Straight Lines and Hough

Computer Vision
CS 143, Brown

James Hays

Finding straight lines

- One solution: try many possible lines and see how many points each line passes through
- Hough transform provides a fast way to do this

Outline of Hough Transform

1. Create a grid of parameter values
2. Each point votes for a set of parameters, incrementing those values in grid
3. Find maximum or local maxima in grid

Finding lines using Hough transform

- Using m,b parameterization
- Using r, theta parameterization
- Using oriented gradients
- Practical considerations
- Bin size
- Smoothing
- Finding multiple lines
- Finding line segments

Hough transform

- An early type of voting scheme
- General outline:
- Discretize parameter space into bins
- For each feature point in the image, put a vote in every bin in the parameter space that could have generated this point
- Find bins that have the most votes

Image space

Hough parameter space
P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Parameter space representation

- A line in the image corresponds to a point in Hough space

Hough parameter space

Parameter space representation

- What does a point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ in the image space map to in the Hough space?

Hough parameter space

Parameter space representation

- What does a point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ in the image space map to in the Hough space?
- Answer: the solutions of $b=-x_{0} m+y_{0}$
- This is a line in Hough space

Parameter space representation

- Where is the line that contains both $\left(x_{0}, y_{0}\right)$ and ($\mathrm{x}_{1}, \mathrm{y}_{1}$)?

Image space

Hough parameter space

Parameter space representation

- Where is the line that contains both $\left(x_{0}, y_{0}\right)$ and ($\mathrm{x}_{1}, \mathrm{y}_{1}$)?
- It is the intersection of the lines $b=-x_{0} m+y_{0}$ and $\mathrm{b}=-\mathrm{x}_{1} \mathrm{~m}+\mathrm{y}_{1}$

Image space

Hough parameter space

Parameter space representation

- Problems with the (m, b) space:
- Unbounded parameter domain
- Vertical lines require infinite m

Parameter space representation

- Problems with the (m, b) space:
- Unbounded parameter domain
- Vertical lines require infinite m
- Alternative: polar representation

Each point will add a sinusoid in the ($\theta, \mathrm{\rho}$) parameter space

Algorithm outline

- Initialize accumulator H to all zeros
- For each edge point (x, y) in the image

For $\theta=0$ to 180 $\rho=x \cos \theta+y \sin \theta$ $H(\theta, \rho)=H(\theta, \rho)+1$

end

end

- Find the value(s) of (θ, ρ) where $\mathrm{H}(\theta, \rho)$ is a local maximum
- The detected line in the image is given by

$$
\rho=x \cos \theta+y \sin \theta
$$

Basic illustration

A more complicated image

Effect of noise

Effect of noise

Peak gets fuzzy and hard to locate

Effect of noise

- Number of votes for a line of 20 points with increasing noise:

Noise level

Random points

Uniform noise can lead to spurious peaks in the array

Random points

- As the level of uniform noise increases, the maximum number of votes increases too:

Number of noise points

Dealing with noise

- Choose a good grid / discretization
- Too coarse: large votes obtained when too many different lines correspond to a single bucket
- Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Increment neighboring bins (smoothing in accumulator array)
- Try to get rid of irrelevant features
- Take only edge points with significant gradient magnitude

Incorporating image gradients

- Recall: when we detect an edge point, we also know its gradient direction
- But this means that the line is uniquely determined!

$$
\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)
$$

- Modified Hough transform:

For each edge point (x, y)
$\theta=$ gradient orientation at (x, y)
$\rho=x \cos \theta+y \sin \theta$
$H(\theta, \rho)=H(\theta, \rho)+1$
end

