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The ultimate goal in designing a classifier is to exhibit 
a good generalization performance. That is, to have a 
good error performance when dealing with data 
outside the training set.

A classifier may be designed to have very small error 
rate over the training data set, yet its generalization 
performance can be very poor.

It turns out that, in order to design a classifier with 
good generalization performance, the number of 
training data, N, must be large enough w.r. to its 

complexity.

CHAPTER 5 – FEATURE SELECTION
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For a large class of classifiers the complexity is directly 
related to the number of the features, i.e., the 
dimensionality of the feature space, l .

There are cases, however, where the complexity of 
the classifier does not depend on the dimensionality of 
the feature space, e.g., Support Vector Machines.

In any case, reducing the number of features is 
always necessary to get rid of uninformative features, 
or features that carry redundant information.
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Prior to any feature selection, data preprocessing is a 
necessary step.

�Data Preprocessing
� Outlier removal: An outlier is defined as a point that lies 

very far from the mean of the corresponding random 
variable. Such points result in large errors during 
training. If such points are the result of erroneous 
measurements, they have to be removed.

� Data normalization: Features with large values have 
large influence compared to others with small values, 
although this may not necessarily reflect a respective 
significance towards the design of the classifier.
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A common technique is to normalize each feature via 
the respective estimate of the mean and variance. That 
is  for the        feature
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� Missing data: Given N training feature vectors, in some 

of them the values of certain features may be missing. 
The missing values can be completed by a number of 
methods, e.g.,

• By embedding zeros.

• By their unconditional mean.

• By their conditional mean.

• By more advanced techniques stemming from 
the theory of incomplete data (e.g., using EM 
arguments).
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�The Peaking Phenomenon

If, in an ideal world, the class pdfs were known, then 

increasing the number of features would be beneficial.

In practice, the general trend is that for a finite number of 
training points, increasing the number of features initially 
improves the generalization error rate, but after a certain 
value, the generalization error rate increases.
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� The main goals in feature selection:

� Select the “optimum” number l of features

� Select the “best” l features

� Large l has a three-fold disadvantage:

� High computational demands

� Low generalization performance

� Poor error estimates
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� Given N

• l must be large enough to learn

– what makes classes different

– what makes patterns in the same class similar

• l must be small enough not to learn what makes

patterns of the same class different

� Once l has been decided, choose the l most informative

features

• Best:  Large between class distance, 
Small within class variance
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� The basic philosophy

� Discard individual features with poor information content

� The remaining information rich features are examined 
jointly as vectors

� Feature Selection based on statistical Hypothesis Testing

� The Goal:  For each individual feature, find whether the 
values, which the feature takes for the different classes,
differ significantly. This is based on the values of an 
appropriately chosen parameter . That is, answer

• :The values differ significantly

• :The values do not differ significantly

If they do not differ significantly reject feature from 
subsequent stages.
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� Class Separability Measures

The emphasis, so far, was on individually considered features.
However, such an approach cannot take into account existing
correlations among the features. That is, two features may be
rich in information, but if they are highly correlated we need not
consider both of them. To this end, in order to search for
possible correlations, we consider features jointly as elements of
vectors. To this end:

� Discard poor in information features, by means of a statistical
test.

� Choose the maximum number, , of features to be used. This
is dictated by the specific problem (e.g., the number, N, of
available training patterns and the type of the classifier to be
adopted).

l
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� Combine remaining features to search for the “best”
combination. To this end:

• Use different feature combinations to form the feature
vector. Train the classifier, and choose the combination
resulting in the best classifier performance.

A major disadvantage of this approach is the high
complexity. Also, local minima, can give misleading results.

• Adopt a class separability measure and choose the best
feature combination against this cost.
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� Class separability measures: Let be the current feature
combination vector.

• Divergence. To see the rationale behind this cost, consider
the two – class case. Obviously, if on the average the

value of is close to zero, then should be a

poor feature combination. Define:

–

–

–

d12 is known as the divergence and can be used as a

class separability measure.
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– For the multi-class case, define dij for every pair of
classes ωi, ωj and the average divergence is defined as

– Some properties:

– Large values of d are indicative of good feature

combination.

∑∑
= =

=
M

i

M

j

ijji dPPd
1 1

)()( ωω

jiij

ij

ij

dd

jid

d

=

==

≥

 if ,0

0



15

� Scatter Matrices. These are used as a measure of the way
data are scattered in the respective feature space.

• Within-class scatter matrix

where

and

ni the number of training samples in ωi.

Trace {Sw} is a measure of the average variance of the

features.
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• Between-class scatter matrix

Trace {Sb} is a measure of the average distance of the

mean of each class from the respective global one.

• Mixture scatter matrix

It turns out that:

Sm = Sw + Sb
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� Measures based on Scatter Matrices.

•

•

•

• Other criteria are also possible, by using various
combinations of Sm, Sb, Sw.

The above J1, J2, J3 criteria take high values for the cases

where:

• Data are clustered together within each class.

• The mean values for the various classes are far.
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• Fisher’s discriminant ratio. In one dimension and for two
equiprobable classes the determinants become:

and

known as Fisher’s ratio.
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� Ways to combine features:

Trying to form all possible combinations of features from an
original set of m selected features is a computationally hard task.

Thus, a number of suboptimal searching techniques have been
derived.

� Sequential forward selection. Let x1, x2, x3, x4 the available
features (m=4). The procedure consists of the following steps:

• Adopt a class separability criterion (could also be the error
rate of the respective classifier). Compute its value for ALL
features considered jointly [x1, x2, x3, x4]

T.

• Eliminate one feature at a time and for each of the
possible resulting combinations, that is [x1, x2, x3]

T, [x1, x2,

x4]
T, [x1, x3, x4]

T, [x2, x3, x4]
T, compute the class reparability

criterion value C. Select the best combination, say [x1, x2,

x3]
T.

l
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• From the above selected feature vector, eliminate one 
feature and for each of the resulting combinations,          ,         

,            , compute and select the best 
combination.

The above selection procedure shows how one can start from   
features and end up with the “best” ones. Obviously, the 
choice is suboptimal. The number of required calculations is:

In contrast, a full search requires:

operations.
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� Sequential backward selection. Here the reverse procedure is
followed.

• Compute C for each feature. Select the “best” one, say x1

• For all possible 2D combinations of x1, i.e., [x1, x2], [x1, x3],

[x1, x4] compute C and choose the best, say [x1, x3].

• For all possible 3D combinations of [x1, x3], e.g., [x1, x3, x2],

etc., compute C and choose the best one.

The above procedure is repeated till the “best” vector with

features has been formed. This is also a suboptimal
technique, requiring:

operations.
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� Floating Search Methods

The above two procedures suffer from the nesting effect.
Once a bad choice has been done, there is no way to
reconsider it in the following steps.

In the floating search methods one is given the opportunity in
reconsidering a previously discarded feature or to discard a
feature that was previously chosen.

The method is still suboptimal, however it leads to improved
performance, at the expense of complexity.
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Optimal Feature Generation

� In general, feature generation is a problem-dependent 
task. However, there are a few general directions 
common in a number of applications. We focus on three 
such alternatives.

� Fisher’s Linear Discriminant (the two-class case)

� Let the feature vectors live in an m-dimensional space,

� The goal: Generate a feature y, as a linear combination of 

the components of     , i.e.

so that the two classes are best separated.

� Alternatively: Find the hyperplane    , so that, after 
projecting onto    , we achieve maximum class 
separability according to a criterion.
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� The criterion: Maximize

Thus, we seek for the direction    , for which

• The mean values are as far as possible.

• The classes are as compact as possible (small variances).

� If     ,     are the mean values in     , the respective means 
after projection are 

or for equiprobable classes

where Sb is the between-class scatter matrix
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� The respective variances are

where     is the respective covariance matrix .

� Finally,

where      is the within-class scatter matrix.
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� Maximizing we get that 
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� Fisher’s Linear Discriminant (the many-class case)

�The goal: Given an original set of m

measurements , compute , by the
linear transformation ,

so that the J3 scattering matrix criterion involving
Sw, Sb is maximized. AT is an matrix.
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�The basic steps in the proof:

• J3 = trace{Sw
-1 Sm}

• Syw = ATSxwA, Syb = ATSxbA,

• J3(A)=trace{(ATSxwA)-1 (ATSxbA)}

• Compute A so that J3(A) is maximum.

�The solution:

• Let B be the matrix that diagonalizes
simultaneously matrices Syw , Syb , i.e:

BTSywB = I , BTSybB = D

where B is a ℓxℓ matrix, and D a ℓxℓ diagonal

matrix.
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• Let C=AB an mxℓ matrix. If A maximizes J3(A) then

The above is an eigenvalue-eigenvector problem.
For an M-class problem, is of rank M-1.

� If ℓ=M-1, choose C to consist of the M-1

eigenvectors, corresponding to the non-zero
eigenvalues.

The above guarantees maximum J3 value. In this
case: J3,x = J3,y.

� For a two-class problem, this results to the well
known Fisher’s linear discriminant

For Gaussian classes, this is the optimal Bayesian
classifier, with a difference of a threshold value .
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� If ℓ<M-1, choose the ℓ eigenvectors corresponding to
the ℓ largest eigenvectors.

� In this case, J3,y<J3,x, that is there is loss of

information.

• Geometric interpretation. The vector is the
projection of onto the subspace spanned by the
eigenvectors of .
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�Bayesian Information Criterion (BIC)

Let the size of the training set, the vector of the
unknown parameters of the classifier, the
dimensionality of , and runs over all possible
models.

• The BIC criterion chooses the model by minimizing:

– is the log-likelihood computed at the ML 
estimate      , and it is the performance index.

– is the model complexity term.

• Akaike Information Criterion:
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