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CHAPTER 4 – NONLINEAR CLASSIFIERS

� The XOR problem

x1 x2 XOR Class

0 0 0 B

0 1 1 A

1 0 1 A

1 1 0 B
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� There is no single line (hyperplane) that separates
class A from class B. On the contrary, AND and OR
operations are linearly separable problems
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� The Two-Layer Perceptron

� For the XOR problem, draw two, instead, of one lines
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� Then class B is located outside the shaded area and
class A inside. This is a two-phase design.

• Phase 1: Draw two lines (hyperplanes)

Each of them is realized by a perceptron. The
outputs of the perceptrons will be

depending on the position of x.

• Phase 2: Find the position of x w.r.t. both lines,
based on the values of y1, y2.
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• Equivalently:  The computations of the first phase 
perform a mapping

1st phase 2nd

phasex1 x2 y1 y2

0 0 0(-) 0(-) B(0)

0 1 1(+) 0(-) A(1)

1 0 1(+) 0(-) A(1)

1 1 1(+) 1(+) B(0)
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The decision is now performed on the transformed
data.

This can be performed via a second line, which can also 
be realized by a perceptron.
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� Computations of the first phase perform a
mapping that transforms the nonlinearly
separable problem to a linearly separable one.

� The architecture
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• This is known as the two layer perceptron with
one hidden and one output layer. The
activation functions are

• The neurons (nodes) of the figure realize the
following lines (hyperplanes)
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� Classification capabilities of the two-layer perceptron

� The mapping performed by the first layer neurons is onto the
vertices of the unit side square, e.g.,
(0, 0), (0, 1), (1, 0), (1, 1).

� The more general case,
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performs a mapping of a vector

onto the vertices of the unit side Hp hypercube

� The mapping is achieved with p neurons each realizing

a hyperplane. The output of each of these neurons is 0
or 1 depending on the relative position of x w.r.t. the

hyperplane.
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� Intersections of these hyperplanes form regions in the
l-dimensional space. Each region corresponds to a
vertex of the Hp unit hypercube.
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For example, the 001 vertex corresponds to the 

region which is located 

to the (-) side of g1 (x)=0

to the (-) side of g2 (x)=0

to the (+) side of g3 (x)=0
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� The output neuron realizes a hyperplane in the
transformed space, that separates some of the
vertices from the others. Thus, the two layer
perceptron has the capability to classify vectors into
classes that consist of unions of polyhedral
regions. But NOT ANY union. It depends on the
relative position of the corresponding vertices.

y



14

� Three layer-perceptrons

� The architecture

� This is capable to classify vectors into classes consisting
of ANY union of polyhedral regions.

� The idea is similar to the XOR problem. It realizes
more than one planes in the space.
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� The reasoning 

• For each vertex, corresponding to class, say A, 
construct a hyperplane which leaves THIS vertex
on one side (+) and ALL the others to the other 
side (-).

• The output neuron realizes an OR gate

� Overall:

The first layer of the network forms the 
hyperplanes, the second layer forms the regions
and the output neuron forms the classes.

� Designing Multilayer Perceptrons
� One direction is to adopt the above rationale and 

develop a structure that classifies correctly all the 
training patterns.

� The other direction is to choose a structure and 
compute the synaptic weights to optimize a cost 
function. 
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� The Backpropagation Algorithm

� This is an algorithmic procedure that computes the
synaptic weights iteratively, so that an adopted cost
function is minimized (optimized)

� In a large number of optimizing procedures,
computation of derivatives are involved. Hence,
discontinuous activation functions pose a problem, i.e.,

� There is always an escape path!!! The logistic function

is an example. Other functions are also possible and
in some cases more desirable.
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� The steps:

• Adopt an optimizing cost function, e.g.,

– Least Squares Error

– Relative Entropy

between desired responses and actual 
responses of the network for the available 
training patterns.  That is, from now on we have 
to live with errors.  We only try to minimize 
them, using certain criteria.

• Adopt an algorithmic procedure for the 
optimization of the cost function with respect to 
the synaptic weights
e.g.,

– Gradient descent

– Newton’s algorithm

– Conjugate gradient
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• The task is a nonlinear optimization one.  For 
the gradient descent method
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� The Procedure:

• Initialize unknown weights randomly with small values.

• Compute the gradient terms backwards, starting with 
the weights of the last (3rd) layer and then moving 
towards the first

• Update the weights

• Repeat the procedure until a termination procedure is 
met

� Two major philosophies:

• Batch mode:  The gradients of the last layer are 
computed once ALL training data have appeared to the 
algorithm, i.e., by summing up all error terms.

• Pattern mode:  The gradients are computed every time 
a new training data pair appears.  Thus gradients are 
based on successive individual errors.
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� A major problem:  The algorithm may converge to a 
local minimum
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� The Cost function choice

Examples:

• The Least Squares

Desired response of the mth output neuron

(1 or 0)  for

Actual response of the mth output neuron, 

in the interval [0, 1], for input
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� The cross-entropy

This presupposes an interpretation of y and ŷ as

probabilities

� Classification error rate. This is also known as
discriminative learning. Most of these techniques use a
smoothed version of the classification error.
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� Remark: Why not start with a large network and leave 
the algorithm to decide which weights are small??  
This approach is just naïve. It overlooks that 
classifiers must have good generalization properties.  
A large network can result in small errors for the 
training set, since it can learn the particular details of 
the training set.  On the other hand, it will not be able 
to perform well when presented with data unknown to 
it.  The size of the network must be:

• Large enough to learn what makes data of the 
same class similar and data from different classes 
dissimilar

• Small enough not to be able to learn underlying 
differences between data of the same class.  This 
leads to the so called overfitting.
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Example:
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� Overtraining is another side of the same coin, i.e., 
the network adapts to the peculiarities of the training 
set.
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� Generalized Linear Classifiers

� Remember the XOR problem.  The mapping

The activation function transforms the 
nonlinear task into a linear one.

� In the more general case:

• Let and a nonlinear classification task.
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• Are there any functions and an appropriate k, so 

that the mapping

transforms the task into a linear one, in the 
space?

• If this is true, then there exists a hyperplane
so that
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� In such a case this is equivalent with
approximating the nonlinear discriminant function
g(x), in terms of i.e.,

� Given , the task of computing the weights
is a linear one.

� How sensible is this??

• From the numerical analysis point of view, this
is justified if are interpolation functions.

• From the Pattern Recognition point of view, this
is justified by Cover’s theorem
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� Capacity of the l-dimensional space in Linear

Dichotomies

� Assume N points in assumed to be in general

position, that is:

lR

Not of these lie on a dimensional space1+l 1−l
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� Cover’s theorem states:  The number of groupings 
that can be formed by (l-1)-dimensional hyperplanes
to separate N points in two classes is

Example: N=4, l=2, O(4,2)=14

Notice: The total number of possible groupings is
24=16
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� Probability of grouping N points in two linearly 

separable classes is
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Thus, the probability of having N points in linearly

separable classes tends to 1, for large , provided
N<2( +1)

Hence, by mapping to a higher dimensional space,
we increase the probability of linear separability,
provided the space is not too densely populated.

l
l
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� Radial Basis Function Networks (RBF)

� Choose
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Equivalent to a single layer network, with RBF 
activations and linear output node.
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� Example: The XOR problem

• Define:

•
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� Training of the RBF networks

• Fixed centers:  Choose centers randomly among the 
data points.  Also fix σi’s.  Then

is a typical linear classifier design.

• Training of the centers:  This is a nonlinear
optimization task

• Combine supervised and unsupervised learning 
procedures.

• The unsupervised part reveals clustering tendencies
of the data and assigns the centers at the cluster 
representatives.
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� Support Vector Machines: The non-linear case

� Recall that the probability of having linearly
separable classes increases as the
dimensionality of the feature vectors
increases. Assume the mapping:

Then use SVM in Rk

� Recall that in this case the dual problem
formulation will be
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Also, the classifier will be

Thus, inner products in a high dimensional space
are involved, hence

• High complexity
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� Something clever: Compute the inner products in
the high dimensional space as functions of inner
products performed in the low dimensional
space!!!

� Is this POSSIBLE?? Yes. Here is an example

Then, it is easy to show that
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� Mercer’s Theorem

and let the inner product in H be given as

Then

for any g(x), x:

K(x,y) symmetric function known as kernel.
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� The opposite is ALWAYS true.  Any kernel, with the 
above properties, defines to an inner product in 
SOME space!!!

� Examples of kernels

• Radial basis Functions:

• Polynomial:

• Hyperbolic Tangent:

for appropriate values of β, γ.
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� SVM Formulation 

• Step 1: Choose appropriate kernel.  This 
implicitely assumes a 

mapping to a higher 
dimensional (yet, not known) space.

• Step 2:

This results to an implicit combination
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• Step 3: Assign x to

• The SVM Architecture
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� Decision Trees

This is a family of non-linear classifiers. They are multistage decision
systems, in which classes are sequentially rejected, until a finally
accepted class is reached. To this end:

� The feature space is split into unique regions in a sequential
manner.

� Upon the arrival of a feature vector, sequential decisions, assigning
features to specific regions, are performed along a path of nodes
of an appropriately constructed tree.

� The sequence of decisions is applied to individual features, and the
queries performed in each node are of the type:

is feature

where α is a pre-chosen (during training) threshold.

axi ≤
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� The figures below are such examples. This type of trees is
known as Ordinary Binary Classification Trees (OBCT). The
decision hyperplanes, splitting the space into regions, are
parallel to the axis of the spaces. Other types of partition are
also possible, yet less popular.
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� Design Elements that define a decision tree.

• Each node, t, is associated with a subset , where X

is the training set. At each node, Xt is split into two (binary
splits) disjoint descendant subsets Xt,Y and Xt,N, where

Xt,Y ∩ Xt,N = Ø

Xt,Y ∪ Xt,N = Xt

Xt,Y is the subset of Xt for which the answer to the query at
node t is YES. Xt,N is the subset corresponding to NO. The

split is decided according to an adopted question (query).

XΧ t ⊆
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• A splitting criterion must be adopted for the best split of Xt

into Xt,Y and Xt,N.

• A stop-splitting criterion must be adopted that controls the
growth of the tree and a node is declared as terminal
(leaf).

• A rule is required that assigns each (terminal) leaf to a
class.
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� Set of Questions: In OBCT trees the set of questions is of
the type

is ?

The choice of the specific xi and the value of the threshold α,

for each node t, are the results of searching, during training,

among the features and a set of possible threshold values.
The final combination is the one that results to the best
value of a criterion.

axi ≤
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� Splitting Criterion: The main idea behind splitting at each
node is the resulting descendant subsets Xt,Y and Xt,N to be
more class homogeneous compared to Xt. Thus the criterion

must be in harmony with such a goal. A commonly used
criterion is the node impurity:

and

where is the number of data points in Xt that belong to
class ωi. The decrease in node impurity is defined as:
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• The goal is to choose the parameters in each node
(feature and threshold) that result in a split with the
highest decrease in impurity.

• Why highest decrease? Observe that the highest value of
I(t) is achieved if all classes are equiprobable, i.e., Xt is

the least homogenous.

� Stop - splitting rule. Adopt a threshold T and stop splitting a

node (i.e., assign it as a leaf), if the impurity decrease is less
than T. That is, node t is “pure enough”.

� Class Assignment Rule: Assign a leaf to a class ωj , where:

)|(maxarg tPj i
i

ω=
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� Summary of an OBCT algorithmic scheme:
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� Remarks:

• A critical factor in the design is the size of the tree.
Usually one grows a tree to a large size and then applies
various pruning techniques.

• Decision trees belong to the class of unstable classifiers.
This can be overcome by a number of “averaging”
techniques. Bagging is a popular technique. Using
bootstrap techniques in X, various trees are constructed,
Ti, i=1, 2, …, B. The decision is taken according to a

majority voting rule.
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� Combining Classifiers

The basic philosophy behind the combination of different
classifiers lies in the fact that even the “best” classifier fails in
some patterns that other classifiers may classify correctly.
Combining classifiers aims at exploiting this complementary
information residing in the various classifiers.

Thus, one designs different optimal classifiers and then
combines the results with a specific rule.

� Assume that each of the, say, L designed classifiers provides
at its output the posterior probabilities:

, ..., M, ixP i 21 ),|( =ω
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• Product Rule: Assign to the class :

where is the respective posterior probability of the
jth classifier.

• Sum Rule: Assign to the class :
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• Majority Voting Rule: Assign to the class for which
there is a consensus or when at least of the classifiers
agree on the class label of where:

otherwise the decision is rejection, that is no decision is
taken.

Thus, correct decision is made if the majority of the
classifiers agree on the correct label, and wrong decision
if the majority agrees in the wrong label.
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� Dependent or not Dependent classifiers?

• Although there are not general theoretical results,
experimental evidence has shown that the more
independent in their decision the classifiers are, the higher
the expectation should be for obtaining improved results
after combination. However, there is no guarantee that
combining classifiers results in better performance
compared to the “best” one among the classifiers.

� Towards Independence: A number of Scenarios.

• Train the individual classifiers using different training data
points. To this end, choose among a number of
possibilities:

– Bootstrapping: This is a popular technique to combine
unstable classifiers such as decision trees (Bagging belongs
to this category of combination).
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– Stacking: Train the combiner with data points that have been
excluded from the set used to train the individual classifiers.

– Use different subspaces to train individual classifiers:
According to the method, each individual classifier operates
in a different feature subspace. That is, use different features
for each classifier.

� Remarks:

• The majority voting and the summation schemes rank
among the most popular combination schemes.

• Training individual classifiers in different subspaces seems
to lead to substantially better improvements compared to
classifiers operating in the same subspace.

• Besides the above three rules, other alternatives are also
possible, such as to use the median value of the outputs of
individual classifiers.


