Machine learning: Overview

• Core of ML: Making predictions or decisions from Data.

Impact of Machine Learning

 Machine Learning is arguably the greatest export from computing to other scientific fields.

Machine Learning Applications

Image Categorization

Image Categorization

Image features

General Principles of Representation

- Coverage
 - Ensure that all relevant info is captured
- Concision
 - Minimize number of features without sacrificing coverage
- Directness
 - Ideal features are independently useful for prediction

Image Intensity

Image representations

• Templates

- Intensity, gradients, etc.

• Histograms

- Color, texture, SIFT descriptors, etc.

Slide: Derek Hoiem

Classifiers

Learning a classifier

Given some set of features with corresponding labels, learn a function to predict the labels from the features

Slide: Derek Hoiem

One way to think about it...

- Training labels dictate that two examples are the same or different, in some sense
- Features and distance measures define visual similarity
- Classifiers try to learn weights or parameters for features and distance measures so that visual similarity predicts label similarity

Machine Learning Problems

_	Supervised Learning	Unsupervised Learning
Discrete	classification or categorization	clustering
Continuous	regression	dimensionality reduction

Dimensionality Reduction

• PCA, ICA, LDA, Isomap

- PCA is the most important technique to know. It takes advantage of correlations in data dimensions to produce the best possible lower dimensional representation, according to reconstruction error.
- PCA should be used for dimensionality reduction, not for discovering patterns or making predictions. Don't try to assign semantic meaning to the bases.

Many classifiers to choose from

- SVM
- Neural networks
- Naïve Bayes
- Bayesian network
- Logistic regression
- Randomized Forests
- Boosted Decision Trees
- K-nearest neighbor
- RBMs
- Etc.

Which is the best one?