Machine Learning: Clustering

Computer Vision CS 143, Brown

James Hays

Slides: Hoiem and others

Clustering example: image segmentation

Goal: Break up the image into meaningful or perceptually similar regions

Clustering: group together similar points and represent them with a single token

Key Challenges:

 What makes two points/images/patches similar?
How do we compute an overall grouping from pairwise similarities?

Why do we cluster?

• Summarizing data

- Look at large amounts of data
- Patch-based compression or denoising
- Represent a large continuous vector with the cluster number

• Counting

- Histograms of texture, color, SIFT vectors

Segmentation

Separate the image into different regions

Prediction

- Images in the same cluster may have the same labels

How do we cluster?

- K-means
 - Iteratively re-assign points to the nearest cluster center
- Agglomerative clustering
 - Start with each point as its own cluster and iteratively merge the closest clusters
- Mean-shift clustering
 - Estimate modes of pdf
- Spectral clustering
 - Split the nodes in a graph based on assigned links with similarity weights

Clustering for Summarization

Goal: cluster to minimize variance in data given clusters

– Preserve information

Slide: Derek Hoiem

K-means

K-means

- 1. Initialize cluster centers: \mathbf{c}^0 ; t=0
- 2. Assign each point to the closest center $\boldsymbol{\delta}^{t} = \underset{\boldsymbol{\delta}}{\operatorname{argmin}} \frac{1}{N} \sum_{j}^{N} \sum_{i}^{K} \boldsymbol{\delta}_{ij} \left(\mathbf{c}_{i}^{t-1} - \mathbf{x}_{j} \right)^{2}$
- 3. Update cluster centers as the mean of the points_t $\mathbf{c}^{t} = \operatorname{argmin}_{\mathbf{c}} \frac{1}{N} \sum_{j}^{N} \sum_{i}^{K} \delta_{ij}^{t} (\mathbf{c}_{i} - \mathbf{x}_{j})^{2}$

4. Repeat 2-3 until no points are re-assigned: Derek Hoiem

K-means: design choices

- Initialization
 - Randomly select K points as initial cluster center
 - Or greedily choose K points to minimize residual
- Distance measures
 - Traditionally Euclidean, could be others
- Optimization
 - Will converge to a *local minimum*
 - May want to perform multiple restarts

How to evaluate clusters?

- Generative
 - How well are points reconstructed from the clusters?
- Discriminative
 - How well do the clusters correspond to labels?
 - Purity
 - Note: unsupervised clustering does not aim to be discriminative

How to choose the number of clusters?

- Validation set
 - Try different numbers of clusters and look at performance
 - When building dictionaries (discussed later), more clusters typically work better

K-Means pros and cons

- Pros
 - Finds cluster centers that minimize conditional variance (good representation of data)
 - Simple and fast*
 - Easy to implement
- Cons
 - Need to choose K
 - Sensitive to outliers
 - Prone to local minima
 - All clusters have the same parameters (e.g., distance measure is nonadaptive)
 - *Can be slow: each iteration is O(KNd) for N d-dimensional points
- Usage
 - Rarely used for pixel segmentation

1. Say "Every point is its own cluster"

Copyright © 2001, 2004, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 40

- Say "Every point is its own cluster"
- Find "most similar" pair of clusters

Copyright © 2001, 2004, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 41

- Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster

Copyright © 2001, 2004, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 42

- Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat

Copyright © 2001, 2004, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 43

- Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat

Copyright © 2001, 2004, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 44

How to define cluster similarity?

- Average distance between points, maximum distance, minimum distance
- Distance between means or medoids

How many clusters?

- Clustering creates a dendrogram (a tree)
- Threshold based on max number of clusters or based on distance between merges

Conclusions: Agglomerative Clustering

Good

- Simple to implement, widespread application
- Clusters have adaptive shapes
- Provides a hierarchy of clusters

Bad

- May have imbalanced clusters
- Still have to choose number of clusters or threshold