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CLUSTERING ALGORITHMS VIA 

FUNCTION OPTIMIZATION 

� In this context the clusters are assumed to be described by a parametric  
specific model whose parameters are unknown (all parameters are 
included in a vector denoted by θ).

Examples:

� Compact clusters. Each cluster Ci is represented by a point mi in the 
l-dimensional space. Thus θ=[m1

T, m2
T, …, mm

T ]T.

� Ring-shaped clusters. Each cluster Ci is modeled by a hypersphere 
C(ci,ri), where ci and ri are its center and its radius, respectively. 
Thus 

θ=[c1
T, r1, c2

T, r2, …, cm
T, rm]T.

�A cost J(θ) is defined as a function of the data vectors in X and θ.
Optimization of J(θ) with respect to θ results in θ that characterizes 
optimally the clusters underlying X.

�The number of clusters m is a priori known in most of the cases.
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� Hard Clustering Algorithms:

Each vector belongs exclusively to a single cluster. This implies that:

� uij∈{0, 1},    j=1,…,m

�

That is, it can be seen as an extreme special case of the fuzzy 
algorithmic schemes.

However, now,  the cost function

is not differentiable with respect to θj.

Despite that, the two-step optimization procedure (with respect to uij’s 
and with respect to θj’s) can be applied, taking into account that, for fixed 
θj’s, the uij’s that minimize J(θ,U) are chosen as

∑ =
=

m

j iju
1

1

∑∑
= =

=
N

i

m

j

jiij xduUJ
1 1

),(),( θθ









=
=

=
=

Ni
otherwise

xdxdif
u

kimkji

ij ,...,1,
,0

),(min),(,1 ,...,1 θθ



3

� Hard Clustering Algorithms (cont.)

� Generalized Hard Algorithmic Scheme (GHAS)

• Choose θj(0) as initial estimates for θj, j=1,…,m.

• t=0

• Repeat

− For i=1 to N

o For j=1 to m

Determination of the partition:

o End {For-j}

− End {For-i}

− t=t+1
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� Hard Clustering Algorithms (cont.)
� Generalized Hard Algorithmic Scheme (GHAS) (cont.)

− For j=1 to m

o Parameter updating: Solve

o with respect to θj and set θj(t) equal to the computed 
solution

− End {For-j}

• Until a termination criterion is met

� Remarks:

• In the update of each θj, only the vectors xi for which uij(t-1)=1 are 
used.

• GHAS may terminate when either

− ||θ(t)-θ(t-1)||<ε or

− U remains unchanged for two successive iterations.
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� Hard Clustering Algorithms (cont.)

� The K-Means Algorithm

General comments

• It is a special case of GHAS where

− Point representatives are used.

− The squared Euclidean distance is employed.

• The cost function J(θ,U) becomes now
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� Hard Clustering Algorithms (cont)

� The  k-Means algorithm

• Choose arbitrary initial estimates θj(0) for the θj’ s, j=1,…,m.

• Repeat

− For i=1 to N

o Determine the closest representative, say θj, for xi

o Set b(i)=j.

− End {For}

− For j=1 to m

o Parameter updating: Determine θj as the mean of the 
vectors xi∈X with b(i)=j.

− End {For}

• Until no change in θj’ s occurs between two successive iterations
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Hard Clustering Algorithms – k-means (cont)

� Remarks:

• k-means recovers compact clusters.

• Sequential versions of the k-means, where the updating of the 
representatives takes place immediately after the identification of 
the representative that lies closer to the current input vector xi, 

have also been proposed.

• A variant of the k-means results if the number of vectors in each 
cluster is constrained a priori.

• The computational complexity of the k-means is O(Nmq), where q

is the number of iterations required for convergence. In practice, 
m and q are significantly less than N, thus, k-means becomes 

eligible for processing large data sets.

� Further remarks:

Some drawbacks of the original k-means accompanied with the 
variants of the k-means that deal with them are discussed next.
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� Hard Clustering Algorithms – k-means (cont)

� Drawback 1: Different initial partitions may lead k-means to produces

different final clusterings, each one corresponding to a different local 
minimum.

Strategies for facing drawback 1:

• Single run methods

− Use a sequential algorithm (discussed previously) to produce 
initial estimates for θj’s.

− Partition randomly the data set into m subsets and use their 
means as initial estimates for θj’ s.

• Multiple run methods

− Create different partitions of X, run k-means for each one of 

them and select the best result. 

− Compute the representatives iteratively, one at a time, by 
running k-means mN times. It is claimed that convergence is 
independent of the initial estimates of θj’ s.

• Utilization of tools from stochastic optimization techniques 
(simulated annealing, genetic algorithms etc).
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� Hard Clustering Algorithms – k - means (cont)

� Drawback 2: Knowledge of the number of clusters m is required a 
priori.

Strategies for facing drawback 2:

• Employ splitting, merging and discarding operations of the clusters 
resulting from k-means.

• Estimate m as follows:

− Run a sequential algorithm many times for different thresholds 
of dissimilarity Θ.

− Plot Θ versus the number of clusters and identify the largest 
plateau in the graph and set m equal to the value that 

corresponds to this plateau.
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� Hard Clustering Algorithms – k - means (cont)

� Drawback 3: k-means is sensitive to outliers and noise. 

Strategies for facing drawback 3:

• Discard all “small” clusters (they are likely to be formed by 
outliers).

• Use a k-medoids algorithm (see below), where a cluster is 
represented by one of its points.

� Drawback 4: k-means is not suitable for data with nominal 
(categorical) coordinates. 

Strategies for facing drawback 4:

• Use a k-medoids algorithm.
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� Hard Clustering Algorithms

� k-Medoids Algorithms

• Each cluster is represented by a vector selected among the 
elements of X (medoid). 

• A cluster contains

− Its medoid

− All vectors in X that

o Are not used as medoids in other clusters

o Lie closer to its medoid than the medoids representing 
other clusters.

Let Θ be the set of medoids of all clusters, I
Θ

the set of indices of the 
points in X that constitute Θ and IX-Θ the set of indices of the points 

that are not medoids.

• Obtaining the set of medoids Θ that best represents the data set, 
X is equivalent to minimizing the following cost function
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� k-Medoids Algorithms (cont)
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� Representing clusters with mean malues vs representing 
clusters with medoids

Mean Values Medoids

1. Suited only for 
continuous 
domains

1. Suited for either 
cont. or discrete 
domains

2. Algorithms using 
means are 
sensitive to outliers

2. Algorithms using 
medoids  are less 
sensitive to outliers

3. The mean 
possess a clear 
geometrical and 
statistical meaning

3. The medoid has 
not a clear 
geometrical meaning

4. Algorithms using 
means are not 
computationally 
demanding

4. Algorithms using 
medoids are more 
computationally 
demanding
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� k-Medoids Algorithms (cont)

� Example 7: (It illustrates the first two points in the above comparison)

(a) The five-point two-dimensional set stems from the discrete domain 
D={1,2,3,4,…}x{1,2,3,4,…}. Its medoid is the circled point and its mean is  
the “+” point, which does not belong to D.

(b)  In the six-point two-dimensional set , the point (9,2) can be 

considered as an outlier. While the outlier affects significantly the mean of 
the set, it does not affect its medoid.


