11/07/11

Feature Tracking and Optical Flow

Computer Vision CS 143, Brown

James Hays

Many slides adapted from Derek Hoeim, Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve Seitz, Rick Szeliski, Martial Hebert, Mark Pollefeys, and others

Recovering motion

- Feature-tracking
 - Extract visual features (corners, textured areas) and "track" them over multiple frames
- Optical flow
 - Recover image motion at each pixel from spatio-temporal image brightness variations (optical flow)

Two problems, one registration method

B. Lucas and T. Kanade. <u>An iterative image registration technique with an application to</u> <u>stereo vision.</u> In *Proceedings of the International Joint Conference on Artificial Intelligence*, pp. 674–679, 1981.

Feature tracking

- Many problems, such as structure from motion require matching points
- If motion is small, tracking is an easy way to get them

Feature tracking

- Challenges
 - Figure out which features can be tracked
 - Efficiently track across frames
 - Some points may change appearance over time (e.g., due to rotation, moving into shadows, etc.)
 - Drift: small errors can accumulate as appearance model is updated
 - Points may appear or disappear: need to be able to add/delete tracked points

Feature tracking

- Given two subsequent frames, estimate the point translation
- Key assumptions of Lucas-Kanade Tracker
 - Brightness constancy: projection of the same point looks the same in every frame
 - Small motion: points do not move very far
 - **Spatial coherence:** points move like their neighbors

The brightness constancy constraint

$$(x, y)$$
displacement = (u, v)
 $I(x, y, t)$
 $(x + u, y + v)$
 $I(x, y, t + 1)$

• Brightness Constancy Equation:

$$I(x, y, t) = I(x + u, y + v, t + 1)$$

Take Taylor expansion of I(x+u, y+v, t+1) at (x,y,t) to linearize the right side: Image derivative along x Difference over frames

$$I(x+u, y+v, t+1) \approx I(x, y, t) + \begin{matrix} I_x \\ I_x \\ \cdot u + I_y \\ \cdot v + I_t \end{matrix}$$

$$I(x+u, y+v, t+1) - I(x, y, t) = +I_x \\ \cdot u + I_y \\ \cdot v + I_t$$
Hence, $I_x \\ \cdot u + I_y \\ \cdot v + I_t \approx 0 \quad \rightarrow \nabla I \\ \cdot \begin{bmatrix} u \\ v \end{bmatrix}^T + I_t = 0$

The brightness constancy constraint

Can we use this equation to recover image motion (u,v) at each pixel?

 $\nabla \mathbf{I} \cdot \begin{bmatrix} \mathbf{u} & \mathbf{v} \end{bmatrix}^{\mathrm{T}} + \mathbf{I}_{\mathrm{t}} = \mathbf{0}$

• How many equations and unknowns per pixel?

•One equation (this is a scalar equation!), two unknowns (u,v)

The component of the motion perpendicular to the gradient (i.e., parallel to the edge) cannot be measured

The aperture problem

The aperture problem

Perceived motion

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

Solving the ambiguity...

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In *Proceedings of the International Joint Conference on Artificial Intelligence*, pp. 674–679, 1981.

- How to get more equations for a pixel?
- Spatial coherence constraint
- Assume the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_l(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

Solving the ambiguity...

• Least squares problem:

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

$$A \quad d = b$$

25x2 2x1 25x1

Matching patches across images

Overconstrained linear system

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_l(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix} A \quad d = b$$

$$\begin{array}{c} A \quad d = b \\ 25 \times 2 \quad 2 \times 1 \quad 25 \times 1 \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

Least squares solution for *d* given by $(A^T A) d = A^T b$ $\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_l \end{bmatrix}$ $A^T A \qquad A^T b$

The summations are over all pixels in the K x K window

Conditions for solvability

Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_l \end{bmatrix}$$
$$A^T A \qquad A^T b$$

When is this solvable? I.e., what are good points to track?

- **A^TA** should be invertible
- **A^TA** should not be too small due to noise
 - eigenvalues λ_1 and λ_2 of **A^TA** should not be too small
- **A^TA** should be well-conditioned
 - $-\lambda_1/\lambda_2$ should not be too large (λ_1 = larger eigenvalue)

Does this remind you of anything?

Criteria for Harris corner detector

Low-texture region

- small λ_1 , small λ_2

Edge

- large λ_1 , small λ_2

High-texture region

 $\sum \nabla I (\nabla I)^T$ - gradients are different, large magnitudes
- large λ_1 , large λ_2

The aperture problem resolved

The aperture problem resolved

Dealing with larger movements: coarse-tofine registration

Summary of KLT tracking

- Find a good point to track (harris corner)
- Use intensity second moment matrix and difference across frames to find displacement
- Iterate and use coarse-to-fine search to deal with larger movements
- When creating long tracks, check appearance of registered patch against appearance of initial patch to find points that have drifted

Implementation issues

- Window size
 - Small window more sensitive to noise and may miss larger motions (without pyramid)
 - Large window more likely to cross an occlusion boundary (and it's slower)
 - 15x15 to 31x31 seems typical
- Weighting the window
 - Common to apply weights so that center matters more (e.g., with Gaussian)

Motion and perceptual organization

 Even "impoverished" motion data can evoke a strong percept

G. Johansson, "Visual Perception of Biological Motion and a Model For Its Analysis", *Perception and Psychophysics 14, 201-211, 1973.*

Motion and perceptual organization

 Even "impoverished" motion data can evoke a strong percept

G. Johansson, "Visual Perception of Biological Motion and a Model For Its Analysis", *Perception and Psychophysics 14, 201-211, 1973.*

Uses of motion

- Estimating 3D structure
- Segmenting objects based on motion cues
- Learning and tracking dynamical models
- Recognizing events and activities
- Improving video quality (motion stabilization)