CHAPTER 12 – CLUSTERING ALGORITHMS II

- They produce a hierarchy of (hard) clusterings instead of a single clustering.
- Applications in:
 - Social sciences
 - ➢ Biological taxonomy
 - Modern biology
 - > Medicine
 - > Archaeology
 - Computer science and engineering

- \star Let $X = \{\underline{x}_1, ..., \underline{x}_N\}, \underline{x}_i = [x_{i1}, ..., x_{il}]^T$. Recall that:
 - ➤ In hard clustering each vector belongs exclusively to a single cluster.
 - An m-(hard) clustering of X, \mathcal{R} , is a partition of X into m sets (clusters) $C_1,...,C_m$, so that:
 - $C_i \neq \emptyset, i = 1, 2, ..., m$
 - $U_{i=1}^m C_i = X$
 - $C_i \cap C = \emptyset$, $i \neq j$, i, j = 1, 2, ..., m

By the definition: $\mathcal{R}=\{C_j, j=1,...m\}$

▶ <u>Definition:</u> A clustering \mathcal{R}_1 containing k clusters is said to be nested in the clustering \mathcal{R}_2 containing r (<k) clusters, if each cluster in \mathcal{R}_1 is a subset of a cluster in \mathcal{R}_2 .

We write $\mathcal{R}_1 \angle \mathcal{R}_2$

Example: Let $\mathcal{R}_1 = \{\{\underline{x}_1, \underline{x}_3\}, \{\underline{x}_4\}, \{\underline{x}_2, \underline{x}_5\}\}, \mathcal{R}_2 = \{\{\underline{x}_1, \underline{x}_3, \underline{x}_4\}, \{\underline{x}_2, \underline{x}_5\}\},$ $\mathcal{R}_3 = \{\{\underline{x}_1, \underline{x}_4\}, \{\underline{x}_3\}, \{\underline{x}_2, \underline{x}_5\}\}, \mathcal{R}_4 = \{\{\underline{x}_1, \underline{x}_2, \underline{x}_4\}, \{\underline{x}_3, \underline{x}_5\}\}.$ It is $\mathcal{R}_1 \angle \mathcal{R}_2$, but not $\mathcal{R}_1 \angle \mathcal{R}_3$, $\mathcal{R}_1 \angle \mathcal{R}_4$.

> Remarks:

- Hierarchical clustering algorithms produce a hierarchy of nested clusterings.
- They involve N steps at the most.
- At each step t, the clustering \mathcal{R}_t is produced by \mathcal{R}_{t-1} .
- Main categories:
 - Agglomerative clustering algorithms: Here $\mathcal{R}_0 = \{\{\underline{x}_1\}, ..., \{\underline{x}_N\}\},\ \mathcal{R}_{N-1} = \{\{\underline{x}_1, ..., \underline{x}_N\}\}\$ and $\mathcal{R}_0 \angle ... \angle \mathcal{R}_{N-1}$.
 - Divisive clustering algorithms: Here $\mathcal{R}_0 = \{\{\underline{x}_1, ..., \underline{x}_N\}\},\ \mathcal{R}_{N-1} = \{\{\underline{x}_1\}, ..., \{\underline{x}_N\}\}\$ and $\mathcal{R}_{N-1} \angle ... \angle \mathcal{R}_0$.

AGGLOMERATIVE ALGORITHMS

- \clubsuit Let $g(C_i, C_j)$ a proximity function between two clusters of X.
- ❖ Generalized Agglomerative Scheme (GAS)
 - > Initialization
 - Choose $\mathcal{R}_0 = \{\{\underline{x}_1\}, \dots, \{\underline{x}_N\}\}$
 - t=0
 - > Repeat
 - t=t+1
 - Choose (C_i, C_i) in \mathcal{R}_{t-1} such that

$$g(C_i, C_j) = \begin{cases} \min_{r,s} g(C_r, C_s), & \text{if } g \text{ is a disim. function} \\ \max_{r,s} g(C_r, C_s), & \text{if } g \text{ is a sim. function} \end{cases}$$

- Define $C_q = C_i \cup C_j$ and produce $\mathcal{R}_t = (\mathcal{R}_{t-1} \{C_i, C_j\}) \cup \{C_q\}$
- Until all vectors lie in a single cluster.

>Remarks:

- If two vectors come together into a single cluster at level *t* of the hierarchy, they will remain in the same cluster for all subsequent clusterings. As a consequence, there is no way to recover a "poor" clustering that may have occurred in an earlier level of hierarchy.
- Number of operations: $O(N^3)$

Definitions of some useful quantities: Let $X = \{x_1, x_2, ..., x_N\}$, with $x_i = [x_{i1}, x_{i2}, ..., x_{il}]^T$.

- \triangleright Pattern matrix (D(X)): An Nxl matrix whose i-th row is \underline{x}_i (transposed).
- \triangleright Proximity (similarity or dissimilarity) matrix (P(X)): An NxN matrix whose (i,j) element equals the proximity $\wp(\underline{x}_i,\underline{x}_i)$ (similarity $s(\underline{x}_i,\underline{x}_i)$, dissimilarity $d(\underline{x}_i,\underline{x}_i)$).
- **Example 1:** Let $X = \{\underline{x}_1, \underline{x}_2, \underline{x}_3, \underline{x}_4, \underline{x}_5\}$, with $\underline{x}_1 = [1, 1]^T, \underline{x}_2 = [2, 1]^T$, $\underline{x}_3 = [5, 4]^T, \underline{x}_4 = [6, 5]^T, \underline{x}_5 = [6.5, 6]^T.$

Euclidean distance

$$D(X) = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 5 & 4 \\ 6 & 5 \\ 6.5 & 6 \end{bmatrix} \quad P(X) = \begin{bmatrix} 0 & 1 & 5 & 6.4 & 7.4 \\ 1 & 0 & 4.2 & 5.7 & 6.7 \\ 5 & 4.2 & 0 & 1.4 & 2.5 \\ 6.4 & 5.7 & 1.4 & 0 & 1.1 \\ 7.4 & 6.7 & 2.5 & 1.1 & 0 \end{bmatrix} \quad P'(X) = \begin{bmatrix} 1 & 0.75 & 0.26 & 0.21 & 0.18 \\ 0.75 & 1 & 0.44 & 0.35 & 0.20 \\ 0.26 & 0.44 & 1 & 0.96 & 0.90 \\ 0.21 & 0.35 & 0.96 & 1 & 0.98 \\ 0.18 & 0.20 & 0.90 & 0.98 & 1 \end{bmatrix}$$

Tanimoto similarity

$$P'(X) = \begin{bmatrix} 1 & 0.75 & 0.26 & 0.21 & 0.18 \\ 0.75 & 1 & 0.44 & 0.35 & 0.20 \\ 0.26 & 0.44 & 1 & 0.96 & 0.90 \\ 0.21 & 0.35 & 0.96 & 1 & 0.98 \\ 0.18 & 0.20 & 0.90 & 0.98 & 1 \end{bmatrix}$$

Threshold dendrogram (or dendrorgram): It is an effective way of representing the sequence of clusterings which are produced by an agglomerative algorithm.

In the previous example, if $d_{\min}^{ss}(C_i, C_j)$ is employed as the distance measure between two sets and the Euclidean one as the distance measure between two vectors, the following series of clusterings are produced:

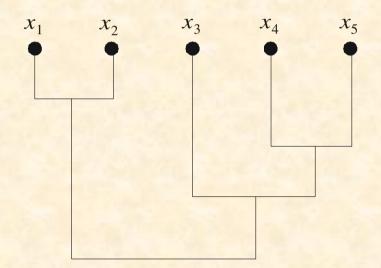
$$\{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}\} \}$$

$$\{\{x_1, x_2\}, \{x_3\}, \{x_4\}, \{x_5\}\} \}$$

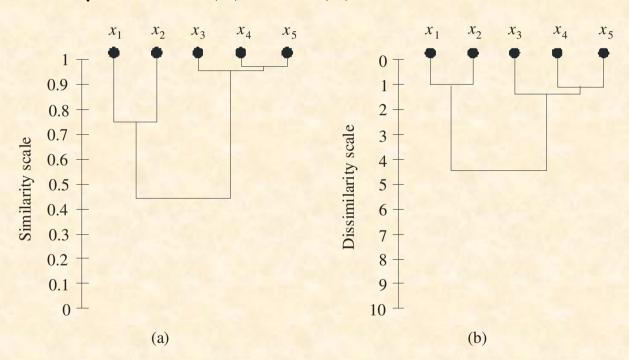
$$\{\{x_1, x_2\}, \{x_3\}, \{x_4, x_5\}\} \}$$

$$\{\{x_1, x_2\}, \{x_3, x_4, x_5\}\} \}$$

$$\{\{x_1, x_2, x_3, x_4, x_5\}\} \}$$



- Proximity (dissimilarity or dissimilarity) dendrogram: A dendrogram that takes into account the level of proximity (dissimilarity or similarity) where two clusters are merged for the first time.
- \triangleright Example 2: In terms of the previous example, the proximity dendrograms that correspond to P'(X) and P(X) are



Remark: One can readily observe the level in which a cluster is formed and the level in which it is absorbed in a larger cluster (indication of the natural clustering).

- Agglomerative algorithms are divided into:
 - > Algorithms based on matrix theory.
 - > Algorithms based on graph theory.

In the sequel we focus only on dissimilarity measures.

- > Algorithms based on matrix theory.
 - They take as input the NxN dissimilarity matrix $P_0=P(X)$.
 - At each level t where two clusters C_i and C_j are merged to C_q , the dissimilarity matrix P_t is extracted from P_{t-1} by:
 - Deleting the two rows and columns of P_t that correspond to C_i and C_i .
 - Adding a new row and a new column that contain the distances of newly formed $C_q = C_i \cup C_j$ from the remaining clusters C_s , via a relation of the form

$$d(C_q, C_s) = f(d(C_i, C_s), d(C_i, C_s), d(C_i, C_j))$$

A number of distance functions comply with the following update equation

$$d(C_{i}, C_{s}) = a_{i}d(C_{i}, C_{s}) + a_{j}(d(C_{i}, C_{s}) + bd(C_{i}, C_{j}) + c|d(C_{i}, C_{s}) - d(C_{i}, C_{s})|$$

Algorithms that follow the above equation are:

 \triangleright Single link (SL) algorithm (a_i =1/2, a_i =1/2, b=0, c=-1/2). In this case

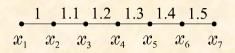
$$d(C_q, C_s) = min\{d(C_i, C_s), d(C_i, C_s)\}$$

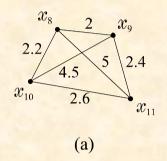
 \triangleright Complete link (CL) algorithm (a_i =1/2, a_j =1/2, b=0, c=1/2). In this case

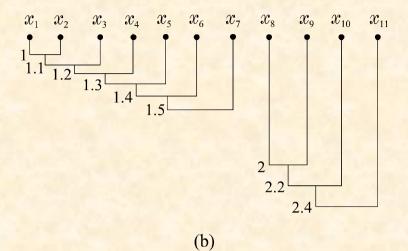
$$d(C_q, C_s) = max\{d(C_i, C_s), d(C_j, C_s)\}$$

- > Remarks:
 - Single link forms clusters at low dissimilarities while complete link forms clusters at high dissimilarities.
 - Single link tends to form elongated clusters (*chaining effect*) while complete link tends to form compact clusters.
 - The rest algorithms are compromises between these two extremes.

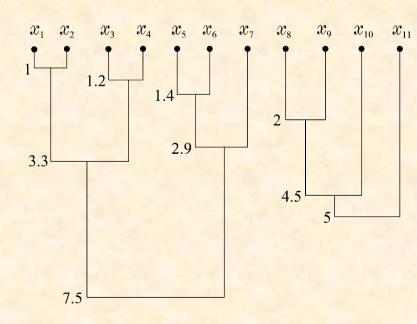
> Example:







- (a) The data set X.
- (b) The single link algorithm dissimilarity dendrogram.
- (c) The complete link algorithm dissimilarity dendrogram



Weighted Pair Group Method Average (WPGMA) (a_i =1/2, a_j =1/2, b=0, c=0). In this case:

$$d(C_q, C_s) = (d(C_i, C_s) + d(C_i, C_s))/2$$

Unweighted Pair Group Method Average (UPGMA) $(a_i=n_i/(n_i+n_j), a_i=n_i/(n_i+n_i), b=0, c=0,$ where n_i is the cardinality of C_i). In this case:

$$d(C_q, C_s) = (n_i d(C_i, C_s) + n_j d(C_j, C_s))/(n_i + n_j)$$

Unweighted Pair Group Method Centroid (UPGMC) ($a_i=n_i/(n_i+n_j)$, $a_j=n_j/(n_i+n_j)$, $b=-n_i n_j/(n_i+n_j)^2$, c=0). In this case:

$$d_{qs} = \frac{n_i}{n_i + n_j} d_{is} + \frac{n_j}{n_i + n_j} d_{js} - \frac{n_i n_j}{(n_i + n_j)^2} d_{ij}$$

For the UPGMC, it is true that $d_{qs}=\|\underline{m}_q-\underline{m}_s\|^2$, where \underline{m}_q is the mean of C_q .

Weighted Pair Group Method Centroid (WPGMC) (a_i =1/2, a_j =1/2, b=-1/4, c=0). In this case

$$d_{qs} = (d_{is} + d_{js})/2 - d_{ij}/4$$

For WPGMC there are cases where $d_{qs} \le max\{d_{is}, d_{js}\}$ (crossover)

ightharpoonup Ward or minimum variance algorithm. Here the distance d'_{ij} between C_i and C_i is defined as

$$d'_{ij} = (n_i n_j / (n_i + n_j)) \|\underline{m}_i - \underline{m}_j\|^2$$

 d'_{as} can also be written as

$$d'_{qs} = ((n_i + n_j)d'_{is} + (n_i + n_j)d'_{js} - n_sd'_{ij})/(n_i + n_j + n_s)$$

Remark: Ward's algorithm forms \mathcal{R}_{t+1} by merging the two clusters that lead to the smallest possible increase of the total variance, i.e.,

$$E_t = \sum_{r=1}^{N-t} \sum_{x \in C_r} ||\underline{x} - \underline{m}_r||^2$$

Example 3: Consider the following dissimilarity matrix (Euclidean distance)

$$P_{0} = \begin{bmatrix} 0 & 1 & 2 & 26 & 37 \\ 1 & 0 & 3 & 25 & 36 \\ 2 & 3 & 0 & 16 & 25 \\ 26 & 25 & 16 & 0 & 1.5 \\ 37 & 36 & 25 & 1.5 & 0 \end{bmatrix}$$

$$\mathcal{R}_{0} = \{\{\underline{x}_{1}\}, \{\underline{x}_{2}\}, \{\underline{x}_{3}\}, \{\underline{x}_{4}\}, \{\underline{x}_{5}\}\}, \\ \mathcal{R}_{1} = \{\{\underline{x}_{1}, \underline{x}_{2}\}, \{\underline{x}_{3}\}, \{\underline{x}_{4}\}, \{\underline{x}_{5}\}\}, \\ \mathcal{R}_{2} = \{\{\underline{x}_{1}, \underline{x}_{2}\}, \{\underline{x}_{3}\}, \{\underline{x}_{4}, \underline{x}_{5}\}\}, \\ \mathcal{R}_{3} = \{\{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}\}, \{\underline{x}_{4}, \underline{x}_{5}\}\}, \\ \mathcal{R}_{4} = \{\{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}, \underline{x}_{4}, \underline{x}_{5}\}\}$$

All the algorithms produce the above sequence of clusterings at different proximity levels:

	SL	CL	WPGMA	<i>UPGMA</i>	WPGMC	<i>UPGMC</i>	Ward
\mathcal{R}_0	0	0	0	0	0	0	0
\mathcal{R}_1	1	1	1	1	1	1	0.5
\mathcal{R}_2	1.5	1.5	1.5	1.5	1.5	1.5	0.75
\mathcal{R}_3	2	3	2.5	2.5	2.25	2.25	1.5
\mathcal{R}_4	16	37	25.75	27.5	24.69	26.46	31.75

Complexity issues:

- GAS requires, in general, $O(N^3)$ operations.
- More efficient implementations require $O(N^2 log N)$ computational time.
- For a class of widely used algorithms, implementations that require $O(N^2)$ computational time and $O(N^2)$ or O(N) storage have also been proposed.
- Parallel implementations on SIMD machines have also been considered.