)

(to be valid, the kernel function must satisfy 

Mercer’s condition)

• This gives a nonlinear decision boundary in the 

original feature space:
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 

and Knowledge Discovery, 1998 



Nonlinear kernel: Example
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Summary: SVMs for image classification

1. Pick an image representation (in our case, bag 

of features)

2. Pick a kernel function for that representation

3. Compute the matrix of kernel values between 

every pair of training examples

4. Feed the kernel matrix into your favorite SVM 

solver to obtain support vectors and weights

5. At test time: compute kernel values for your test 

example and each support vector, and combine 

them with the learned weights to get the value of 

the decision function

Slide credit: L. Lazebnik



What about multi-class SVMs?

• Unfortunately, there is no “definitive” multi-

class SVM formulation

• In practice, we have to obtain a multi-class 

SVM by combining multiple two-class SVMs 

• One vs. others
• Traning: learn an SVM for each class vs. the others

• Testing: apply each SVM to test example and assign to it the 

class of the SVM that returns the highest decision value

• One vs. one
• Training: learn an SVM for each pair of classes

• Testing: each learned SVM “votes” for a class to assign to 

the test example

Slide credit: L. Lazebnik



SVMs: Pros and cons

• Pros
• Many publicly available SVM packages:

http://www.kernel-machines.org/software

• Kernel-based framework is very powerful, flexible

• SVMs work very well in practice, even with very small 

training sample sizes

• Cons
• No “direct” multi-class SVM, must combine two-class SVMs

• Computation, memory 

– During training time, must compute matrix of kernel values for 

every pair of examples

– Learning can take a very long time for large-scale problems



Classifiers: Decision Trees
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Ensemble Methods: Boosting

figure from Friedman et al. 2000



Boosted Decision Trees 

…
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Using Boosted Decision Trees

• Flexible: can deal with both continuous and 

categorical variables

• How to control bias/variance trade-off

– Size of trees

– Number of trees

• Boosting trees often works best with a small 

number of well-designed features



What to remember about classifiers

• No free lunch: machine learning algorithms are tools, 
not dogmas

• Try simple classifiers first

• Better to have smart features and simple classifiers 
than simple features and smart classifiers

• Use increasingly powerful classifiers with more 
training data (bias-variance tradeoff)

Slide credit: D. Hoiem


