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[1.1-INTRO] The ASR Problem at a Glance (I)The ASR Problem at a Glance (I)

Speech is the main form of human communication with information conveyed as:

Automatic Speech Recognition (ASR) or Speech-to-Text (STT), refers to the 
automatic extraction of the uttered word sequence from the observed 
speech signal.

ASR is a crucial component of natural human-computer interaction (HCI) and 
data analytics / information retrieval systems.

Speech signal Acoustic features
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[1.1-INTRO] The ASR Problem at a Glance (II)The ASR Problem at a Glance (II)

� ASR has been an active research area since early 70’s. Initial attempts to 
address it have gone as far back as the 50’s.

� Technology has been maturing over the past decades, allowing applications of 
ever increasing complexity and wider deployment, reaching the wider public:

• Domain specific dictation (radiology transcripts);

• Large-vocabulary dictation in clean environments;

• Telephony applications (call center routing, customer support);

• Embedded applications (automobiles, etc);

• Voice search applications in relatively noisy environments; etc…

• Other applications include education, language teaching, etc.

� Much of the progress is due to heavy cross-fertilization with a wide spectrum of 
research areas, like machine learning, pattern recognition, signal processing, 
bioinformatics, finance, coding, text processing, etc.
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[1.1-INTRO] The ASR Problem at a Glance (III)The ASR Problem at a Glance (III)

� ASR nevertheless remains a challenging problem, especially in noisy conditions 
and unconstrained or mismatched tasks and environments.

� Performance is measured in word error rate (WER) that breaks down to deletions, 
insertions, and substitutions, or (SER) in sentence/string error rate.

� Not quite at 0% errors yet ☺☺☺☺. But acceptable performance depends on app.:

• Clearly, little error tolerance in dictation, but increased in speech understanding / 
information retrieval applications.

� What is possible today?  Some examples �

Humans perform at ~1/5 the error machines!

� What affects performance?

� Speaker dependency and characteristics.

� Read vs. spontaneous speech.

� Close-talking vs. distant speech and environment.

� Task complexity (vocabulary size / language model perplexity).

~ 35 %Far-field meetings

~ 15 %Telephone conversation

~ 10 %Broadcast News

~  5 %Read newspaper text

~ 0.1%Connected digits

WERTask
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[1.2-INTRO] Brief History of ASR (I)Brief History of ASR (I)

Over five decades of research in ASR.

� Early 20th Century: Initial work on understanding human speech perception.

• 1908: Lord Rayleigh’s work.

• 20’s onwards: Significant work at Bell Labs on speech perception by Harvey Fletcher and 
his team (over 30 years).

• Followed by later work at Haskins Laboratories.

� 50’s-60’s: Initial attempts on ASR based on simple processing techniques 
operating on outputs of filter-banks.

• 1952: AT&T’s David et al. built a single-speaker isolated digit recognizer (analog system).

• 1956: RCA’s Olson and Belar built a single-speaker ten-syllable recognizer.

• 1962: First all-software vowel recognizer.
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[1.2-INTRO] Brief History of ASR (II)Brief History of ASR (II)

� 70’s:

• First DARPA program (1971–1976). Goal was to integrate speech knowledge, linguistics, 
and AI, aiming at ASR.

• Work at Dragon, CMU, BBN, IBM on such ideas.

� 70’s – 80’s:

• Statistical approach to ASR. Development of hidden Markov models and basic language 
modeling.

• Work at IBM, Dragon, IDA, Bell Labs.

• 1984: Jelinek’s team at IBM builds the first real-time dictation system (Tangora).

� 80’s – 90’s:

• 1986–1998: Second DARPA program. Common test sets, evaluation competitions.

• First commercial dictation products (Dragon’s Naturally Speaking, IBM’s ViaVoice).
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[1.2-INTRO] Brief History of ASR (III)Brief History of ASR (III)

� 00 – 10’s:

• Large US government research initiatives: EARS, GALES, RATS.

• Significant EU funding in human language technology research.

• Major breakthroughs in complexity of systems, training algorithms, data availability, 
breadth of languages, environmental robustness.

• Significant commercialization activities (telephony, embedded, distributed).

• Many R&D / commercial players: Google, Apple, Amazon, Nuance, IBM, AT&T, SRI, MSR.

• Multitude of university groups active: CLSP/JHU, CMU, ICSI, MIT, IDIAP, Aachen, 
Cambridge, Edinburgh, USC, …



2014.08.072014.08.07 11stst ISCA Summer School ISCA Summer School –– HeraklionHeraklion, Crete, Crete

 

[1.3-INTRO]   Some ASR Literature Resources (I)Some ASR Literature Resources (I)

� Books:

� Benesty, Sondhi, Huang (Eds.), Springer Handbook of Speech Processing, Springer 2008.

� Rabiner, Schafer,Theory and Applications of Digital Speech Processing, Prentice-Hall, 2011.

� Jurafsky, Martin, Speech and Language Processing, Prentice Hall, 2009.

� Journals:

� IEEE Transactions on Audio, Speech and Language Processing.

� Elsevier Journals of Speech Communication and Computer Speech and Language.

� Eurasip Journal on Audio, Speech, and Music Processing.

� Speech Technology Magazine.

� Conferences:

� ICASSP – International Conference on Acoustics, Speech, and Signal Processing (Spring)

� Interspeech – Conference of the International Speech Communication Association (Fall) 
[formerly: Eurospeech, ICSLP]

� ASRU – Automatic Speech Recognition and Understanding Workshop

SLT – Spoken Language Technology Workshop (Winter)
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[1.3-INTRO]   Some ASR Literature Resources (II)Some ASR Literature Resources (II)

� Some software Toolkits:

• HTK – hidden Markov model toolkit, http://htk.eng.cam.ac.uk

• CMU Sphinx recognizer, http://cmusphinx.sourceforge.net

• KALDI ASR software, http://kaldi.sourceforge.net/

• SRILM – the SRI language modeling toolkit, http://www.speech.sri.com/projects/srilm/

• PRAAT speech analysis toolkit, http://www.fon.hum.uva.nl/praat/

� Data resources and evaluation:

• LDC – Linguistics Data Consortium, https://www.ldc.upenn.edu/

• ELRA – European Language Resources Association, http://www.elra.info/

• NIST – National Institute of Standards and Technology, http://nist.gov/itl/iad/mig/

� Links to online resources and educational material: 

• http://www.dev.voxforge.org/projects/Main/wiki/TheoryAndAlgorithms
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[1.4-INTRO] The ASR Statistical ApproachThe ASR Statistical Approach

� Since the late 70’s, the ASR problem has been formulated as finding the 
optimal sequence of words       given the acoustic signal (observations) O: 

� Based on Bayes’ rule, the following equation is derived that emulates the 
source / channel equation model:  

� This immediately highlights the basic ASR research problems:

� O : Feature extraction.

� ωωωω : Vocabulary.

� P        : Language model.

� : Acoustic model.

� :  Search / decoding.
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[1.5-INTRO] Remainder Talk OverviewRemainder Talk Overview

1. Introduction

2. Language modeling.

3. Speech feature extraction.

4. Acoustic modeling.

5. Search.
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[2-LM] Language ModelingLanguage Modeling

� Aims to provide prior probability for word sequences, thus reducing the 
“uncertainty” (perplexity) in ASR.

� Assumes causal model:

� Approximation using finite “history”:

� LMs are trained and evaluated

on large text corpora, split into:

� Evaluation on basis of perplexity (PP):
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[2.1-LM] Language Modeling Using nLanguage Modeling Using n--gramsgrams

Two problems – with their

traditional solutions.

� History classification:

where

Typically, N=1 � bi-gram, N=2 � tri-gram, or N=3 � four-gram

� Probability estimation:

• Maximum likelihood yields:

• This creates generalization

issues, because unseen data get assigned zero probability!

Need of probability estimates smoothing.

Variable-length n-gram as a decision tree
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[2.2-LM] Language Modeling Smoothing (I)Language Modeling Smoothing (I)

Adopted notation for LM smoothing approaches:

Three general approaches.

1. Laws of succession: Use

current “leaf” ML estimates only.

Unknown parameters are estimated on held-out data.
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[2.2-LM] Language Modeling Smoothing (II)Language Modeling Smoothing (II)

2. Back-off smoothing: Use “ancestor” leaf with appropriate law-of-succession.

• Probabilities are computed in a top-down fashion.

• Unknown parameters of LOS rules are estimated on held-out data.

• Popular in ASR decoding.
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[2.2-LM] Language Modeling Smoothing (III)Language Modeling Smoothing (III)

3. Linear interpolation: Use all “ancestor” leaf ML estimates up to root note.

• Estimation of the weights can be performed in various ways, for example 
sequentially top-down, bottom-up, or simultaneously for all.

• Approach is of interest when also combining multiple language models.

LM probability “smoothing” by 
top-down linear interpolation



2014.08.072014.08.07 11stst ISCA Summer School ISCA Summer School –– HeraklionHeraklion, Crete, Crete

 

[2-LM] Other LM Issues and Approaches.Other LM Issues and Approaches.

� Various LM issues / approaches:

• Class LM.

• Cache / Topic LM.

• LM interpolation.

• LM pruning.

• LM combination of grammars and n-grams.

• Incorporation of additional sources of information (parts-of-speech tags).

• Language-specific modeling approaches.

� Other approaches:

• Maximum-entropy language models.

• Neural network language models.

• Latent Dirichlet allocation models.



2014.08.072014.08.07 11stst ISCA Summer School ISCA Summer School –– HeraklionHeraklion, Crete, Crete

 

1. Introduction

2. Language modeling.

3. Speech feature extraction.

4. Acoustic modeling.

5. Search.



2014.08.072014.08.07 11stst ISCA Summer School ISCA Summer School –– HeraklionHeraklion, Crete, Crete

 

[3-FE] Speech Feature ExtractionSpeech Feature Extraction

� Goal: Extract sequence of features, O, from acoustic signal, {sn}

� Main considerations – Features should be:

• Informative about what was spoken.

• Invariant to speaker and environment.

• Compressing the signal to low dimensional feature vector.

• Hopefully mimicking human speech perception.

� Various approaches exist. Most prevalent ones are low-level, signal based on:

• The linear predictive coding (LPC) model of speech.

• Filter-bank analysis, e.g. mel-frequency cepstral coefficients (MFCC).

• Combination of the above, e.g. perceptual linear prediction (PLP).

� We also discuss:

• Signal pre-processing.

• Feature post-processing.
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[3.1-FE] Signal PreSignal Pre--ProcessingProcessing

� Processing is applied in short-duration 
“frames”, typically of a 25 msec length, 
with some overlap (typically 10 ms). 
Signal in frame is {sn, n=1,…,N}.

� The following are applied on frame:

• DC signal removal.

• Signal pre-emphasis:

• Hamming windowing: 1

N

Hamming Window

Analysis frames

Frame

k Frame

k+1

0         ...              N

0             ...         N

25 msec

10 msec

1 97.0 −−=′
nnn sss

nn s
N

n
s ×

















−
−

−=′
1

)1(2
cos46.054.0

π



2014.08.072014.08.07 11stst ISCA Summer School ISCA Summer School –– HeraklionHeraklion, Crete, Crete

 

[3.2-FE] Linear Prediction (LP) Speech AnalysisLinear Prediction (LP) Speech Analysis

� Vocal tract is modeled as an all-pole filter,    
driven by an excitation term:

� LP analysis aims to minimize the prediction error: 
and thus is a MSE problem. 

� Efficiently solved using Durbin’s algorithm for 
inverting the pxp autocorrelation equation 
system. Results in LPC (linear prediction 
coefficients):

� Superior ASR performance is achieved using the 
LPCC (LP cepstral coefficients):

� Typically, M =12, p =14. 
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[3.3-FE] FilterFilter--Bank Speech Analysis / MFCCsBank Speech Analysis / MFCCs

� Computes speech energy in a number of bands, after suitable band-pass filtering. 

� Following human perception, bands are non-uniform. Typically, triangular filters 
are used ( Hj ), with uniform spacing along the mel frequency scale:

� Mel-frequency cepstral coefficients (MFCC) are obtained by a discrete cosine 
transform of the log filterbank amplitudes, 

i.e.,

� Occasionally, the {Mj}’s are used

as features (log Mel FB energies).
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[3.4-FE] Perceptual Linear Prediction (PLP)Perceptual Linear Prediction (PLP)

� Aims to combine best features of both LPC and MFCCs

• Uses perceptual based frequency scale (aka MFCCs).

• Uses smooth spectral fit (aka LPC)

• Employs perceptual based amplitude scaling.

� Basic steps for PLP feature extraction:

• Computes mel-wrapped power spectrum, 

• Takes cubic root of above.

• Takes the IDFT of a symmetrized version of the result (ensuring real result).

• Performs LPC assuming that the above result is a signal autocorrelation.

• Obtains cepstral LPC coefficients. 

∑
−

=

=
1

0

][ ][|][| 
N

k

jj kHkSM



2014.08.072014.08.07 11stst ISCA Summer School ISCA Summer School –– HeraklionHeraklion, Crete, Crete

 

[3.5-FE] Other Features Used in ASROther Features Used in ASR

A multitude of other features have been proposed in the literature for ASR, e.g.:

� AM-FM speech signal representation – instantaneous amplitudes & frequencies:

� Articulatory features:

• Manner, voicing characterizations.

• Formant locations, formant bandwidths, etc.

� Statistical Classifier based features:

• Tandem approach: Features are transformed versions of statistical classifier 
posteriors, typically of neural networks.

• Bottleneck features: Features extracted from “narrow” hidden layer of 
multi-layer neural network, typically employed as acoustic model.
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[3.6-FE] Feature PostFeature Post--Processing / NormalizationProcessing / Normalization

� Weighting of the LPC coefficients (also known as “cep-liftering”):

� Augmentation of the feature vector (LPCC or MFCC) by log of signal energy:

� Normalization by subtracting Emax-1 for energy, mean for other features.

� Variance normalization occasionally employed (typical in NN-based systems).

� Inclusion of “dynamic” information, by augmenting features with first and 
second derivatives, or “learning” dynamic features as a dimensionality-reduction 
projection of a concatenation of features from consecutive, neighboring frames.

� Feature transformations (projection / rotation) to other spaces for better 
statistical modeling (compaction, de-correlation). Examples are PCA, LDA, 
HLDA, MLLT. Many of these require class label information.

� Vocal track length normalization (VTLN): Frequency axis wrapping.
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1. Introduction

2. Language modeling.

3. Speech feature extraction.

4. Acoustic modeling.

5. Search.
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[4-AM] Acoustic ModelingAcoustic Modeling

� Statistical approach to ASR uses maximum 
a-posteriori (MAP) estimation to obtain optimal 
word sequence:

� “Hidden” words are partially observed
through sequence of acoustic features.

� Two models are needed:

� Prior probability of word sequences 
(language model).

� Generative model of acoustic features from 
word sequence (acoustic model).

321        ωωωUttered word 
sequence

Produced 
speech signal

Acoustic observation
(feature) sequence

Recognized word 
sequence

21
ˆ           ˆ ωω
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[4.1-AM] Hidden Markov models (Hidden Markov models (HMMsHMMs))

� HMMs are popular generative models for 
time series of observations. They are 
characterized by following:

� States:C={1,2,…,N}. Denote qt state at t.

� Initial state distribution:

� State transition probabilities:

� State conditional observation probability:

� Thus, HMM parameters are: b]a,π,θ [=

1π
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[4.1-AM] HMMsHMMs -- Cont.Cont.

The class-conditional observation probabilities b can be:

� Discrete, in case that the observation vectors are drawn from a finite set. This can be 
achieved by vector quantization of the feature space (codebook of size K):

� Continuous, typically considered as a mixture of multi-dimensional Gaussians:

where the d-dimensional Gaussians are

and the mixture weights satisfy:

Parameters are then:

},...,1,,...,1  , ]|Pr[)({ KkNjjqkb tktj ===≈== vob

NjNcb jmjmt

M

m

jmtj

j

,...,1    , ),;()(
1

==∑
=

Uµoo






 −−−= )()(
2

1
exp

)2(

1
),;( 1-T

µoUµo
U

Uµo
d

dN
π

jjm

M

m

jm MmNjcc
j

,...,1   ,,...,1   ,0   , 1
1

==≥=∑
=

},...,1  ,,...,1  ,,,{ jjmjmjm MmNjc === Uµb



2014.08.072014.08.07 11stst ISCA Summer School ISCA Summer School –– HeraklionHeraklion, Crete, Crete

 

[4.1-AM] HMMsHMMs -- Cont.Cont.

� The three basic HMM problems. Recall:

� Observation sequence of duration T: O=[o1,o2,…,oT].

� State sequence: q=[q1,q2,…,qT].

� Model parameters: 

� Problem 1: Given O and model parameters, how do we compute             ?

� “Evaluation” of model fit to the data.

� Solved by the “forward” or “backward” procedure.

� Problem 2: Given O & model parameters, what is the optimal state seq. q?

� Uncovers the “hidden” states – used in recognition!

� Solved by the Viterbi algorithm.

� Problem 3: What are the model parameters that optimize             ?

� This is the maximum-likelihood parameter estimation problem.

� Solved by the forward-backward algorithm (or Baum-Welch), an instance of 
the expectation-maximization (EM) procedure.

)|Pr( θO

b]a,π,θ [=

)|Pr( θO
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[4.1-AM] HMMsHMMs -- Cont.Cont.

� Brute force solution to these problems is exponential on T , i.e., O(TN T).

� Luckily, dynamic programming solutions exist!

� They utilize partial computations on the 2-D lattice of TxN states in time.

� Complexity of resulting algorithms is O(N 2T).
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[4.1.1-AM] HMMsHMMs –– Solution to Problem 1Solution to Problem 1

� Problem 1: Compute the probability of an observed sequence, given model,

� Can be efficiently computed by means of the forward procedure:

� Define forward variable of time t and state i:

� Initialization:

� Induction:

� Termination:
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[4.1.1-AM] HMMsHMMs –– Solution to Problem 1 Solution to Problem 1 –– Cont.Cont.

� Can also be solved by means of the backward procedure:

� Define the backward variable of time t and state i.

� Initialization:

� Induction:

� Termination:
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[4.1.2-AM] HMMsHMMs –– Solution to Problem 2Solution to Problem 2

� Problem 2: Given O and model parameters, find the optimal state sequence.

� This can be obtained via the Viterbi algorithm.

� Define bookkeeping array              and best state sequence score up to t:

� Initialization:

� Recursion:

� Termination:

� Backtracking:
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[4.1.3-AM] HMMsHMMs –– Solution to Problem 3Solution to Problem 3

� Problem 3: Maximum likelihood parameter estimation problem.

� Solution via the expectation-maximization (EM) iterative algorithm.

� Define the auxiliary function:

� E-step: Auxiliary function is expectation                           under current

� M-step: Obtain new parameters as

� EM results in increased likelihood:

� Its HMM implementation is known as the Baum-Welch, or forward-backward 
algorithm.

∑ ′=′
q 

θqOθqOθθ )|,Pr(log)|,Pr(),(Q

)]|,Pr([log θqOθ′E θ′

),(maxargˆ θθθ θ
′= Q

)|Pr()ˆ|Pr(),()ˆ,( θOθOθθθθ ′≥⇒′′≥′ QQ
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[4.1.3-AM] HMMsHMMs –– Solution to Problem 3 Solution to Problem 3 –– Cont.Cont.

� Define state i occupation probability at time t:

� Denote probability of occupying transition from state i to j at time t:

� Then, estimate new model parameters:

and in case of discrete observations (VQ):
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[4.1.3-AM] HMMsHMMs –– Solution to Problem 3 Solution to Problem 3 –– Cont.Cont.

� In the case of continuous observations, modeled as a Gaussian mixture, we denote the 

probability of being at state j at time t, with mixture k accounting of ot, as:

� Then:

and:
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[4.2-AM] Acoustic modeling using Acoustic modeling using HMMsHMMs

� Phonemes: Basic units that describe how speech conveys linguistic information.

� In statistical based ASR (especially large-vocabulary), they constitute the basic HMM units.

� Basic grouping of the phonemes used in American English (ARPAbet upper case version).

JH (judge)
CH (church)

L  (let)
R (rent)

PHONEMES

VOWELS CONSONANTS

FRONT MID BACK

IY (beat)
IH (bit)
EH (bet)
AE (bat)

ER (bird)
AX (about)
AH (but)

UW (boot)
UH (book)
OW (boat)
AA (Bob) 
AO (bought)

DIPHTHONGS
AY (buy)
OY  (boy)
AW (down)
EY (bait)

SEMIVOWELS

LIQUIDS GLIDES

NASALS

STOPS

VOICED UNVOICED

W (wit)
Y  (you)

M (met)
N   (net)
NX (sing)

B (bet)
D (debt)
G (get)

P (pet)
T (tan)
K (kid)

WISHPER

AFFRICATES

HH (hat)

VOICED UNVOICED

FRICATIVES

V (vase)
DH (that)
Z (zoo)
ZH (azure)

F (fat)
TH (thing)
S (sin)
SH (shore)



2014.08.072014.08.07 11stst ISCA Summer School ISCA Summer School –– HeraklionHeraklion, Crete, Crete

 

[4.2-AM] Acoustic modeling using Acoustic modeling using HMMsHMMs –– Cont.Cont.

� Words are modeled as phone 
sequences (phonetic dictionary).

� Phones are typically modeled as 3-
state left-2-right HMMs.

� To improve performance, states have 
context-dependent observation 
pdfs. Contexts are clusters of left and 
right phonetic sequences (1-5 in 
length), obtained by a decision tree.

� Training and recognition is then 
performed utilizing the HMM 
algorithms discussed previously 
(problems 2 and 3), on a network of 
HMM states, composed by words, 
phones, and sub-phonetic units.

� Example of 0-1 connected recognition 
using context-independent units.

THE =  /DH IY/;/DH AX/;
THEME= /TH IY M/;

1 2 3

IN OUT

DH_1 DH_2 DH_3

HMM for phone DH

Z IH R OW

OW

W AH N

SIL

0

1

End-Of-
Sentence

Sentence
Start
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[4.3-AM] ASR robustness / adaptationASR robustness / adaptation

� Typically, ASR performance degrades in noisy 
environments, and mismatched conditions and 
unseen speakers in training (lack of robustness).

� Performance can be improved by noise 
compensation, or in case available sample of 
the new condition / subject, by adaptation.

� Three categories of techniques:

� Signal space, feature space, model based.

� E.g.: Spectral subtraction, Wiener filtering, 
vocal tract length normalization (VTLN), noise 
adaptive prototypes, parallel model combination 
(PMC), maximum-a-posteriori adaptation 
(MAP), maximum likelihood linear regression 
(MLLR), speaker-adaptive training (SAT), 
feature-space MLLR (FMLLR), etc.

� These techniques are moderately only successful. 
Lack of robustness remains an issue.

Signal

space

Feature

space

Model

space

Clean

Train

Noisy

Test
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1. Introduction

2. Language modeling.

3. Speech feature extraction.

4. Acoustic modeling.

5. Search.
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[5-DEC] Decoding/Search Decoding/Search –– Graph CompositionGraph Composition

� So far we have discussed: Language model, dictionary, HMMs. 

� All these need to be “composed” together into a “graph’’, over which Viterbi
decoding will be performed.

� n-gram LMs can be easily converted into a graph.

• Trivial for uni- and bi-grams.

• Needs thought for tri-grams and above, so that state-space does not “explode”.

• Solution: Can be implemented using back-off LM approach.

• LM pruning can further reduce the size of the graph.
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[5.1-DEC] Graph Composition (II)Graph Composition (II)

Following the LM graph creation …

� Each word can be expanded to one or more phone sequences based on the 
dictionary.

� Then, each phone can be expanded with into its HMM states and transitions.

• Easy for word- or context-independent models.

• Difficult for context-dependent HMMs employing cross-word modeling.

Graph composition is facilitated by the theory of finite state machines (FSMs): 
weighted finite state acceptors (FSAs), weighted finite state transducers (WFSTs).

� Pioneered at AT&T-Labs in late 90’s.

� FSM toolkit (http://www2.research.att.com/~fsmtools/fsm/)

� Operations of interest:

• Weighted composition creates the final graph.

• Weighted determinization and minimization compact it.
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[5.2-DEC] Static vs. Dynamic DecodingStatic vs. Dynamic Decoding

Decoding graph can be:

1. Static: All components are integrated into a single network, before ASR is run.

� Approach: FSM-based composition of all system components (decision tree, dictionary, 
language model).

� Pros:

• Expansion is performed off-line, does not affect decoding run-time.

• Allows better optimization.

� Cons:

• Large CPU and memory required during graph buildup.

• Cannot use adaptive vocabulary.

• LM must be FSM-representable.

2. Dynamic: At least some system components get integrated during run-time.

� Approach: Varies by R&D group.

� Pros: Provides flexibility and ASR performance improvements, e.g., when dialog-state 
based language models can be utilized.

� Cons: Slows down ASR process.
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[5.3-DEC] Decoding Strategies / Other IssuesDecoding Strategies / Other Issues

So far we have discussed Viterbi decoding (synchronous).

There is also an alternative decoding strategy called A*search / stack decoding. 
Uses “fast match” scores to decide which paths to extend, exploring best-
looking paths. Approach is rather complicated and becoming obsolete.

Finally, there is the 2-pass decoding strategy, where ASR output is rescored by 
typically more complex LMs. Typically operates on lattices or n-best lists.

Additional points in Viterbi decoding:

� Path pruning.

� LM / AM re-weighting.

� Word insertion penalty.
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Thank Thank you for your attention!you for your attention!


