CHAPTER 6 - Principal Components Analysis (PCA)

(The Karhunen - Loève transform):
> The goal: Given an original set of m measurements $\underline{x} \in \mathfrak{R}^{m}$ compute $\underline{y} \in \mathfrak{R}^{l}$

$$
\underline{y}=A^{T} \underline{x}
$$

for an orthogonal A, so that the elements of \underline{y} are optimally mutually uncorrelated.
That is

$$
E[y(i) y(j)]=0, i \neq j
$$

> Sketch of the proof:

$$
R_{y}=E\left[\underline{y} \underline{y}^{T}\right\rfloor=E\left[A^{T} \underline{x} \underline{x}^{T} A\right\rfloor=A^{T} R_{x} A
$$

- If A is chosen so that its columns \underline{a}_{i} are the orthogonal eigenvectors of $R_{x^{\prime}}$ then

$$
R_{y}=A^{T} R_{x} A=\Lambda
$$

where Λ is diagonal with elements the respective eigenvalues λ_{i}.

- Observe that this is a sufficient condition but not necessary. It imposes a specific orthogonal structure on A.
> Properties of the solution
- Mean Square Error approximation.

Due to the orthogonality of A :

$$
\underline{x}=\sum_{i=0}^{m} y(i) \underline{a}_{i}, \quad y(i)=\underline{a}_{i}^{T} \underline{x}
$$

- Define

$$
\underline{\hat{x}}=\sum_{i=0}^{\ell-1} y(i) \underline{a}_{i}
$$

- The Karhunen - Loève transform minimizes the square error:

$$
\left.E\|\underline{x}-\underline{\hat{x}}\|^{2}\right]=E\left[\left\|\sum_{i=\ell}^{m} y(i) \underline{a}_{i}\right\|^{2}\right]
$$

- The error is:

$$
E\left[\|\underline{x}-\underline{\hat{x}}\|^{2}\right]=\sum_{i=\ell}^{m} \lambda_{i}
$$

It can be also shown that this is the minimum mean square error compared to any other representation of \underline{x} by an ℓ-dimensional vector.

- In other words, $\underline{\hat{x}}$ is the projection of \underline{x} into the subspace spanned by the principal ℓ eigenvectors. However, for Pattern Recognition this is not the always the best solution.

- Total variance: It is easily seen that

$$
\sigma_{y(i)}^{2}=E\left[y^{2}(i)\right]=\lambda_{i}
$$

Thus Karhunen - Loève transform makes the total variance maximum.

- Assuming \underline{y} to be a zero mean multivariate Gaussian, then the K-L transform maximizes the entropy:

$$
H_{y}=-E\left\lfloor\ln P_{\underline{y}}(\underline{y})\right\rfloor
$$

of the resulting \underline{y} process.
> Summary of the PCA algorithm

- Estimate the autocorrelation matrix

$$
\begin{gathered}
R \cong \frac{1}{n} \sum_{i=1}^{n} \underline{x}_{i} \underline{x}_{i}^{T}=\frac{1}{n} X^{T} X \\
X=\left[\begin{array}{c}
\underline{x}_{1}^{T} \\
\vdots \\
\underline{x}_{n}^{T}
\end{array}\right]
\end{gathered}
$$

where

- Perform eigenanalysis of R.
- Choose the l largest eigenvalues / eigenvectors

$$
\lambda_{i}, \underline{a}_{i}, i=0,1, \ldots, l-1
$$

- Project a given \underline{x} onto the low l-dimensional space, spanned by $\underline{a}_{0}, \underline{a}_{1}, \ldots, \underline{a}_{l-1}$.

$$
y_{i}=\underline{a}_{\mathrm{i}}^{\mathrm{T}} \underline{x}, i=0,1, \ldots, l-1
$$

>Remark

An equivalent space results, if the eigenanalysis is performed on

$$
X X^{T}
$$

This is because $X X^{T}$ and $X^{T} X$ have the same eigenvalues and related eigenvectors. This is usually referred as the Metric Multidimensional Scaling (MDS) method.
>PCA, being a linear projection method, is appropriate for dimensionality reduction if the data are spread around a hyperplane.

The eigenvalue - eigendecomposition of the correlation matrix reveals the dimensionality of the hyperplane, across which data are spread. In other words, dimensionality is a measure of the number of the underlying modes of variability.

