Structure from Motion

Computer Vision
CS 143, Brown

James Hays

This class: structure from motion

- Recap of epipolar geometry
- Depth from two views
- Affine structure from motion

Recap: Epipoles

- Point x in left image corresponds to epipolar line l' in right image
- Epipolar line passes through the epipole (the intersection of the cameras' baseline with the image plane

Recap: Fundamental Matrix

- Fundamental matrix maps from a point in one image to a line in the other

$$
\mathrm{l}^{\prime}=\mathrm{Fx} \quad \mathrm{l}=\mathrm{F}^{\top} \mathrm{x}^{\prime}
$$

- If x and x^{\prime} correspond to the same $3 d$ point X :

$$
\mathrm{x}^{\prime \top} \mathrm{Fx}=0
$$

Structure from motion

- Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates

Camera 1 ?
R_{1}, t_{1}

? Camera 3
R_{3}, t_{3}
Slide credit: Noah Snavely

Structure from motion ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1 / k$, the projections of the scene points in the image remain exactly the same:

$$
\mathbf{x}=\mathbf{P X}=\left(\frac{1}{k} \mathbf{P}\right)(k \mathbf{X})
$$

It is impossible to recover the absolute scale of the scene!

Structure from motion ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1 / k$, the projections of the scene points in the image remain exactly the same
- More generally: if we transform the scene using a transformation \mathbf{Q} and apply the inverse transformation to the camera matrices, then the images do not change

$$
\mathbf{x}=\mathbf{P X}=\left(\mathbf{P} \mathbf{Q}^{-1}\right)(\mathbf{Q X})
$$

Projective structure from motion

- Given: m images of n fixed 3D points

$$
\text { - } \mathbf{x}_{i j}=\mathbf{P}_{i} \mathbf{X}_{j}, i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate m projection matrices \mathbf{P}_{i} and n 3D points \mathbf{X}_{j} from the $m n$ corresponding points $\mathbf{x}_{i j}$

Projective structure from motion

- Given: m images of n fixed 3D points
- $\mathbf{x}_{i j}=\mathbf{P}_{i} \mathbf{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n$
- Problem: estimate m projection matrices \mathbf{P}_{i} and n 3D points \mathbf{X}_{j} from the $m n$ corresponding points $\mathbf{x}_{i j}$
- With no calibration info, cameras and points can only be recovered up to a 4×4 projective transformation \mathbf{Q} :
- $\mathbf{X} \rightarrow \mathbf{Q X}, \mathbf{P} \rightarrow \mathbf{P Q}^{-1}$

Bundle adjustment

- Non-linear method for refining structure and motion
- Minimizing reprojection error

