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Recovering motion

• Feature-tracking
– Extract visual features (corners, textured areas) and “track” them over 

multiple frames

• Optical flow
– Recover image motion at each pixel from spatio-temporal image 

brightness variations (optical flow)

B. Lucas and T. Kanade. An iterative image registration technique with an application to

stereo vision. In Proceedings of the International Joint Conference on Artificial 

Intelligence, pp. 674–679, 1981.

Two problems, one registration method



Feature tracking

• Many problems, such as structure from 

motion require matching points

• If motion is small, tracking is an easy way to 

get them



Feature tracking

• Challenges

– Figure out which features can be tracked

– Efficiently track across frames

– Some points may change appearance over time 

(e.g., due to rotation, moving into shadows, etc.)

– Drift: small errors can accumulate as appearance 

model is updated

– Points may appear or disappear: need to be able 

to add/delete tracked points



Feature tracking

• Given two subsequent frames, estimate the point 

translation

• Key assumptions of Lucas-Kanade Tracker
• Brightness constancy:  projection of the same point looks the 

same in every frame

• Small motion: points do not move very far

• Spatial coherence: points move like their neighbors

I(x,y,t) I(x,y,t+1)
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• Brightness Constancy Equation:
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Take Taylor expansion of I(x+u, y+v, t+1) at (x,y,t) to linearize the right 

side:

The brightness constancy constraint

I(x,y,t) I(x,y,t+1)
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Difference over frames



The brightness constancy constraint

• How many equations and unknowns per pixel?

The component of the motion perpendicular to the 

gradient (i.e., parallel to the edge) cannot be measured

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u, v) satisfies the equation, 

so does (u+u’, v+v’ ) if

•One equation (this is a scalar equation!), two unknowns (u,v)
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Can we use this equation to recover image motion (u,v) at 

each pixel?



The aperture problem

Actual motion



The aperture problem

Perceived motion



The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion
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Solving the  ambiguity…

• How to get more equations for a pixel?

• Spatial coherence constraint

• Assume the pixel’s neighbors have the same (u,v)

– If we use a 5x5 window, that gives us 25 equations per pixel

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In 

Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674–679, 1981.



• Least squares problem:

Solving the  ambiguity…



Matching patches across images

• Overconstrained linear system

The summations are over all pixels in the K x K window

Least squares solution for d given by



Conditions for solvability

Optimal (u, v) satisfies Lucas-Kanade equation

Does this remind you of anything?

When is this solvable?  I.e., what are good points to 
track?
• ATA should be invertible 

• ATA should not be too small due to noise

– eigenvalues λ1 and λ 2 of A
TA should not be too small

• ATA should be well-conditioned

– λ 1/ λ 2 should not be too large (λ 1 = larger eigenvalue)

Criteria for Harris corner detector 



Low-texture region

– gradients have small magnitude

– small λ1, small λ2



Edge

– gradients very large or very small

– large λ1, small λ2



High-texture region

– gradients are different, large magnitudes

– large λ1, large λ2



The aperture problem resolved

Actual motion



The aperture problem resolved

Perceived motion



image Iimage J

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)

image 2image 1

Dealing with larger movements: coarse-to-

fine registration

run iterative L-K

run iterative L-K

upsample

.
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Summary of KLT tracking

• Find a good point to track (harris corner)

• Use intensity second moment matrix and 
difference across frames to find displacement

• Iterate and use coarse-to-fine search to deal with 
larger movements

• When creating long tracks, check appearance of 
registered patch against appearance of initial 
patch to find points that have drifted



Implementation issues

• Window size

– Small window more sensitive to noise and may miss larger 

motions (without pyramid)

– Large window more likely to cross an occlusion boundary 

(and it’s slower)

– 15x15 to 31x31 seems typical

• Weighting the window

– Common to apply weights so that center matters more 

(e.g., with Gaussian)



Motion and perceptual organization

• Even “impoverished” motion data can evoke a 

strong percept

G. Johansson, “Visual Perception of Biological Motion and a Model For Its 

Analysis", Perception and Psychophysics 14, 201-211, 1973.
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Uses of motion

• Estimating 3D structure

• Segmenting objects based on motion cues

• Learning and tracking dynamical models

• Recognizing events and activities

• Improving video quality (motion 

stabilization)


