## **CHAPTER 10 – CLUSTERING BASICS**

## Basic Concepts

In clustering or unsupervised learning no training data, with class labeling, are available. The goal becomes: Group the data into a number of sensible clusters (groups). This unravels similarities and differences among the available data.

- > Applications:
  - Engineering
  - Bioinformatics
  - Social Sciences
  - Medicine
  - Data and Web Mining
- To perform clustering of a data set, a clustering criterion must first be adopted. Different clustering criteria lead, in general, to different clusters.

#### > A simple example

Blue shark, sheep, cat, dog Lizard, sparrow, viper, seagull, gold fish, frog, red mullet

- 1. Two clusters
- 2. Clustering criterion:
  How mammals bear
  their progeny

Gold fish, red mullet, blue shark Sheep, sparrow, dog, cat, seagull, lizard, frog, viper

- 1. Two clusters
- 2. Clustering criterion: Existence of lungs

# Clustering task stages

- > Feature Selection: Information rich features-Parsimony
- Proximity Measure: This quantifies the term similar or dissimilar.
- Clustering Criterion: This consists of a cost function or some type of rules.
- ➤ Clustering Algorithm: This consists of the set of **steps** followed to reveal the structure, based on the similarity measure and the adopted criterion.
- > Validation of the results.
- > Interpretation of the results.

➤ Depending on the similarity measure, the clustering criterion and the clustering algorithm different clusters may result. Subjectivity is a reality to live with from now on.

➤ A simple example: How many clusters??



## Basic application areas for clustering

- > Data reduction. All data vectors within a cluster are substituted (represented) by the corresponding cluster representative.
- > Hypothesis generation.
- > Hypothesis testing.
- > Prediction based on groups.

- Clustering Definitions
  - ➤ Hard Clustering: Each point belongs to a single cluster
    - Let  $X = \{\underline{x}_1, \underline{x}_2, ..., \underline{x}_N\}$
    - An *m*-clustering *R* of *X*, is defined as the partition of *X* into *m* sets (clusters), *C*<sub>1</sub>, *C*<sub>2</sub>,...,*C*<sub>m</sub>, so that

$$-C_{i}\neq\emptyset, i=1,2,...,m$$

$$- \bigcup_{i=1}^{m} C_i = X$$

$$-C_i \cap C_j = \emptyset, i \neq j, i, j = 1, 2, ..., m$$

In addition, data in  $C_i$  are more similar to each other and less similar to the data in the rest of the clusters. Quantifying the terms similar-dissimilar depends on the types of clusters that are expected to underlie the structure of X.

> Fuzzy clustering: Each point belongs to all clusters up to some degree.

A fuzzy clustering of X into m clusters is characterized by *m* functions

• 
$$u_j : \underline{x} \to [0,1], \quad j = 1,2,..., m$$

• 
$$\sum_{j=1}^{m} u_{j}(\underline{x}_{i}) = 1, i = 1, 2, ..., N$$

• 
$$\sum_{j=1}^{m} u_{j}(\underline{x}_{i}) = 1, i = 1, 2, ..., N$$
  
•  $0 < \sum_{i=1}^{N} u_{j}(\underline{x}_{i}) < N, j = 1, 2, ..., m$ 

These are known as membership functions. Thus, each  $\underline{x}_i$  belongs to any cluster "up to some degree", depending on the value of

$$u_{j}(\underline{x}_{i}), j = 1, 2, ..., m$$

 $u_j(\underline{x}_i)$  close to  $1 \Rightarrow$  high grade of membership of  $\underline{x}_i$  to cluster j.  $u_j(\underline{x}_i)$  close to  $0 \Rightarrow$  low grade of membership.

#### **TYPES OF FEATURES**

- With respect to their domain
  - $\triangleright$  Continuous (the domain is a continuous subset of  $\Re$ ).
  - Discrete (the domain is a finite discrete set).
    - Binary or dichotomous (the domain consists of two possible values).
- With respect to the <u>relative significance of the values they</u> take
  - Nominal (the values code states, e.g., the sex of an individual).
  - Ordinal (the values are meaningfully ordered, e.g., the rating of the services of a hotel (poor, good, very good, excellent).
  - ➤ Interval-scaled (the difference of two values is meaningful but their ratio is meaningless, e.g., temperature).
  - > Ratio-scaled (the ratio of two values is meaningful, e.g., weight).

## **PROXIMITY MEASURES**

#### \* Between vectors

➤ Dissimilarity measure (between vectors of *X*) is a function

$$d: X \times X \longrightarrow \Re$$

with the following properties

• 
$$\exists d_0 \in \Re: -\infty < d_0 \le d(\underline{x}, \underline{y}) < +\infty, \ \forall \underline{x}, \underline{y} \in X$$

• 
$$d(\underline{x},\underline{x}) = d_0, \ \forall \underline{x} \in X$$

• 
$$d(\underline{x}, \underline{y}) = d(\underline{y}, \underline{x}), \ \forall \underline{x}, \underline{y} \in X$$

## If in addition

- $d(\underline{x}, \underline{y}) = d_0$  if and only if  $\underline{x} = \underline{y}$
- $d(\underline{x},\underline{z}) \le d(\underline{x},\underline{y}) + d(\underline{y},\underline{z}), \ \forall \underline{x},\underline{y},\underline{z} \in X$

(triangular inequality)

d is called a metric dissimilarity measure.

➤ Similarity measure (between vectors of *X*) is a function

$$s: X \times X \longrightarrow \mathfrak{R}$$

with the following properties

$$\bullet \exists s_0 \in \Re : -\infty < s(\underline{x}, \underline{y}) \le s_0 < +\infty, \ \forall \underline{x}, \underline{y} \in X$$

• 
$$s(\underline{x}, \underline{x}) = s_0, \ \forall \underline{x} \in X$$

• 
$$s(\underline{x}, \underline{y}) = s(\underline{y}, \underline{x}), \ \forall \underline{x}, \underline{y} \in X$$

#### If in addition

- $s(\underline{x}, \underline{y}) = s_0$  if and only if  $\underline{x} = \underline{y}$
- $s(\underline{x}, \underline{y})s(\underline{y}, \underline{z}) \le [s(\underline{x}, \underline{y}) + s(\underline{y}, \underline{z})]s(\underline{x}, \underline{z}), \ \forall \underline{x}, \underline{y}, \underline{z} \in X$ s is called a metric similarity measure.

## \* Between sets

Let 
$$D_i \subset X$$
,  $i=1,...,k$  and  $U=\{D_1,...,D_k\}$   
A proximity measure  $\wp$  on  $U$  is a function

$$\wp: U \times U \longrightarrow \Re$$

A dissimilarity measure has to satisfy the relations of dissimilarity measure between vectors, where  $D_i$  s are used in place of  $\underline{x}$ ,  $\underline{y}$  (similarly for similarity measures).

#### PROXIMITY MEASURES BETWEEN VECTORS

- Real-valued vectors
  - Dissimilarity measures (DMs)
    - ullet Weighted  $l_p$  metric DMs

$$d_p(\underline{x},\underline{y}) = \left(\sum_{i=1}^l w_i \mid x_i - y_i \mid^p\right)^{1/p}$$

Interesting instances are obtained for

- -p=1 (weighted Manhattan norm)
- -p=2 (weighted Euclidean norm)
- $-p = \infty \left( d_{\infty}(\underline{x}, \underline{y}) = \max_{1 \le i \le l} w_i | x_i y_i | \right)$

#### • Other measures

$$- d_G(\underline{x}, \underline{y}) = -\log_{10} \left( 1 - \frac{1}{l} \sum_{j=1}^{l} \frac{|x_j - y_j|}{b_j - a_j} \right)$$

where  $b_j$  and  $a_j$  are the maximum and the minimum values of the j-th feature, among the vectors of X (dependence on the current data set)

$$- d_{Q}(\underline{x}, \underline{y}) = \sqrt{\frac{1}{l} \sum_{j=1}^{l} \left( \frac{x_{j} - y_{j}}{x_{j} + y_{j}} \right)^{2}}$$

## Similarity measures

• Inner product

$$S_{inner}(\underline{x}, \underline{y}) = \underline{x}^T \underline{y} = \sum_{i=1}^l x_i y_i$$

• Tanimoto measure

$$s_{T}(\underline{x}, \underline{y}) = \frac{\underline{x}^{T} \underline{y}}{\|\underline{x}\|^{2} + \|\underline{y}\|^{2} - \underline{x}^{T} \underline{y}}$$

• 
$$s_T(\underline{x}, \underline{y}) = 1 - \frac{d_2(\underline{x}, \underline{y})}{\|\underline{x}\| + \|\underline{y}\|}$$

#### Discrete-valued vectors

- $\triangleright$  Let  $F = \{0, 1, ..., k-1\}$  be a set of symbols and  $X = \{\underline{x}_1, ..., \underline{x}_N\} \subset F^l$
- Let  $\underline{A}(\underline{x},\underline{y}) = [a_{ij}]$ , i, j = 0, 1, ..., k-1, where  $a_{ij}$  is the number of places where  $\underline{x}$  has the i-th symbol and  $\underline{y}$  has the j-th symbol.

NOTE:

$$\sum_{i=0}^{k-1} \sum_{j=0}^{k-1} a_{ij} = l$$

Several proximity measures can be expressed as combinations of the elements of  $A(\underline{x},\underline{y})$ .

- Dissimilarity measures:
  - The Hamming distance (number of places where  $\underline{x}$  and  $\underline{y}$  differ)

$$d_{H}(\underline{x},\underline{y}) = \sum_{i=0}^{k-1} \sum_{\substack{j=0 \ i \neq i}}^{k-1} a_{ij}$$

• The l<sub>1</sub> distance

$$d_1(\underline{x},\underline{y}) = \sum_{i=1}^l |x_i - y_i|$$

## > Similarity measures:

Similarity measures:

• Tanimoto measure : 
$$s_T(\underline{x},\underline{y}) = \frac{\sum\limits_{i=1}^{k-1} a_{ii}}{n_x + n_y - \sum\limits_{i=1}^{k-1} \sum\limits_{j=1}^{k-1} a_{ij}}$$

where  $n_x = \sum\limits_{i=1}^{k-1} \sum\limits_{j=0}^{k-1} a_{ij}, \quad n_y = \sum\limits_{i=0}^{k-1} \sum\limits_{j=1}^{k-1} a_{ij},$ 

- Measures that exclude  $a_{00}$ :  $\sum_{i=1}^{k-1} a_{ii} / l \qquad \sum_{i=1}^{k-1} a_{ii} / (l a_{00})$
- Measures that include  $a_{00}$ :  $\sum_{i=1}^{k-1} a_{ii}/l$

#### Mixed-valued vectors

Some of the coordinates of the vectors  $\underline{x}$  are real and the rest are discrete.

Methods for measuring the proximity between two such  $\underline{x}_i$  and  $\underline{x}_i$ :

- > Adopt a proximity measure (PM) suitable for real-valued vectors.
- Convert the real-valued features to discrete ones and employ a discrete PM.

The more general case of mixed-valued vectors:

➤ Here nominal, ordinal, interval-scaled, ratio-scaled features are treated separately.

# PROXIMITY FUNCTIONS BETWEEN A VECTOR AND A SET

- $\star$  Let  $X = \{\underline{x}_1, \underline{x}_2, \dots, \underline{x}_N\}$  and  $C \subset X$ ,  $\underline{x} \in X$
- $\clubsuit$  All points of C contribute to the definition of  $\wp(x, C)$ 
  - Max proximity function

$$\wp_{\max}^{ps}(\underline{x}, C) = \max_{\underline{y} \in C} \wp(\underline{x}, \underline{y})$$

Min proximity function

$$\wp_{\min}^{ps}(\underline{x},C) = \min_{\underline{y} \in C} \wp(\underline{x},\underline{y})$$

Average proximity function

$$\wp_{avg}^{ps}(\underline{x},C) = \frac{1}{n_C} \sum_{\underline{y} \in C} \wp(\underline{x},\underline{y}) \qquad (n_C \text{ is the cardinality of } C)$$

- A representative(s) of C,  $r_C$ , contributes to the definition of  $\wp(\underline{x},C)$ 
  - In this case:  $\wp(\underline{x},C) = \wp(\underline{x},\underline{r}_C)$

Typical representatives are:

> The mean vector:

$$\underline{m}_p = \left(\frac{1}{n_C}\right) \sum_{y \in C} \underline{y}$$

where  $n_C$  is the cardinality of C

d: a dissimilarity

measure

> The mean center:

$$\underline{m}_C \in C: \sum_{\underline{y} \in C} d(\underline{m}_C, \underline{y}) \leq \sum_{\underline{y} \in C} d(\underline{z}, \underline{y}), \ \forall \underline{z} \in C$$

> The median center:

$$\underline{m}_{med} \in C: med(d(\underline{m}_{med}, \underline{y}) | \underline{y} \in C) \leq med(d(\underline{z}, \underline{y}) | \underline{y} \in C), \forall \underline{z} \in C$$

NOTE: Other representatives (e.g., hyperplanes, hyperspheres) are useful in certain applications (e.g., object identification using clustering techniques).

#### PROXIMITY FUNCTIONS BETWEEN SETS

- $\clubsuit$  Let  $X=\{\underline{x}_1,...,\underline{x}_N\}$ ,  $D_i$ ,  $D_j\subset X$  and  $n_i=|D_i|$ ,  $n_j=|D_j|$
- $\Leftrightarrow$  All points of each set contribute to  $\wp(D_i, D_j)$ 
  - ➤ Max proximity function (measure but not metric, only if ℘ is a similarity measure)

$$\wp_{\max}^{ss}(D_i, D_j) = \max_{\underline{x} \in D_i, \underline{y} \in D_j} \wp(\underline{x}, \underline{y})$$

Min proximity function (measure but not metric, only if pois a dissimilarity measure)

$$\wp_{\min}^{ss}(D_i, D_j) = \min_{\underline{x} \in D_i, \underline{y} \in D_j} \wp(\underline{x}, \underline{y})$$

Average proximity function (not a measure, even if is a measure)

$$\wp_{avg}^{ss}(D_i, D_j) = \left(\frac{1}{n_i n_j}\right) \sum_{x \in D_i} \sum_{x \in D_i} \wp(\underline{x}, \underline{y})$$

- $\clubsuit$  Each set  $D_i$  is represented by its representative vector  $\underline{m}_i$ 
  - ➤ Mean proximity function (it is a measure provided that ℘ is a measure):

$$\wp_{mean}^{ss}(D_i, D_j) = \wp(\underline{m}_i, \underline{m}_j)$$

NOTE: Proximity functions between a vector  $\underline{x}$  and a set C may be derived from the above functions if we set  $D_i = \{\underline{x}\}$ .

#### > Remarks:

- Different choices of proximity functions between sets may lead to totally different clustering results.
- Different proximity measures between vectors in the same proximity function between sets may lead to totally different clustering results.
- The only way to achieve a proper clustering is
  - by trial and error and,
  - taking into account the opinion of an expert in the field of application.