09/26/11

Machine Learning: Classification

Computer Vision
CS 143, Brown

James Hays



The machine learning
framework

* Apply a prediction function to a feature representation of

the image to get the desired output:

f(BJ) = "apple’
f(Rd) = “tomato”

f() — “COW”



The machine learning
framework

y = f(x)
TN

output  prediction Image
function feature

« Training: given a training set of labeled examples {(x,y),
.., (XnyYN)) estimate the prediction function f by minimizing
the prediction error on the training set

« Testing: apply f to a never before seen test example x and
output the predicted value y = f(x)



Training

/ Training \

Images

Y Y
b d4ddhd b b

L -m H l:l- "-"'.' |‘ "ﬁ

13 TR 4 T Ll e

o T (2 A

/

Testing

Steps

=g
4
:>[ Image ]:>[ Trainin ]:> [ Learned]

Features g model

N
Image Learned .
n :>[ Features ]:>[ model )‘{ Predlctlon]

Test Image

Slide credit: D. Hoiem and L. Lazebnik



« Raw pixels

* Histograms

* GIST descriptors

eatures

1400

1200

1000

300

600




Classifiers: Nearest neighbor

n | ¢
Y @, .
Training Test O TralmrI\g
examples L] example examples
from class 1 from class 2
- ®
]
o ®

f(x) = label of the training example nearest to x

* All we need is a distance function for our inputs
* No training required!



Classifiers: Linear
N N ®

\
\
\
\
\
\
\
\
'\ @
\
I
] \
\
m . ®
\
\
\

* Find a linear function to separate the classes:

f(x) = sgn(w - x + b)



Many classifiers to choose from

* SVM

* Neural networks

* Naive Bayes

e Bayesian network

* Logistic regression
 Randomized Forests

* Boosted Decision Trees
* K-nearest neighbor

* RBMs

* Etc.

Which is the best one?



Generalization

Training set (labels known) Test set (labels
unknown)

 How well does a learned model generalize from
the data it was trained on to a new test set?



Generalization

Components of generalization error

— Bias: how much the average model over all training sets differ
from the true model?

» Error due to inaccurate assumptions/simplifications made by
the model

— Variance: how much models estimated from different training
sets differ from each other

Underfitting: model is too “simple” to represent all the

relevant class characteristics

— High bias and low variance

— High training error and high test error

Overfitting: model is too “complex™ and fits irrelevant
characteristics (noise) in the data

— Low bias and high variance
— Low training error and high test error



Bias-Variance Trade-off

Y.

Sample 2

* Models with too few
parameters are
inaccurate because of a
large bias (not enough
flexibility).

 Models with too many
parameters are
inaccurate because of a
large variance (too much
sensitivity to the sample).



Bias-Variance Trade-off

E(MSE) = noise? + bias? + variance

\ \ Error due to

Unavoidable Error due to variance of training
error incorrect samples
assumptions

See the following for explanations of bias-variance (also Bishop’s “Neural
Networks” book):

 http://www.stat.cmu.edu/~larry/=stat707/notes3.pdf
 http://www.inf.ed.ac.uk/teaching/courses/misc/Notes/Lecture4/BiasVariance.pdf




Remember...

* No classifier is inherently
better than any other: you
need to make assumptions to
generalize

e Three kinds of error
— Inherent: unavoidable
— Bias: due to over-simplifications

— Variance: due to inability to
perfectly estimate parameters
from limited data

€ Origin |Anst
Reproduction rights o bt
wwa r1 St chicom

g
O
— T b
f “i
K1Y e
h 2!
¥ e = I
=, & 1
e I (i 3
el 11
220
L)




How to reduce variance?

* Choose a simpler classifier

* Regularize the parameters

 Get more training data



Very brief tour of some classifiers

« SVM

* Neural networks

* Naive Bayes

e Bayesian network

* Logistic regression
 Randomized Forests

* Boosted Decision Trees
* K-nearest neighbor

* RBMs

* Etc.



Generative vs. Discriminative Classifiers

Generative Models

Represent both the data and
the labels

Often, makes use of
conditional independence
and priors

Examples
— Naive Bayes classifier
— Bayesian network

Models of data may apply to
future prediction problems

Discriminative Models

Learn to directly predict the
labels from the data

Often, assume a simple
boundary (e.g., linear)

Examples

— Logistic regression

— SVM

— Boosted decision trees

Often easier to predict a
label from the data than to
model the data



Classification

* Assign input vector to one of two or more
classes

* Any decision rule divides input space into
decision regions separated by decision
boundaries ,

X




Nearest Neighbor Classifier

e Assign label of nearest training data point to each test data
point

from Duda et al.

Voronoi partitioning of feature space
for two-category 2D and 3D data



K-nearest neighbor

X2

x1



1-nearest neighbor

X2

x1



3-nearest neighbor

X2

x1



5-nearest neighbor

X2

x1



Using K-NN

* Simple, a good one to try first

* With infinite examples, 1-NN provably has
error that is at most twice Bayes optimal error






Using Nalve Bayes

* Simple thing to try for categorical data

* Very fast to train/test



Classifiers: Linear SVM

x1



Classifiers: Linear SVM

x1



Classifiers: Linear SVM

x1



Nonlinear SVMs

« Datasets that are linearly separable work out great:

-0 X

* But what if the dataset is just too hard?

@ ® *—0— *-0—@ oo o—>

0 X

 We can map it to a higher-dimensional space:

Slide credit: Andrew Moore



Nonlinear SVMs

* General idea: the original input space can
always be mapped to some higher-dimensional
feature space where the training set is

separable:
@
®
o o I... ® o : o
° [° o
o - ° o O * o
: e |, °® °* 1% °
* ° ® ° ’ ® o ¢ ° y
o ® )
@

Slide credit: Andrew Moore



Nonlinear SVMs

* The kernel trick: instead of explicitly computing
the lifting transformation ¢(x), define a kernel
function K such that

K(x;, X)) = o(x;) - (X))
(to be valid, the kernel function must satisfy
Mercer’s condition)

* This gives a nonlinear decision boundary in the
original feature space:

2.2y, p(x,) p(x) +b =3 0,y K(x,,x) +b

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998




Nonlinear kernel: Example

» Consider the mapping @(x) = (x,x”)

o(x)-o(¥)=(x,x")-(y,y*) =xy+x°y°
K(x,y)=xy+x’y’



Summary: SVMs for image classification

. Pick an image representation (in our case, bag
of features)

. Pick a kernel function for that representation

. Compute the matrix of kernel values between
every pair of training examples

. Feed the kernel matrix into your favorite SVM
solver to obtain support vectors and weights

. At test time: compute kernel values for your test
example and each support vector, and combine
them with the learned weights to get the value of
the decision function



What about multi-class SVMs?

Unfortunately, there is no “definitive” multi-
class SVM formulation

In practice, we have to obtain a multi-class
SVM by combining multiple two-class SVMs

One vs. others

« Traning: learn an SVM for each class vs. the others

» Testing: apply each SVM to test example and assign to it the
class of the SVM that returns the highest decision value

One vs. one

» Training: learn an SVM for each pair of classes

» Testing: each learned SVM “votes” for a class to assign to
the test example



SVMs: Pros and cons

* Pros

« Many publicly available SVM packages:
http://www.kernel-machines.org/software

« Kernel-based framework is very powerful, flexible

« SVMs work very well in practice, even with very small
training sample sizes

e Cons
* No “direct” multi-class SVM, must combine two-class SVMs

« Computation, memory

— During training time, must compute matrix of kernel values for
every pair of examples

— Learning can take a very long time for large-scale problems



Classifiers: Decision Trees

X2

x1



Ensemble Methods: Boosting

Discrete AdaBoost|Freund & Schapire 19965)
1. Start with weights w; = 1/N, i=1,... N,

2, Repeat form =1,2,..., M:

(a) Fit the classifier fi,(z) € {—1,1} mwing weights w; on the training data.
(b) Compute erry, = B[l e 1] em =log((1 = erry, ) ferry, ).
(e} Set w; ¢ w;explem Ly 2 =] 1 =12,... N, and renormalize so that 3.y = 1.

3. Output the classifier sign[TM_ o £ (2)]

figure from Friedman et al. 2000



Boosted Decision Trees

Very High
Vanishing
Point?

No

Ground Vertical Sky

[Collins et al. 2002]



Using Boosted Decision Trees

* Flexible: can deal with both continuous and
categorical variables

 How to control bias/variance trade-off
— Size of trees

— Number of trees

* Boosting trees often works best with a small
number of well-designed features



What to remember about classifiers

* No free lunch: machine learning algorithms are tools,
not dogmas

* Try simple classifiers first

e Better to have smart features and simple classifiers
than simple features and smart classifiers

e Use increasingly powerful classifiers with more
training data (bias-variance tradeoff)



