09/30/11

Straight Lines and Hough

Computer Vision CS 143, Brown

James Hays

Many slides from Derek Hoiem, Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li

Finding straight lines

• One solution: try many possible lines and see how many points each line passes through

 Hough transform provides a fast way to do this

Outline of Hough Transform

- 1. Create a grid of parameter values
- 2. Each point votes for a set of parameters, incrementing those values in grid
- 3. Find maximum or local maxima in grid

Finding lines using Hough transform

- Using m,b parameterization
- Using r, theta parameterization
 - Using oriented gradients
- Practical considerations
 - Bin size
 - Smoothing
 - Finding multiple lines
 - Finding line segments

Hough transform

- An early type of voting scheme
- General outline:
 - Discretize parameter space into bins
 - For each feature point in the image, put a vote in every bin in the parameter space that could have generated this point
 - Find bins that have the most votes

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

• A line in the image corresponds to a point in Hough space

• What does a point (x₀, y₀) in the image space map to in the Hough space?

- What does a point (x₀, y₀) in the image space map to in the Hough space?
 - Answer: the solutions of $b = -x_0m + y_0$
 - This is a line in Hough space

 Where is the line that contains both (x₀, y₀) and (x₁, y₁)?

- Where is the line that contains both (x₀, y₀) and (x₁, y₁)?
 - It is the intersection of the lines $b = -x_0m + y_0$ and $b = -x_1m + y_1$

- Problems with the (m,b) space:
 - Unbounded parameter domain
 - Vertical lines require infinite m

- Problems with the (m,b) space:
 - Unbounded parameter domain
 - Vertical lines require infinite m
- Alternative: polar representation

Each point will add a sinusoid in the (θ, ρ) parameter space

Algorithm outline

- Initialize accumulator H to all zeros
- For each edge point (x,y) in the image For $\theta = 0$ to 180 $\rho = x \cos \theta + y \sin \theta$ $H(\theta, \rho) = H(\theta, \rho) + 1$ end

end

- Find the value(s) of (θ, ρ) where H(θ, ρ) is a local maximum
 - The detected line in the image is given by $\rho = x \cos \theta + y \sin \theta$

Basic illustration

features

votes

A more complicated image

http://ostatic.com/files/images/ss_hough.jpg

Effect of noise

Effect of noise

Peak gets fuzzy and hard to locate

Effect of noise

• Number of votes for a line of 20 points with increasing noise:

Random points

Random points

• As the level of uniform noise increases, the maximum number of votes increases too:

Dealing with noise

- Choose a good grid / discretization
 - Too coarse: large votes obtained when too many different lines correspond to a single bucket
 - Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Increment neighboring bins (smoothing in accumulator array)
- Try to get rid of irrelevant features
 - Take only edge points with significant gradient magnitude

Incorporating image gradients

- Recall: when we detect an edge point, we also know its gradient direction
- But this means that the line is uniquely determined!
- Modified Hough transform:

```
For each edge point (x,y)

\theta = gradient orientation at (x,y)

\rho = x cos \theta + y sin \theta

H(\theta, \rho) = H(\theta, \rho) + 1

end
```

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$