

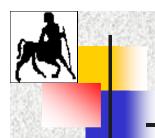
Department of Electrical and Computer Engineering

Automatic Speech Recognition: An Introduction to Basic Techniques

Gerasimos Potamianos

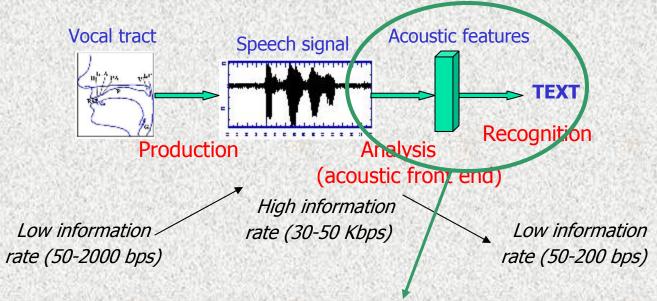
Associate Professor, Dept. of ECE, University of Thessaly Volos, GR

http://www.inf.uth.gr/~gpotamianos



[1.1-INTRO] The ASR Problem at a Glance (I)

Speech is the main form of **human communication** with information conveyed as:



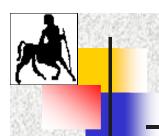
Automatic Speech Recognition (ASR) or Speech-to-Text (STT), refers to the automatic extraction of the uttered word sequence from the observed speech signal.

ASR is a crucial component of natural human-computer interaction (HCI) and data analytics / information retrieval systems.

[1.1-INTRO] The ASR Problem at a Glance (II)

- ASR has been an active research area since early 70's. Initial attempts to address it have gone as far back as the 50's.
- Technology has been **maturing** over the past decades, allowing applications of ever increasing complexity and wider deployment, reaching the wider public:
 - Domain specific dictation (radiology transcripts);
 - Large-vocabulary dictation in clean environments;
 - Telephony applications (call center routing, customer support);
 - Embedded applications (automobiles, etc);
 - Voice search applications in relatively noisy environments; etc...
 - Other applications include education, language teaching, etc.

Much of the progress is due to heavy **cross-fertilization** with a wide spectrum of research areas, like machine learning, pattern recognition, signal processing, bioinformatics, finance, coding, text processing, etc.



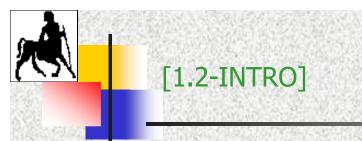
[1.1-INTRO] The ASR Problem at a Glance (III)

- ASR nevertheless remains a **challenging problem**, especially in noisy conditions and unconstrained or mismatched tasks and environments.
- Performance is measured in word error rate (WER) that breaks down to deletions, insertions, and substitutions, or (SER) in sentence/string error rate.
- Not quite at 0% errors yet ②. But acceptable performance depends on app.:

Clearly, little error tolerance in *dictation*, but increased in *speech understanding* / information retrieval applications.

- What is possible today? Some **examples** → **Humans** perform at $\sim 1/5$ the error machines!
- What **affects performance**?
 - Speaker dependency and characteristics.
 - Read vs. spontaneous speech.
 - Close-talking vs. distant speech and environment.
 - Task complexity (vocabulary size / language model perplexity).

Task	WER		
Connected digits	~ 0.1%		
Read newspaper text	~ 5 %		
Broadcast News	~ 10 %		
Telephone conversation	~ 15 %		
Far-field meetings	~ 35 %		



Brief History of ASR (I)

Over five decades of research in ASR.

- Early 20th Century: Initial work on understanding human speech perception.
 - 1908: Lord Rayleigh's work.
 - <u>20's onwards:</u> Significant work at Bell Labs on speech perception by Harvey Fletcher and his team (over 30 years).
 - Followed by later work at <u>Haskins</u> Laboratories.
- 50's-60's: Initial attempts on ASR based on simple processing techniques operating on outputs of filter-banks.
 - 1952: AT&T's David et al. built a single-speaker isolated digit recognizer (analog system).
 - 1956: RCA's Olson and Belar built a single-speaker ten-syllable recognizer.
 - 1962: First all-software vowel recognizer.

[1.2-INTRO] Brief History of ASR (II)

70's:

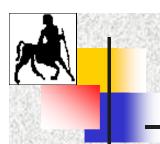
- First DARPA program (1971–1976). Goal was to integrate speech knowledge, linguistics, and AI, aiming at ASR.
- Work at Dragon, CMU, BBN, IBM on such ideas.

70's - 80's:

- Statistical approach to ASR. Development of hidden Markov models and basic language modeling.
- Work at IBM, Dragon, IDA, Bell Labs.
- 1984: Jelinek's team at IBM builds the first real-time dictation system (Tangora).

80's - 90's:

- 1986–1998: Second DARPA program. Common test sets, evaluation competitions.
- First commercial <u>dictation</u> products (Dragon's *Naturally Speaking*, IBM's *ViaVoice*).



[1.2-INTRO] Brief History of ASR (III)

00 - 10's:

- Large US government research initiatives: EARS, GALES, RATS.
- Significant EU funding in human language technology research.
- Major breakthroughs in complexity of systems, training algorithms, data availability, breadth of languages, environmental robustness.
- Significant commercialization activities (telephony, embedded, distributed).
- Many R&D / commercial players: Google, Apple, Amazon, Nuance, IBM, AT&T, SRI, MSR.
- Multitude of university groups active: CLSP/JHU, CMU, ICSI, MIT, IDIAP, Aachen, Cambridge, Edinburgh, USC, ...

[1.3-INTRO]

Some ASR Literature Resources (I)

Books:

- Benesty, Sondhi, Huang (Eds.), Springer Handbook of Speech Processing, Springer 2008.
- Rabiner, Schafer, Theory and Applications of Digital Speech Processing, Prentice-Hall, 2011.
- Jurafsky, Martin, Speech and Language Processing, Prentice Hall, 2009.

Journals:

- IEEE Transactions on Audio, Speech and Language Processing.
- Elsevier Journals of Speech Communication and Computer Speech and Language.
- Eurasip Journal on Audio, Speech, and Music Processing.
- Speech Technology Magazine.

Conferences:

- <u>ICASSP</u> International Conference on Acoustics, Speech, and Signal Processing (Spring)
- <u>Interspeech</u> Conference of the International Speech Communication Association (Fall)
 [formerly: <u>Eurospeech</u>, <u>ICSLP</u>]
- <u>ASRU</u> Automatic Speech Recognition and Understanding Workshop
 <u>SLT</u> Spoken Language Technology Workshop (Winter)

[1.3-INTRO] Some ASR Literature Resources (II)

Some software Toolkits:

- HTK hidden Markov model toolkit, http://htk.eng.cam.ac.uk
- CMU Sphinx recognizer, http://cmusphinx.sourceforge.net
- KALDI ASR software, http://kaldi.sourceforge.net/
- SRILM the SRI language modeling toolkit, http://www.speech.sri.com/projects/srilm/
- PRAAT speech analysis toolkit, http://www.fon.hum.uva.nl/praat/

Data resources and evaluation:

- <u>LDC</u> Linguistics Data Consortium, https://www.ldc.upenn.edu/
- ELRA European Language Resources Association, http://www.elra.info/
- NIST National Institute of Standards and Technology, http://nist.gov/itl/iad/mig/

Links to online resources and educational material:

http://www.dev.voxforge.org/projects/Main/wiki/TheoryAndAlgorithms

[1.4-INTRO] The ASR Statistical Approach

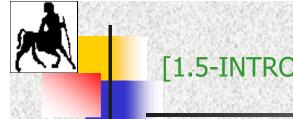
Since the late 70's, the ASR problem has been formulated as finding the **optimal** sequence of words $\hat{\omega}$ given the acoustic signal (observations) **O**:

$$\hat{\boldsymbol{\omega}} = \arg\max_{\boldsymbol{\omega}} \Pr[\boldsymbol{\omega} \mid \mathbf{O}]$$

Based on **Bayes' rule**, the following equation is derived that emulates the source / channel equation model:

$$\hat{\boldsymbol{\omega}} = \arg \max_{\boldsymbol{\omega}} \Pr[\boldsymbol{\omega}] \Pr[\mathbf{O} \mid \boldsymbol{\omega}]$$

- This immediately highlights the **basic ASR research problems**:
 - O : Feature extraction.
 - ω : Vocabulary.
 - $Pr[\omega]$: Language model.
 - $Pr[O|\omega]$: Acoustic model.
 - $\hat{\mathbf{\omega}}$: Search / decoding.



[1.5-INTRO] Remainder Talk Overview

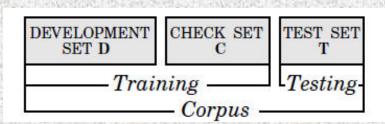
- 1. Introduction
- 2. Language modeling.
- 3. Speech feature extraction.
- 4. Acoustic modeling.
- 5. Search.

[2-LM] Language Modeling

- Aims to provide prior probability for word sequences, thus reducing the "uncertainty" (**perplexity**) in ASR.
- Assumes **causal** model:

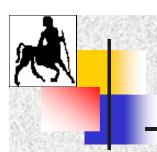
$$\Pr[\mathbf{\omega}_1^m] = \prod_{i=1}^m \overline{\Pr}[\omega_i \mid \mathbf{\omega}_1^{i-1}]$$

- Approximation using finite "**history**": $\Pr[\omega_i \mid \omega_1^{i-1}] \approx \Pr[\omega_o \mid \Phi(\omega_{-1},...,\omega_{-N+1})]$ $= \Pr[\upsilon \in Voc \mid \mathbf{h}_{N-1}].$
- LMs are trained and evaluated on large text corpora, split into:



Evaluation on basis of **perplexity** (PP):

$$LP = -\frac{1}{M} \sum_{i=1}^{M} \log Pr \left[w_i^{(t)} | \Phi(w_{i-1}^{(t)} ... w_{i-N}^{(t)}) \right]. \qquad \Longrightarrow PP = 2.0^{LP}$$



[2.1-LM] Language Modeling Using n-grams

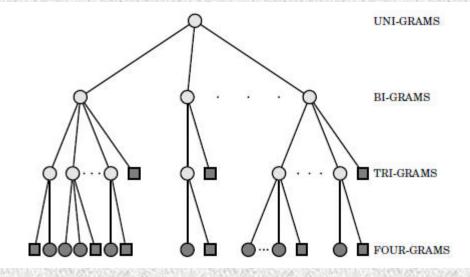
Two problems – with their traditional solutions.

History classification:

$$\Phi(w_{-1}w_{-2}...w_{-N}) = (w_{-1}w_{-2}...w_{-K})$$

where

$$K = \underset{1 \le k \le N}{\operatorname{argmax}} \left\{ \#_{D}(w_{-1}w_{-2}...w_{-k}) > 0 \right\}$$



Variable-length n-gram as a decision tree

Typically, $N=1 \rightarrow \text{bi-gram}$, $N=2 \rightarrow \text{tri-gram}$, or $N=3 \rightarrow \text{four-gram}$

Probability estimation:

Maximum likelihood yields:

$$Pr\left[w \mid \Phi(w_{-1}w_{-2}...w_{-N})\right] = \frac{\#_D(w w_{-1}w_{-2}...w_{-K})}{\#_D(w_{-1}w_{-2}...w_{-K})}$$

This creates generalization issues, because unseen data get assigned zero probability! Need of probability estimates **smoothing**.

[2.2-LM] Language Modeling Smoothing (I)

Adopted **notation** for LM **smoothing** approaches:

- Estimate $p_i = Pr[w_i | \Phi(\mathbf{h})]$ from $n_i = \#_D\{w_i, \Phi(\mathbf{h})\}.$
- <u>Denote</u> $k = |V|, n = \sum_{i=0}^{k} n_i$, and $q = \#\{w_i : n_i > 0\}.$

Three general approaches.

- **Laws of succession:** Use current "leaf" ML estimates only.
- Maximum likelihood:

$$p_i = \frac{n_i}{n} .$$

Laplace's law:

$$p_i = \frac{n_i + 1}{n + k} \,.$$

Lidstone's law:

$$p_i = \frac{n_i + \lambda}{n + k \lambda} \,.$$

Absolute discounting:

$$p_i = \begin{cases} (n_i - \delta)/n &, \text{ if } n_i > 0 \\ q \delta/n (k - q) &, \text{ otherwise }. \end{cases}$$

Linear discounting:

$$p_i = \begin{cases} (1-a)n_i/n & \text{, if } n_i > 0 \\ a/(k-q) & \text{, otherwise .} \end{cases}$$

Unknown parameters are estimated on held-out data.

[2.2-LM] Language Modeling Smoothing (II)

- 2. **Back-off smoothing:** Use "ancestor" leaf with appropriate law-of-succession.
 - IDEA: $Pr[w|w_1w_2...w_N] = Pr[w|w_1w_2...w_K] =$ $= \begin{cases} LOS \left\{ \frac{\#_D(w \, w_{-1} w_{-2} ... w_{-K})}{\#_D(w_{-1} w_{-2} ... w_{-K})} \right\}, & \text{if } A : \#_D(w \, w_{-1} w_{-2} ... w_{-K}) > 0, \\ a \, Pr \left[w \, | w_{-1} w_{-2} ... w_{-K+1} \right], & \text{if } \#_D(w \, w_{-1} w_{-2} ... w_{-K}) = 0, \end{cases}$

where

$$K = \underset{1 \le k \le N}{\operatorname{argmax}} \left\{ \, \#_D(w_{-1}w_{-2}...\,w_{-k}\,) > 0 \, \right\} \, ,$$

and

$$a \ = \ \frac{1 - \sum\limits_{A} LOS\left\{\frac{\#_{D}(w \ w_{-1} w_{-2} ... w_{-K})}{\#_{D}(w_{-1} w_{-2} ... w_{-K})}\right\}}{\sum\limits_{\bar{A}} Pr\left[w \mid w_{-1} w_{-2} ... w_{-K+1}\right]}.$$

- Probabilities are computed in a **top-down** fashion.
- Unknown parameters of LOS rules are estimated on **held-out** data.
- Popular in **ASR decoding**.

[2.2-LM] Language Modeling Smoothing (III)

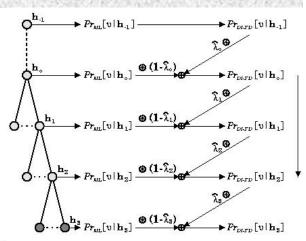
- **Linear interpolation:** Use all "ancestor" leaf ML estimates up to root note. 3.
 - IDEA:

$$f^{(o)}(w) = \frac{1}{|V|}$$
, and $f^{(i)}(w) = \frac{\#_D(w \, w_{-1} w_{-2} \dots w_{-i+1})}{\sum_{w} \#_D(w \, w_{-1} w_{-2} \dots w_{-i+1})}$.

Then,

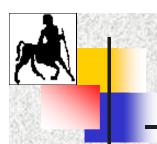
$$Pr[w | w_{-1}w_{-2}...w_{-N}] = \sum_{i=0}^{K+1} \lambda_i f^{(i)}(w),$$

where λ_i are chosen to minimize the LP of the "check set", $0 < \lambda_i < 1$ and $\sum_{i=0}^{K+1} \lambda_i = 1$.



LM probability "smoothing" by top-down linear interpolation

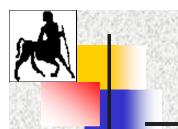
- Estimation of the weights can be performed in various ways, for example sequentially top-down, bottom-up, or simultaneously for all.
- Approach is of interest when also **combining multiple language models**.



[2-LM]

Other LM Issues and Approaches.

- Various LM issues / approaches:
 - Class LM.
 - Cache / Topic LM.
 - LM interpolation.
 - LM pruning.
 - LM combination of grammars and n-grams.
 - Incorporation of additional sources of information (parts-of-speech tags).
 - Language-specific modeling approaches.
- Other approaches:
 - Maximum-entropy language models.
 - Neural network language models.
 - Latent Dirichlet allocation models.

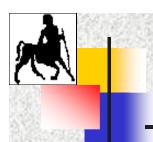


- 1. Introduction
- 2. Language modeling.
- 3. Speech feature extraction.
- 4. Acoustic modeling.
- 5. Search.

7

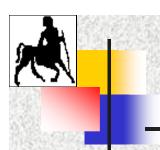
17

17



[3-FE] Speech Feature Extraction

- **Goal:** Extract sequence of features, \mathbf{O} , from acoustic signal, $\{s_n\}$
- **Main considerations** Features should be:
 - Informative about what was spoken.
 - Invariant to speaker and environment.
 - Compressing the signal to low dimensional feature vector.
 - Hopefully mimicking human speech perception.
- Various **approaches** exist. Most prevalent ones are low-level, signal based on:
 - The **linear predictive coding (LPC)** model of speech.
 - Filter-bank analysis, e.g. mel-frequency cepstral coefficients (MFCC).
 - Combination of the above, e.g. perceptual linear prediction (PLP).
- We also discuss:
 - Signal pre-processing.
 - Feature **post-processing**.



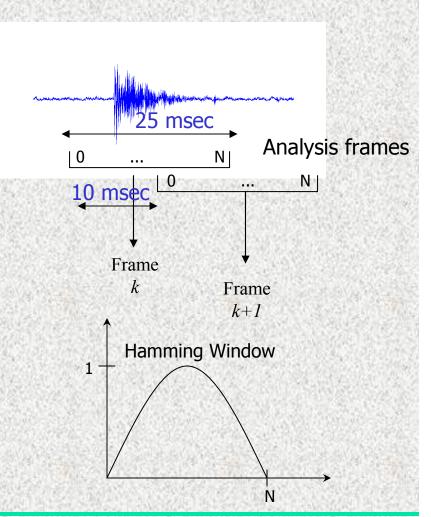
[3.1-FE] Signal Pre-Processing

- Processing is applied in **short-duration** "**frames**", typically of a 25 msec length, with some overlap (typically 10 ms). Signal in frame is $\{s_n, n=1,...,N\}$.
- The following are applied on frame:
 - DC signal removal.
 - Signal pre-emphasis:

$$s'_n = s_n - 0.97 \, s_{n-1}$$

Hamming windowing:

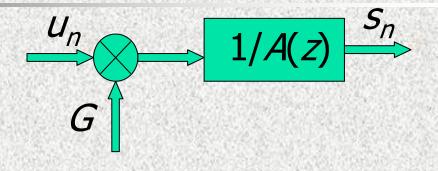
$$s'_{n} = \left\{ 0.54 - 0.46 \cos \left(\frac{2\pi (n-1)}{N-1} \right) \right\} \times s_{n}$$



[3.2-FE] Linear Prediction (LP) Speech Analysis

Vocal tract is modeled as an all-pole filter, driven by an excitation term:

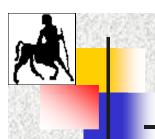
$$S_n = \sum_{i=1}^p a_i S_{n-i} + G u_n$$



- LP analysis aims to minimize the prediction error: $E \left| s_n \sum_{i=1}^p a_i s_{n-i} \right|$ and thus is a MSE problem.
- Efficiently solved using **Durbin**'s algorithm for inverting the pxp autocorrelation equation system. Results in LPC (linear prediction coefficients): $a_1, a_2,, a_p$.
- Superior ASR performance is achieved using the **LPCC** (LP cepstral coefficients):

$$c_m = a_m + \sum_{k=1}^{m-1} \frac{k}{m} c_k a_{m-k}; \ m = 1,..., M \le p$$

Typically, M=12, p=14.



[3.3-FE] Filter-Bank Speech Analysis / MFCCs

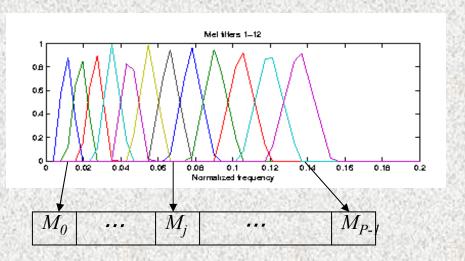
- Computes speech energy in a number of bands, after suitable band-pass filtering.
- Following human perception, bands are non-uniform. Typically, triangular filters are used (H_i) , with uniform spacing along the **mel** frequency scale:

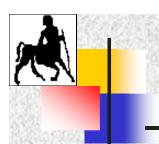
$$mel(f) = 2595 \log_{10}(1 + \frac{f}{700})$$

Mel-frequency cepstral coefficients (MFCC) are obtained by a discrete cosine transform of the log filterbank amplitudes,

$$M_{j} = 20 \log_{10} \left[\sum_{k=0}^{N-1} |S[k]| H_{j}[k] \right]$$
i.e.,
$$c_{i} = \sqrt{\frac{2}{p}} \sum_{j=0}^{p-1} M_{j} \cos \left(\frac{\pi i}{p} (j - 0.5) \right)$$

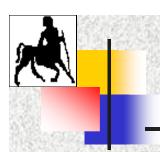
Occasionally, the $\{M_i\}$'s are used as features (log Mel FB energies).





[3.4-FE] Perceptual Linear Prediction (PLP)

- **Aims** to **combine** best features of both LPC and MFCCs
 - Uses perceptual based frequency scale (aka MFCCs).
 - Uses smooth spectral fit (aka LPC)
 - Employs perceptual based amplitude scaling.
- **Basic steps** for PLP feature extraction:
 - Computes **mel-wrapped power spectrum**, $M_j = \left[\sum_{i=1}^{n} |S[k]| H_j[k]\right]$
 - Takes **cubic root** of above.
 - Takes the IDFT of a symmetrized version of the result (ensuring real result).
 - Performs LPC assuming that the above result is a signal autocorrelation.
 - Obtains cepstral LPC coefficients.



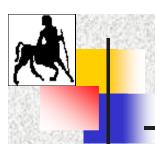
[3.5-FE] Other Features Used in ASR

A multitude of other features have been proposed in the literature for ASR, e.g.:

AM-FM speech **signal** representation – instantaneous amplitudes & frequencies:

$$s_n = \sum_{j=0}^{p-1} a_{jn} \cos(\phi_{jn})$$

- **Articulatory** features:
 - Manner, voicing characterizations.
 - Formant locations, formant bandwidths, etc.
- **Statistical Classifier** based features:
 - **Tandem** approach: Features are transformed versions of statistical classifier posteriors, typically of neural networks.
 - **Bottleneck** features: Features extracted from "narrow" hidden layer of multi-layer **neural network**, typically employed as acoustic model.



[3.6-FE] Feature Post-Processing / Normalization

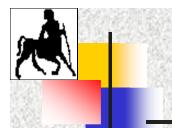
Weighting of the LPC coefficients (also known as "cep-liftering"):

$$c'_{n} = \left(1 + \frac{L}{2}\sin\frac{\pi n}{L}\right) \times c_{n} \qquad \text{(e.g., } L = 22\text{)}.$$

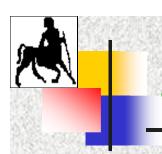
Augmentation of the feature vector (LPCC or MFCC) by log of signal energy:

$$E = \log \sum_{n=1}^{N} s_n^2$$

- **Normalization** by subtracting E_{max} -1 for energy, **mean** for other features.
- Variance normalization occasionally employed (typical in NN-based systems).
- Inclusion of "dynamic" information, by augmenting features with first and second derivatives, or "learning" dynamic features as a dimensionality-reduction projection of a **concatenation** of features from consecutive, neighboring frames.
- Feature **transformations** (projection / rotation) to other spaces for better statistical modeling (compaction, de-correlation). Examples are PCA, LDA, **HLDA**, **MLLT**. Many of these require **class label** information.
- Vocal track length normalization (VTLN): Frequency axis wrapping.



- 1. Introduction
- 2. Language modeling.
- 3. Speech feature extraction.
- 4. Acoustic modeling.
- 5. Search.



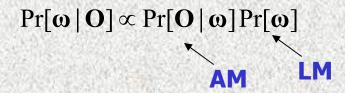
[4-AM]

Acoustic Modeling

 Statistical approach to ASR uses maximum a-posteriori (MAP) estimation to obtain optimal word sequence:

$$\hat{\boldsymbol{\omega}} = \arg\max_{\boldsymbol{\omega}} \Pr[\boldsymbol{\omega} \,|\, \mathbf{O}]$$

- "Hidden" words are partially observed through sequence of acoustic features.
- Two models are needed:
 - Prior probability of word sequences (language model).
 - Generative model of acoustic features from word sequence (acoustic model).



Uttered word sequence

Produced speech signal

Acoustic observation (feature) sequence

Recognized word sequence

$$\hat{o}_1$$
 \hat{o}_2

[4.1-AM] Hidden Markov models (HMMs)

- HMMs are popular generative models for time series of observations. They are characterized by following:
- States: $C = \{1, 2, ..., N\}$. Denote q_t state at t.
- Initial state distribution:

$$\pi = {\pi_i = \text{Pr}[q_1 = i], i = 1,...,N}$$

State transition probabilities:

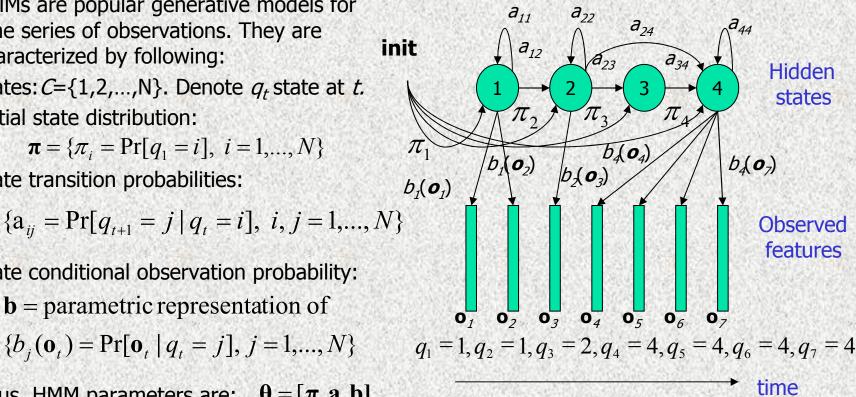
$$\mathbf{a} = \{\mathbf{a}_{ij} = \Pr[q_{t+1} = j \mid q_t = i], i, j = 1,..., N\}$$

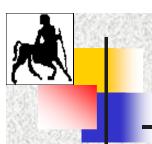
State conditional observation probability:

 \mathbf{b} = parametric representation of

$$\{b_{j}(\mathbf{o}_{t}) = \Pr[\mathbf{o}_{t} | q_{t} = j], j = 1,...,N\}$$

Thus, HMM parameters are: $\theta = [\pi, a, b]$





[4.1-AM] **HMMs - Cont.**

The class-conditional observation probabilities **b** can be:

Discrete, in case that the observation vectors are drawn from a finite set. This can be achieved by vector quantization of the feature space (codebook of size K):

$$\mathbf{b} = \{b_i(k) = \Pr[\mathbf{o}_t \approx \mathbf{v}_k \mid q_t = j], \ j = 1,...,N, k = 1,...,K\}$$

Continuous, typically considered as a mixture of multi-dimensional Gaussians:

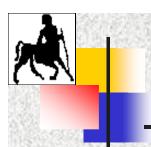
$$b_{j}(\mathbf{o}_{t}) = \sum_{m=1}^{M_{j}} c_{jm} N(\mathbf{o}_{t}; \mathbf{\mu}_{jm}, \mathbf{U}_{jm}), \quad j = 1,..., N$$

where the d-dimensional Gaussians are

$$N_d(\mathbf{o}; \boldsymbol{\mu}, \mathbf{U}) = \frac{1}{\sqrt{(2\pi)^d |\mathbf{U}|}} \exp \left[-\frac{1}{2} (\mathbf{o} - \boldsymbol{\mu})^T \mathbf{U}^{-1} (\mathbf{o} - \boldsymbol{\mu}) \right]$$

and the mixture weights satisfy: $\sum_{m=1}^{M_j} c_{jm} = 1, \quad c_{jm} \ge 0, \quad j = 1,...,N, \quad m = 1,...,M_j$

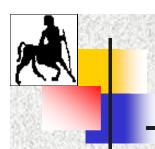
Parameters are then: $\mathbf{b} = \{c_{jm}, \mu_{jm}, \mathbf{U}_{jm}, j = 1,...,N, m = 1,...,M_j\}$



[4.1-AM] **HMMs - Cont.**

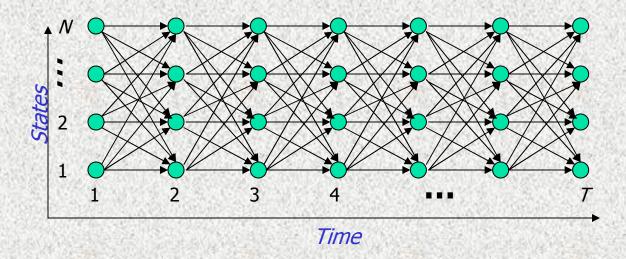
The three basic HMM problems. Recall:

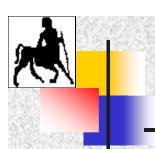
- Observation sequence of duration $T: \mathbf{O} = [\mathbf{o}_1, \mathbf{o}_2, ..., \mathbf{o}_T].$
- State sequence: $\mathbf{q} = [q_1, q_2, ..., q_T]$.
- Model parameters: $\theta = [\pi, a, b]$
- **Problem 1:** Given **O** and model parameters, how do we compute $Pr(\mathbf{O} \mid \mathbf{\theta})$?
 - "Evaluation" of model fit to the data.
 - Solved by the "forward" or "backward" procedure.
- Problem 2: Given O & model parameters, what is the optimal state seq. q?
 - Uncovers the "hidden" states used in recognition!
 - Solved by the Viterbi algorithm.
- **Problem 3:** What are the model parameters that optimize $Pr(\mathbf{O} \mid \mathbf{\theta})$?
 - This is the maximum-likelihood parameter estimation problem.
 - Solved by the forward-backward algorithm (or Baum-Welch), an instance of the expectation-maximization (EM) procedure.



[4.1-AM] **HMMs - Cont.**

- Brute force solution to these problems is exponential on T, i.e., O(TN^{-7}).
- Luckily, dynamic programming solutions exist!
- They utilize partial computations on the 2-D **lattice** of TxN states in time.
- Complexity of resulting algorithms is $O(N^27)$.





[4.1.1-AM] HMMs - Solution to Problem 1

Problem 1: Compute the probability of an observed sequence, given model,

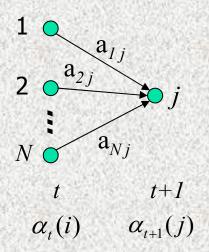
$$\Pr(\mathbf{O} \mid \mathbf{\theta}) = \sum_{q_1, q_2, \dots, q_T} \pi_{q_1} b_{q_1}(\mathbf{o}_1) a_{q_1 q_2} b_{q_2}(\mathbf{o}_2) \dots a_{q_{T-1} q_T} b_{q_T}(\mathbf{o}_T)$$

- Can be efficiently computed by means of the <u>forward procedure</u>:
 - Define **forward variable** of time *t* and state *i*:

$$\alpha_t(i) = \Pr(\mathbf{o}_1 \mathbf{o}_2 ... \mathbf{o}_t, q_t = i \mid \mathbf{\theta})$$

Initialization:

$$\alpha_1(i) = \pi_i b_i(\mathbf{o}_1)$$
, for $i = 1,..., N$

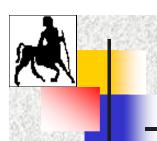


Induction:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_{t}(i) \mathbf{a}_{ij}\right] b_{j}(\mathbf{o}_{t+1}), \text{ for } j = 1, ..., N, t = 1, ..., T-1$$

Termination:

$$\Pr(\mathbf{O} \mid \mathbf{\theta}) = \sum_{i=1}^{N} \alpha_{T}(i)$$



[4.1.1-AM] HMMs - Solution to Problem 1 - Cont.

Can also be solved by means of the <u>backward procedure</u>:

ullet Define the backward variable of time t and state i.

$$\beta_t(i) = \Pr(\mathbf{o}_{t+1} \mathbf{o}_{t+2} ... \mathbf{o}_T \mid q_t = i, \mathbf{\theta})$$

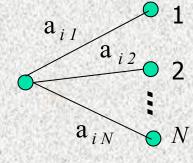
$$\beta_T(i) = 1$$
, for all states $i = 1,...,N$.

Induction:

$$\beta_t(i) = \sum_{i=1}^{N} \mathbf{a}_{ij} b_j(\mathbf{o}_{t+1}) \beta_{t+1}(j), \text{ for } t = T-1, T-2, ..., 1, i = 1, ..., N$$

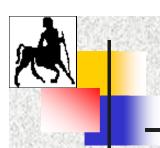
Termination:

$$\Pr(\mathbf{O} \mid \mathbf{\theta}) = \sum_{i=1}^{N} \pi_i b_i(\mathbf{o}_1) \beta_1(i)$$



$$t \qquad t+1$$

$$\beta_t(i) \qquad \beta_{t+1}(j)$$



[4.1.2-AM] HMMs - Solution to Problem 2

- **Problem 2:** Given **O** and model parameters, find the optimal state sequence.
 - This can be obtained via the **Viterbi algorithm**.
 - Define bookkeeping array $\psi_t(j)$ and best state sequence score up to t:

$$\delta_t(i) = \max_{q_1, q_2, \dots, q_{t-1}} \Pr(q_1 q_2 \dots q_{t-1}, q_t = i, \mathbf{o}_1 \mathbf{o}_2 \dots \mathbf{o}_t \mid \mathbf{\theta})$$

Initialization:

$$\delta_1(i) = \pi_i b_i(\mathbf{o}_1), \ \psi_1(i) = 0, \ \text{ for } i = 1,...,N$$

Recursion:

$$\delta_{t}(j) = \max_{i=1,...,N} [\delta_{t-1}(i) a_{ij}] b_{j}(\mathbf{0}_{t}), \ t = 2,...,N, \ j = 1,...,N$$

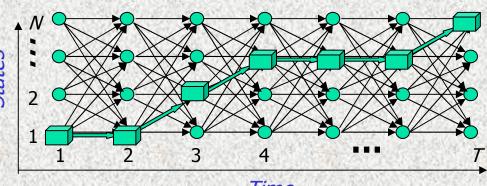
$$\psi_t(j) = \arg\max_{i=1,...,N} [\delta_{t-1}(i) a_{ij}], \quad t = 2,...,N, \ j = 1,...,N.$$

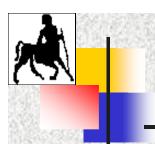
Termination:

$$\hat{q}_T = \arg\max_{i=1,\dots,N} [\delta_T(i)].$$

Backtracking: $\hat{q}_t = \psi_{t+1}(\hat{q}_{t+1})$,

$$t = T - 1, T - 2, ..., 1.$$





[4.1.3-AM] HMMs — Solution to Problem 3

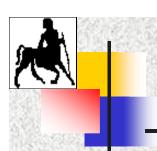
- Problem 3: Maximum likelihood parameter estimation problem.
- Solution via the expectation-maximization (EM) iterative algorithm.
 - Define the auxiliary function:

$$Q(\boldsymbol{\theta}', \boldsymbol{\theta}) = \sum_{\mathbf{q}} \Pr(\mathbf{O}, \mathbf{q} \mid \boldsymbol{\theta}') \log \Pr(\mathbf{O}, \mathbf{q} \mid \boldsymbol{\theta})$$

- **E-step:** Auxiliary function is expectation $E_{\theta'}[\log \Pr(\mathbf{O}, \mathbf{q} \mid \boldsymbol{\theta})]$ under current $\boldsymbol{\theta}'$
- **M-step:** Obtain new parameters as $\hat{\theta} = \arg \max_{\theta} Q(\theta', \theta)$
- EM results in increased likelihood:

$$Q(\boldsymbol{\theta}', \hat{\boldsymbol{\theta}}) \ge Q(\boldsymbol{\theta}', \boldsymbol{\theta}') \Longrightarrow \Pr(\mathbf{O} \mid \hat{\boldsymbol{\theta}}) \ge \Pr(\mathbf{O} \mid \boldsymbol{\theta}')$$

Its HMM implementation is known as the <u>Baum-Welch</u>, or forward-backward algorithm.



[4.1.3-AM] HMMs – Solution to Problem 3 – Cont.

- Define state *i* occupation probability at time *t*: $\gamma_t(i) = \Pr(q_t = i \mid \mathbf{O}, \mathbf{\theta})$
- Denote probability of occupying transition from state i to j at time t:

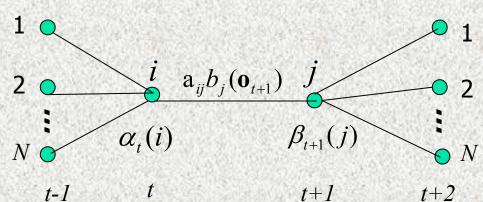
$$\xi_{t}(i, j) = \Pr(q_{t} = i, q_{t+1} = j \mid \mathbf{O}, \mathbf{0})$$

$$= \frac{\alpha_{t}(i) \mathbf{a}_{ij} b_{j}(o_{t+1}) \beta_{t+1}(j)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{t}(i) \mathbf{a}_{ij} b_{j}(o_{t+1}) \beta_{t+1}(j)}$$

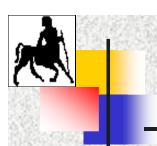
Then, estimate new model parameters:

$$\hat{\pi}_{i} = \gamma_{1}(i) \; ; \; \hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \gamma_{t}(i)}$$

and in case of discrete observations (VQ): $\hat{b}_{j}(k) = \frac{t=1, s.t: \mathbf{o}_{t} \rightarrow v_{k}}{T}$



$$\hat{b}_{j}(k) = \frac{\sum_{t=1, s.t: \mathbf{0}_{t} \to v_{k}} \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)}$$



[4.1.3-AM] HMMs - Solution to Problem 3 - Cont.

In the case of continuous observations, modeled as a Gaussian mixture, we denote the probability of being at state j at time t, with mixture k accounting of \mathbf{o}_t , as:

$$\gamma_{t}(j,k) = \frac{\alpha_{t}(j)\beta_{t}(j)}{\sum_{i=1}^{N} \alpha_{t}(i)\beta_{t}(i)} \times \frac{c_{jk}N_{d}(\mathbf{o}_{t}; \mathbf{\mu}_{jk}, \mathbf{U}_{jk})}{\sum_{m=1}^{M_{j}} c_{jm}N_{d}(\mathbf{o}_{t}; \mathbf{\mu}_{jm}, \mathbf{U}_{jm})}$$

Then:

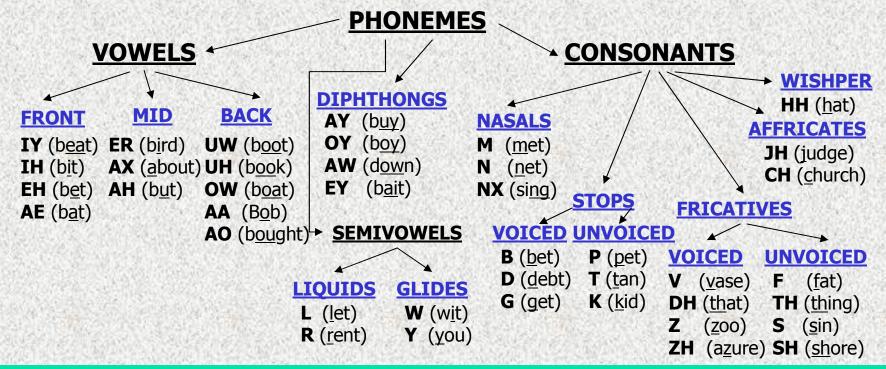
$$\hat{c}_{jk} = \frac{\sum_{t=1}^{T} \gamma_t(j,k)}{\sum_{t=1}^{T} \sum_{m=1}^{M_j} \gamma_t(j,m)} \quad ; \quad \hat{\boldsymbol{\mu}}_{jk} = \frac{\sum_{t=1}^{T} \gamma_t(j,k) \, \boldsymbol{o}_t}{\sum_{t=1}^{T} \gamma_t(j,k)}$$

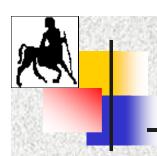
and:

$$\hat{\mathbf{U}}_{jk} = \frac{\sum_{t=1}^{T} \gamma_t(j,k) (\mathbf{o}_t - \hat{\boldsymbol{\mu}}_{jk}) (\mathbf{o}_t - \hat{\boldsymbol{\mu}}_{jk})^{\mathrm{T}}}{\sum_{t=1}^{T} \gamma_t(j,k)}$$

[4.2-AM] Acoustic modeling using HMMs

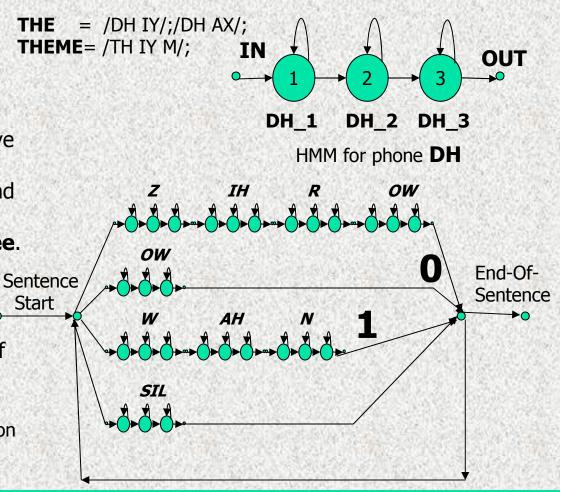
- Phonemes: Basic units that describe how speech conveys linguistic information.
- In statistical based ASR (especially large-vocabulary), they constitute the basic <u>HMM</u> units.
- Basic grouping of the phonemes used in American English (ARPAbet upper case version).



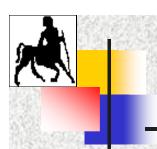


[4.2-AM] Acoustic modeling using HMMs — Cont.

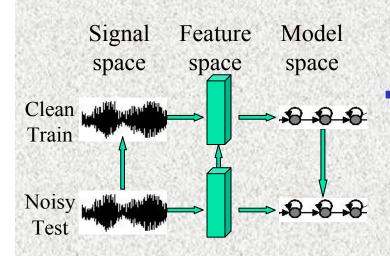
- Words are modeled as phone sequences (phonetic dictionary).
- Phones are typically modeled as 3state left-2-right HMMs.
- To improve performance, states have context-dependent observation pdfs. Contexts are clusters of left and right phonetic sequences (1-5 in length), obtained by a decision tree.
- Training and recognition is then performed utilizing the HMM algorithms discussed previously (problems 2 and 3), on a network of HMM states, composed by words, phones, and sub-phonetic units.
 - Example of 0-1 connected recognition using context-independent units.



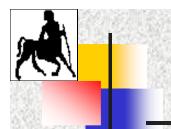
1st ISCA Summer School - Heraklion, Crete



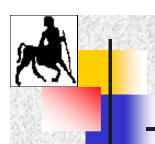
[4.3-AM] **ASR robustness / adaptation**



- Typically, ASR performance degrades in noisy environments, and mismatched conditions and unseen speakers in training (lack of robustness).
 - Performance can be improved by noise compensation, or in case available sample of the new condition / subject, by adaptation.
- Three categories of techniques:
 - Signal space, feature space, model based.
 - E.g.: Spectral subtraction, Wiener filtering, vocal tract length normalization (VTLN), noise adaptive prototypes, parallel model combination (PMC), maximum-a-posteriori adaptation (MAP), maximum likelihood linear regression (MLLR), speaker-adaptive training (SAT), feature-space MLLR (FMLLR), etc.
- These techniques are moderately only successful.
 Lack of robustness remains an issue.



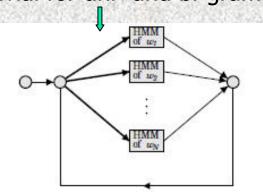
- 1. Introduction
- 2. Language modeling.
- 3. Speech feature extraction.
- 4. Acoustic modeling.
- 5. Search.

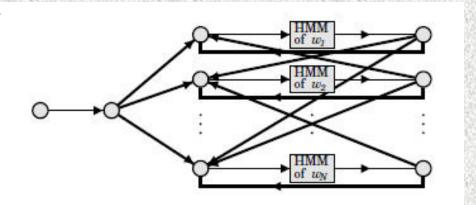


[5-DEC] Decoding/Search — Graph Composition

- So far we have discussed: Language model, dictionary, HMMs.
- All these need to be "composed" together into a "graph", over which Viterbi decoding will be performed.
- n-gram LMs can be easily converted into a graph.

Trivial for uni- and bi-grams.→





- Needs thought for tri-grams and above, so that state-space does not "explode".
- Solution: Can be implemented using back-off LM approach.
- LM pruning can further reduce the size of the graph.



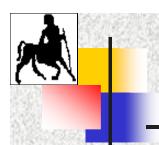
[5.1-DEC] Graph Composition (II)

Following the LM graph creation ...

- Each **word** can be expanded to one or more **phone sequences** based on the dictionary.
- Then, each **phone** can be expanded with into its **HMM** states and transitions.
 - Easy for word- or context-independent models.
 - Difficult for context-dependent HMMs employing cross-word modeling.

Graph composition is facilitated by the **theory of finite state machines (FSMs)**: weighted finite state acceptors (**FSAs**), weighted finite state transducers (**WFSTs**).

- Pioneered at AT&T-Labs in late 90's.
- FSM toolkit (http://www2.research.att.com/~fsmtools/fsm/)
- Operations of interest:
 - Weighted composition creates the final graph.
 - Weighted determinization and minimization compact it.



[5.2-DEC]

Static vs. Dynamic Decoding

Decoding graph can be:

- **Static:** All components are integrated into a single network, before ASR is run.
- <u>Approach:</u> FSM-based composition of all system components (decision tree, dictionary, language model).
- Pros:
 - Expansion is performed off-line, does not affect decoding run-time.
 - Allows better optimization.
- Cons:
 - Large CPU and memory required during graph buildup.
 - Cannot use adaptive vocabulary.
 - LM must be FSM-representable.
- **Dynamic:** At least some system components get integrated during run-time.
- Approach: Varies by R&D group.
- Pros: Provides flexibility and ASR performance improvements, e.g., when dialog-state based language models can be utilized.
- Cons: Slows down ASR process.

[5.3-DEC]

Decoding Strategies / Other Issues

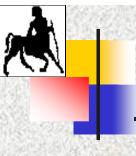
So far we have discussed Viterbi decoding (synchronous).

There is also an alternative decoding strategy called **A*search** / **stack decoding**. Uses "fast match" scores to decide which paths to extend, exploring best-looking paths. Approach is rather complicated and becoming obsolete.

Finally, there is the **2-pass decoding strategy**, where ASR output is rescored by typically more complex LMs. Typically operates on **lattices** or **n-best** lists.

Additional points in Viterbi decoding:

- Path pruning.
- LM / AM re-weighting.
- Word insertion penalty.



Thank you for your attention!

I nank you for your attention!										
7						10				
7		1)				77		ħ.		
17		17		37		107		37		