11/18/11

Structure from Motion

Computer Vision CS 143, Brown

James Hays

Many slides adapted from Derek Hoiem, Lana Lazebnik, Silvio Saverese, Steve Seitz, and Martial Hebert

This class: structure from motion

- Recap of epipolar geometry
 - Depth from two views
- Affine structure from motion

Recap: Epipoles

- Point x in left image corresponds to epipolar line l' in right image
- Epipolar line passes through the epipole (the intersection of the cameras' baseline with the image plane

Recap: Fundamental Matrix

 Fundamental matrix maps from a point in one image to a line in the other

 $\mathbf{l}' = \mathbf{F}\mathbf{x} \qquad \mathbf{l} = \mathbf{F}^{\top}\mathbf{x}'$

• If x and x' correspond to the same 3d point X: $\mathbf{x}'^{\top} \mathbf{F} \mathbf{x} = 0$

Structure from motion

 Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates

Structure from motion ambiguity

 If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of 1/k, the projections of the scene points in the image remain exactly the same:

$$\mathbf{x} = \mathbf{P}\mathbf{X} = \left(\frac{1}{k}\mathbf{P}\right)(k\mathbf{X})$$

It is impossible to recover the absolute scale of the scene!

Structure from motion ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of 1/k, the projections of the scene points in the image remain exactly the same
- More generally: if we transform the scene using a transformation Q and apply the inverse transformation to the camera matrices, then the images do not change

$$\mathbf{x} = \mathbf{P}\mathbf{X} = \left(\mathbf{P}\mathbf{Q}^{-1}\right)\left(\mathbf{Q}\mathbf{X}\right)$$

Projective structure from motion

• Given: *m* images of *n* fixed 3D points

•
$$\mathbf{x}_{ij} = \mathbf{P}_i \mathbf{X}_j, \ i = 1, ..., m, \quad j = 1, ..., n$$

Problem: estimate *m* projection matrices P_i and *n* 3D points X_j from the *mn* corresponding points X_{ij}

Slides from Lana Lazebnik

Projective structure from motion

• Given: *m* images of *n* fixed 3D points

•
$$\mathbf{x}_{ij} = \mathbf{P}_i \mathbf{X}_j$$
, $i = 1, ..., m, j = 1, ..., n$

- Problem: estimate *m* projection matrices P_i and *n* 3D points X_j from the *mn* corresponding points x_{ij}
- With no calibration info, cameras and points can only be recovered up to a 4x4 projective transformation **Q**:
 - $X \rightarrow QX, P \rightarrow PQ^{-1}$

Bundle adjustment

- Non-linear method for refining structure and motion
- Minimizing reprojection error

