CHAPTER 4 - NONLINEAR CLASSIFIERS

* The XOR problem

$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	XOR	Class
0	0	0	B
0	1	1	A
1	0	1	A
1	1	0	B

* There is no single line (hyperplane) that separates class A from class B. On the contrary, AND and OR operations are linearly separable problems

* The Two-Layer Perceptron

> For the XOR problem, draw two, instead, of one lines

> Then class B is located outside the shaded area and class A inside. This is a two-phase design.

- Phase 1: Draw two lines (hyperplanes)

$$
g_{1}(\underline{x})=g_{2}(\underline{x})=0
$$

Each of them is realized by a perceptron. The outputs of the perceptrons will be

$$
y_{i}=f\left(g_{i}(\underline{x})\right)=\left\{\begin{array}{l}
0 \\
1
\end{array} i=1,2\right.
$$

depending on the position of \underline{x}.

- Phase 2: Find the position of \underline{x} w.r.t. both lines, based on the values of y_{1}, y_{2}.

2				
st				
phase				
$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{y}_{\mathbf{1}}$	$\mathbf{y}_{\mathbf{2}}$	phase
0	0	$0(-)$	$0(-)$	$\mathrm{B}(0)$
0	1	$1(+)$	$0(-)$	$\mathrm{A}(1)$
1	0	$1(+)$	$0(-)$	$\mathrm{A}(1)$
1	1	$1(+)$	$1(+)$	$\mathrm{B}(0)$

- Equivalently: The computations of the first phase perform a mapping $\quad \underline{x} \rightarrow \underline{y}=\left[y_{1}, y_{2}\right]^{T}$

The decision is now performed on the transformed \underline{y} data.

This can be performed via a second line, which can also be realized by a perceptron.
> Computations of the first phase perform a mapping that transforms the nonlinearly separable problem to a linearly separable one.
> The architecture

- This is known as the two layer perceptron with one hidden and one output layer. The activation functions are

$$
f(.)=\left\{\begin{array}{l}
0 \\
1
\end{array}\right.
$$

- The neurons (nodes) of the figure realize the following lines (hyperplanes)

$$
\begin{aligned}
& g_{1}(\underline{x})=x_{1}+x_{2}-\frac{1}{2}=0 \\
& g_{2}(\underline{x})=x_{1}+x_{2}-\frac{3}{2}=0 \\
& g(\underline{y})=y_{1}-2 y_{2}-\frac{1}{2}=0
\end{aligned}
$$

* Classification capabilities of the two-layer perceptron
> The mapping performed by the first layer neurons is onto the vertices of the unit side square, e.g., $(0,0),(0,1),(1,0),(1,1)$.
> The more general case,

$$
\begin{aligned}
& \underline{x} \in R^{l} \\
& \underline{x} \rightarrow \underline{y}=\left[y_{1}, \ldots y_{p}\right]^{T}, y_{i} \in\{0,1\} i=1,2, \ldots p
\end{aligned}
$$

performs a mapping of a vector onto the vertices of the unit side H_{p} hypercube
> The mapping is achieved with p neurons each realizing a hyperplane. The output of each of these neurons is 0 or 1 depending on the relative position of \underline{x} w.r.t. the hyperplane.
$>$ Intersections of these hyperplanes form regions in the l-dimensional space. Each region corresponds to a vertex of the H_{p} unit hypercube.

For example, the 001 vertex corresponds to the region which is located
to the $(-)$ side of $g_{1}(\underline{x})=0$
to the $(-)$ side of $g_{2}(\underline{x})=0$
to the $(+)$ side of $g_{3}(\underline{x})=0$

> The output neuron realizes a hyperplane in the transformed y space, that separates some of the vertices from the others. Thus, the two layer perceptron has the capability to classify vectors into classes that consist of unions of polyhedral regions. But NOT ANY union. It depends on the relative position of the corresponding vertices.

* Three layer-perceptrons
> The architecture

> This is capable to classify vectors into classes consisting of ANY union of polyhedral regions.
$>$ The idea is similar to the XOR problem. It realizes more than one planes in the $y \in R^{p}$ space.
$>$ The reasoning
- For each vertex, corresponding to class, say A, construct a hyperplane which leaves THIS vertex on one side (+) and ALL the others to the other side (-).
- The output neuron realizes an OR gate
$>$ Overall:
The first layer of the network forms the hyperplanes, the second layer forms the regions and the output neuron forms the classes.
* Designing Multilayer Perceptrons
$>$ One direction is to adopt the above rationale and develop a structure that classifies correctly all the training patterns.
> The other direction is to choose a structure and compute the synaptic weights to optimize a cost function.
* The Backpropagation Algorithm
$>$ This is an algorithmic procedure that computes the synaptic weights iteratively, so that an adopted cost function is minimized (optimized)
$>$ In a large number of optimizing procedures, computation of derivatives are involved. Hence, discontinuous activation functions pose a problem, i.e.,

$>$ There is always an escape path!!! The logistic function

$$
f(x)=\frac{1}{1+\exp (-a x)}
$$

is an example. Other functions are also possible and in some cases more desirable.

> The steps:

- Adopt an optimizing cost function, e.g.,
- Least Squares Error
- Relative Entropy
between desired responses and actual responses of the network for the available training patterns. That is, from now on we have to live with errors. We only try to minimize them, using certain criteria.
- Adopt an algorithmic procedure for the optimization of the cost function with respect to the synaptic weights
e.g.,
- Gradient descent
- Newton's algorithm
- Conjugate gradient
- The task is a nonlinear optimization one. For the gradient descent method

$$
\begin{aligned}
& \underline{w}_{1}^{r}(\text { new })=\underline{w}_{1}^{r}(\text { old })+\Delta \underline{w}_{1}^{r} \\
& \Delta \underline{w}_{1}^{r}=-\mu \frac{\partial J}{\partial w_{1}^{r}}
\end{aligned}
$$

> The Procedure:

- Initialize unknown weights randomly with small values.
- Compute the gradient terms backwards, starting with the weights of the last ($3{ }^{\text {rd }}$) layer and then moving towards the first
- Update the weights
- Repeat the procedure until a termination procedure is met
> Two major philosophies:
- Batch mode: The gradients of the last layer are computed once ALL training data have appeared to the algorithm, i.e., by summing up all error terms.
- Pattern mode: The gradients are computed every time a new training data pair appears. Thus gradients are based on successive individual errors.

$(\underset{x}{x})(\underset{x}{x})(\underset{x}{x})(\underset{x}{x})(\underset{x}{x})$

Batch

The Algorithm

$$
(\underline{x})(\underset{\sim}{x})(\underset{\sim}{x})(\underset{)}{(x)}(\underline{x})
$$

Pattern
> A major problem: The algorithm may converge to a local minimum

> The Cost function choice

Examples:

- The Least Squares

$$
\begin{aligned}
& J=\sum_{i=1}^{N} E(i) \\
& \quad E(i)=\sum_{m=1}^{k} e_{m}^{2}(i)=\sum_{m=1}^{k}\left(y_{m}(i)-\hat{y}_{m}(i)\right)^{2} \\
& \\
& i=1,2, \ldots, N
\end{aligned}
$$

$y_{m}(i) \rightarrow \quad$ Desired response of the $m^{t h}$ output neuron (1 or 0) for $\underline{x}(i)$
$\hat{y}_{m}(i) \rightarrow \quad$ Actual response of the $m^{\text {th }}$ output neuron, in the interval $[0,1]$, for input $\underline{x}(i)$
$>$ The cross-entropy

$$
\begin{aligned}
& J=\sum_{i=1}^{N} E(i) \\
& E(i)=\sum_{m=1}^{k}\left\{y_{m}(i) \ln \hat{y}_{m}(i)+\left(1-y_{m}(i)\right) \ln \left(1-\hat{y}_{m}(i)\right)\right\}
\end{aligned}
$$

This presupposes an interpretation of y and \hat{y} as probabilities
> Classification error rate. This is also known as discriminative learning. Most of these techniques use a smoothed version of the classification error.
> Remark: Why not start with a large network and leave the algorithm to decide which weights are small?? This approach is just naïve. It overlooks that classifiers must have good generalization properties. A large network can result in small errors for the training set, since it can learn the particular details of the training set. On the other hand, it will not be able to perform well when presented with data unknown to it. The size of the network must be:

- Large enough to learn what makes data of the same class similar and data from different classes dissimilar
- Small enough not to be able to learn underlying differences between data of the same class. This leads to the so called overfitting.

Example:

$>$ Overtraining is another side of the same coin, i.e., the network adapts to the peculiarities of the training set.

* Generalized Linear Classifiers

$>$ Remember the XOR problem. The mapping

$$
\underline{x} \rightarrow \underline{y}=\left[\begin{array}{l}
f\left(g_{1}(\underline{x})\right) \\
f\left(g_{2}(\underline{x})\right)
\end{array}\right]
$$

$f(.) \rightarrow \quad \begin{aligned} & \text { The activation function transforms the } \\ & \text { nonlinear task into a linear one. }\end{aligned}$
> In the more general case:

- Let $\underline{x} \in R^{l}$ and a nonlinear classification task.

$$
f_{i}(.), i=1,2, \ldots, k
$$

- Are there any functions and an appropriate k, so that the mapping

$$
\underline{x} \rightarrow \underline{y}=\left[\begin{array}{c}
f_{1}(\underline{x}) \\
\cdots \\
f_{k}(\underline{x})
\end{array}\right]
$$

transforms the task into a linear one, in the $\underline{y} \in R^{k}$ space?

- If this is true, then there exists a hyperplane $\underline{w} \in R^{k}$ so that

$$
\text { If } \begin{aligned}
w_{0}+\underline{w}^{T} \underline{y}>0, \quad \underline{x} \in \omega_{1} \\
w_{0}+\underline{w}^{T} \underline{y}<0, \quad \underline{x} \in \omega_{2}
\end{aligned}
$$

$>$ In such a case this is equivalent with approximating the nonlinear discriminant function $g(\underline{x})$, in terms of $f_{i}(\underline{x})$, i.e.,

$$
g(\underline{x}) \cong w_{0}+\sum_{i=1}^{k} w_{i} f_{i}(\underline{x}) \quad(><) 0
$$

$>$ Given $f_{i}(\underline{x})$, the task of computing the weights is a linear one.
> How sensible is this??

- From the numerical analysis point of view, this is justified if $f_{i}(\underline{x})$ are interpolation functions.
- From the Pattern Recognition point of view, this is justified by Cover's theorem
* Capacity of the l-dimensional space in Linear Dichotomies
> Assume N points in R^{l} assumed to be in general position, that is:

Not $\ell+1$ of these lie on a $\ell-1$ dimensional space

$>$ Cover's theorem states: The number of groupings that can be formed by (l-1)-dimensional hyperplanes to separate N points in two classes is

$$
O(N, l)=2 \sum_{i=0}^{l}\binom{N-1}{i}, \quad\binom{N-1}{i}=\frac{(N-1)!}{(N-1-i)!i!}
$$

Example: $N=4, l=2, O(4,2)=14$

Notice: The total number of possible groupings is
$>$ Probability of grouping N points in two linearly separable classes is

$$
\frac{O(N, l)}{2^{N}}=P_{N}^{l}
$$

Thus, the probability of having N points in linearly separable classes tends to 1 , for large l, provided $\mathrm{N}<2(l+1)$

Hence, by mapping to a higher dimensional space, we increase the probability of linear separability, provided the space is not too densely populated.

* Radial Basis Function Networks (RBF)

$>$ Choose

$$
f_{i}(\underline{x})=\exp \left(-\frac{\left\|x-\underline{c}_{i}\right\|^{2}}{2 \sigma_{i}^{2}}\right)
$$

Equivalent to a single layer network, with RBF activations and linear output node.

> Example: The XOR problem

- Define:

$$
\begin{aligned}
& \underline{c}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \underline{c}_{2}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \sigma_{1}=\sigma_{2}=\frac{1}{\sqrt{2}} \\
& \underline{y}=\left[\begin{array}{l}
\exp \left(-\left\|\underline{x}-\underline{c}_{1}\right\|^{2}\right) \\
\exp \left(-\left\|\underline{x}-\underline{c}_{2}\right\|^{2}\right)
\end{array}\right]
\end{aligned}
$$

- $\left[\begin{array}{l}0 \\ 0\end{array}\right] \rightarrow\left[\begin{array}{c}0.135 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right] \rightarrow\left[\begin{array}{c}1 \\ 0.135\end{array}\right]$

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{l}
0.368 \\
0.368
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{l}
0.368 \\
0.368
\end{array}\right]
$$

$$
g(\underline{x})=\exp \left(-\left\|\underline{x}-\underline{c}_{1}\right\|^{2}\right)+\exp \left(-\left\|\underline{x}-\underline{c}_{2}\right\|^{2}\right)-1=0
$$

$>$ Training of the RBF networks

- Fixed centers: Choose centers randomly among the data points. Also fix σ_{i} 's. Then

$$
g(\underline{x})=w_{0}+\underline{w}^{T} \underline{y}
$$

is a typical linear classifier design.

- Training of the centers: This is a nonlinear optimization task
- Combine supervised and unsupervised learning procedures.
- The unsupervised part reveals clustering tendencies of the data and assigns the centers at the cluster representatives.
$>$ Recall that the probability of having linearly separable classes increases as the dimensionality of the feature vectors increases. Assume the mapping:

$$
\underline{x} \in R^{l} \rightarrow \underline{y} \in R^{k}, k>l
$$

Then use SVM in R^{k}
$>$ Recall that in this case the dual problem formulation will be

$$
\begin{aligned}
& \underset{\underline{\lambda}}{\operatorname{maximize}}\left(\sum_{i=1}^{N} \lambda_{i}-\frac{1}{2} \sum_{i, j} \lambda_{i} \lambda_{j} y_{i} y_{j} \underline{y}_{i}^{T} \underline{y}_{j}\right) \\
& \text { where } \underline{y}_{i} \in R^{k}
\end{aligned}
$$

Also, the classifier will be

$$
\begin{aligned}
& \qquad \begin{aligned}
g(\underline{y}) & =\underline{w}^{T} \underline{y}+w_{0} \\
& =\sum_{i=1}^{N_{s}} \lambda_{i} y_{i} \underline{y}_{i} \underline{y} \\
\text { where } \underline{x} & \rightarrow \underline{y} \in R^{k}
\end{aligned},=\text {. }
\end{aligned}
$$

Thus, inner products in a high dimensional space are involved, hence

- High complexity
> Something clever: Compute the inner products in the high dimensional space as functions of inner products performed in the low dimensional space!!!
$>$ Is this POSSIBLE?? Yes. Here is an example

$$
\text { Let } \underline{x}=\left[x_{1}, x_{2}\right]^{T} \in R^{2}
$$

Let $\underline{x} \rightarrow \underline{y}=\left[\begin{array}{c}x_{1}^{2} \\ \sqrt{2} x_{1} x_{2} \\ x_{2}^{2}\end{array}\right] \in R^{3}$
Then, it is easy to show that

$$
\underline{y}_{i}^{T} \underline{y}_{j}=\left(\underline{x}_{i}^{T} \underline{x}_{j}\right)^{2}
$$

> Mercer's Theorem

Let $\underline{x} \rightarrow \underline{\varphi}(\underline{x}) \in H$
and let the inner product in H be given as

$$
<\underline{\phi}(\underline{x}) \underline{\phi}(\underline{y})>=K(\underline{x}, \underline{y}) .
$$

Then
$\int K(\underline{x}, \underline{y}) g(\underline{x}) g(\underline{y}) d \underline{x} d \underline{y} \geq 0$
for any $\mathrm{g}(\underline{x}), \underline{x}$:
$\int g^{2}(\underline{x}) d \underline{x}<+\infty$
$K(x, y)$ symmetric function known as kernel.
> The opposite is ALWAYS true. Any kernel, with the above properties, defines to an inner product in SOME space!!!
> Examples of kernels

- Radial basis Functions:

$$
K(\underline{x}, \underline{z})=\exp \left(-\frac{\|\underline{x}-\underline{z}\|^{2}}{\sigma^{2}}\right)
$$

- Polynomial:

$$
K(\underline{x}, \underline{z})=\left(\underline{x}^{T} \underline{z}+1\right)^{q}, q>0
$$

- Hyperbolic Tangent:

$$
K(\underline{x}, \underline{z})=\tanh \left(\beta \underline{x}^{T} \underline{z}+\gamma\right)
$$

for appropriate values of β, γ.
> SVM Formulation

- Step 1: Choose appropriate kernel. This implicitely assumes a
mapping to a
higher dimensional (yet, not known) space.
- Step 2: $\quad \max _{\underline{\imath}}\left(\sum_{i} \lambda_{i}-\frac{1}{2} \sum_{i, j} \lambda_{i} \lambda_{j} y_{i} y_{j} K\left(\underline{x}_{i}, \underline{x}_{j}\right)\right)$ subject to : $0 \leq \lambda_{i} \leq C, i=1,2, \ldots, N$

$$
\sum_{i} \lambda_{i} y_{i}=0
$$

This results to an implicit combination

$$
\underline{w}=\sum_{i=1}^{N_{s}} \lambda_{i} y_{i} \underline{\varphi}\left(\underline{x}_{i}\right)
$$

- Step 3: \quad Assign \underline{x} to

$$
\omega_{1}\left(\omega_{2}\right) \text { if } g(\underline{x})=\sum_{i=1}^{N_{s}} \lambda_{i} y_{i} K\left(\underline{x}_{i}, \underline{x}\right)+w_{0}>(<) 0
$$

- The SVM Architecture

This is a family of non-linear classifiers. They are multistage decision systems, in which classes are sequentially rejected, until a finally accepted class is reached. To this end:
\Rightarrow The feature space is split into unique regions in a sequential manner.
$>$ Upon the arrival of a feature vector, sequential decisions, assigning features to specific regions, are performed along a path of nodes of an appropriately constructed tree.
$>$ The sequence of decisions is applied to individual features, and the queries performed in each node are of the type:

$$
\text { is feature } \quad x_{i} \leq a
$$

where α is a pre-chosen (during training) threshold.
> The figures below are such examples. This type of trees is known as Ordinary Binary Classification Trees (OBCT). The decision hyperplanes, splitting the space into regions, are parallel to the axis of the spaces. Other types of partition are also possible, yet less popular.

> Design Elements that define a decision tree.

- Each node, t, is associated with a subset $X_{t} \subseteq X$, where X is the training set. At each node, X_{t} is split into two (binary splits) disjoint descendant subsets $X_{t, Y}$ and $X_{t, N}$, where

$$
\begin{aligned}
& X_{t, Y} \cap X_{t, N}=\emptyset \\
& X_{t, Y} \cup X_{t, N}=X_{t}
\end{aligned}
$$

$X_{t, Y}$ is the subset of X_{t} for which the answer to the query at node t is YES. $X_{t, N}$ is the subset corresponding to NO. The split is decided according to an adopted question (query).

- A splitting criterion must be adopted for the best split of X_{t} into $X_{t, Y}$ and $X_{t, N}$.
- A stop-splitting criterion must be adopted that controls the growth of the tree and a node is declared as terminal (leaf).
- A rule is required that assigns each (terminal) leaf to a class.
> Set of Questions: In OBCT trees the set of questions is of the type

$$
\text { is } \quad x_{i} \leq a \quad ?
$$

The choice of the specific x_{i} and the value of the threshold α, for each node t, are the results of searching, during training, among the features and a set of possible threshold values. The final combination is the one that results to the best value of a criterion.
> Splitting Criterion: The main idea behind splitting at each node is the resulting descendant subsets $X_{t, Y}$ and $X_{t, N}$ to be more class homogeneous compared to X_{t}. Thus the criterion must be in harmony with such a goal. A commonly used criterion is the node impurity:
and

$$
\begin{gathered}
I(t)=-\sum_{i=1}^{M} P\left(\omega_{i} \mid t\right) \log _{2} P\left(\omega_{t} \mid t\right) \\
P\left(\omega_{i} \mid t\right) \approx \frac{N_{t}^{i}}{N_{t}}
\end{gathered}
$$

where N_{t}^{i} is the number of data points in X_{t} that belong to class ω_{i}. The decrease in node impurity is defined as:

$$
\Delta I(t)=I(t)-\frac{N_{t, \mathrm{Y}}}{N_{t}} I\left(t_{\mathrm{Y}}\right)-\frac{N_{t, N}}{N_{t}} I\left(t_{N}\right)
$$

- The goal is to choose the parameters in each node (feature and threshold) that result in a split with the highest decrease in impurity.
- Why highest decrease? Observe that the highest value of $I(t)$ is achieved if all classes are equiprobable, i.e., X_{t} is the least homogenous.
> Stop - splitting rule. Adopt a threshold T and stop splitting a node (i.e., assign it as a leaf), if the impurity decrease is less than T. That is, node t is "pure enough".
$>$ Class Assignment Rule: Assign a leaf to a class ω_{j}, where:

$$
j=\arg \max _{i} P\left(\omega_{i} \mid t\right)
$$

> Summary of an OBCT algorithmic scheme:

- Begin with the root node, i.e., $X_{t}=X$
- For each new node t
* For every feature $x_{k}, k=1,2, \ldots, l$
- For every value $\alpha_{k n}, n=1,2, \ldots, N_{t k}$
- Generate $X_{t Y}$ and $X_{t N}$ according to the answer in the question: is $x_{k}(i) \leq \alpha_{k n}, i=1,2, \ldots, N_{t}$
- Compute the impurity decrease
- End
- Choose $\alpha_{k n_{0}}$ leading to the maximum decrease w.r. to x_{k}
* End
* Choose $x_{k_{0}}$ and associated $\alpha_{k 0 n_{0}}$ leading to the overall maximum decrease of impurity
* If stop-splitting rule is met declare node t as a leaf and designate it with a class label
* If not, generate two descendant nodes t_{Y} and t_{N} with associated subsets $X_{t Y}$ and $X_{t N}$, depending on the answer to the question: is $x_{k_{0}} \leq \alpha_{k_{0} n_{0}}$
- End

> Remarks:

- A critical factor in the design is the size of the tree. Usually one grows a tree to a large size and then applies various pruning techniques.
- Decision trees belong to the class of unstable classifiers. This can be overcome by a number of "averaging" techniques. Bagging is a popular technique. Using bootstrap techniques in X, various trees are constructed, $T_{i}, i=1,2, \ldots, B$. The decision is taken according to a majority voting rule.

* Combining Classifiers

The basic philosophy behind the combination of different classifiers lies in the fact that even the "best" classifier fails in some patterns that other classifiers may classify correctly. Combining classifiers aims at exploiting this complementary information residing in the various classifiers.

Thus, one designs different optimal classifiers and then combines the results with a specific rule.
> Assume that each of the, say, L designed classifiers provides at its output the posterior probabilities:

$$
P\left(\omega_{i} \mid \underline{x}\right), i=1,2, \ldots, M
$$

- Product Rule: Assign \underline{x} to the class ω_{i} :

$$
i=\underset{k}{\arg \max } \prod_{j=1}^{L} P_{j}\left(\omega_{k} \mid \underline{x}\right)
$$

where $P_{j}\left(\omega_{k} \mid \underline{x}\right)$ is the respective posterior probability of the $j^{\text {th }}$ classifier.

- Sum Rule: Assign \underline{x} to the class : ω_{i}

$$
i=\underset{k}{\arg \max } \sum_{j=1}^{L} P_{j}\left(\omega_{k} \mid \underline{x}\right)
$$

- Majority Voting Rule: Assign \underline{x} to the class for which there is a consensus or when at least ℓ_{c} of the classifiers agree on the class label of \underline{x} where:

$$
\ell_{c}=\left\{\begin{array}{l}
\frac{L}{2}+1, \text { Leven } \\
\frac{L+1}{2}, \text { Lodd }
\end{array}\right.
$$

otherwise the decision is rejection, that is no decision is taken.
Thus, correct decision is made if the majority of the classifiers agree on the correct label, and wrong decision if the majority agrees in the wrong label.
> Dependent or not Dependent classifiers?

- Although there are not general theoretical results, experimental evidence has shown that the more independent in their decision the classifiers are, the higher the expectation should be for obtaining improved results after combination. However, there is no guarantee that combining classifiers results in better performance compared to the "best" one among the classifiers.
> Towards Independence: A number of Scenarios.
- Train the individual classifiers using different training data points. To this end, choose among a number of possibilities:
- Bootstrapping: This is a popular technique to combine unstable classifiers such as decision trees (Bagging belongs to this category of combination).
- Stacking: Train the combiner with data points that have been excluded from the set used to train the individual classifiers.
- Use different subspaces to train individual classifiers: According to the method, each individual classifier operates in a different feature subspace. That is, use different features for each classifier.

> Remarks:

- The majority voting and the summation schemes rank among the most popular combination schemes.
- Training individual classifiers in different subspaces seems to lead to substantially better improvements compared to classifiers operating in the same subspace.
- Besides the above three rules, other alternatives are also possible, such as to use the median value of the outputs of individual classifiers.

