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� The Problem: Consider a two class task with ω1, ω2
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CHAPTER 3 – LINEAR CLASSIFIERS
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� Hence:

hyperplane on the ⊥w
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� The Perceptron Algorithm

� Assume linearly separable classes, i.e.,

� The case
falls under the above formulation, since

•

•
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� Our goal:  Compute a solution, i.e., a hyperplane w,
so that

• The steps

– Define a cost function to be minimized.

– Choose an algorithm to minimize the cost 
function.

– The minimum corresponds to a solution.
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�The Cost Function

• Where Y is the subset of the vectors wrongly
classified by w. When Y=O (empty set) a solution 
is achieved and

•
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• J(w) is piecewise linear (WHY?)

�The Algorithm

• The philosophy of the gradient descent is 
adopted.
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• Wherever valid

•

This is the celebrated Perceptron Algorithm.
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�An example:

�The perceptron algorithm converges in a finite
number of iteration steps to a solution if
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� A useful variant of the perceptron algorithm

� It is a   reward and punishment type of 
algorithm.
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� The perceptron

shold      thre

 weightssynapticor  synapses    

0w

s'wi

� It is a learning machine that learns from the 
training vectors via the perceptron algorithm.

� The network is called perceptron or neuron.
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�Example: At some stage t the perceptron algorithm 

results in

The corresponding hyperplane is
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� Least Squares Methods

� If classes are linearly separable, the perceptron output 
results in 

� If classes are NOT linearly separable, we shall compute 
the weights,                  ,  so that the difference
between

• The actual output of the classifier,        , and

• The desired outputs, e.g.,
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� SMALL, in the mean square error sense, means to choose        
so that the cost function:

•

•
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� Minimizing

where Rx is the autocorrelation matrix

and the crosscorrelation vector.
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� Multi-class generalization
• The goal is to compute M linear discriminant functions:

according to the MSE.

• Adopt as desired responses yi:

• Let
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• The goal is to compute    :

• The above is equivalent to a number M of MSE minimization 
problems. That is:

Design each    so that its desired output is 1 for           and 0 for 
any other class.
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� SMALL in the sum of error squares sense means

�

that is, the input xi and its

corresponding class label  (±1).
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� Pseudoinverse Matrix

� Define

�

�

�
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Thus

� Assume N=l X square and invertible.  Then
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� Assume N>l.  Then, in general, there is no solution to 
satisfy all equations simultaneously:

� The “solution” corresponds to the minimum 
sum of squares solution.
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� Example:
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� The goal:  Given two linearly separable classes, design 
the classifier

that leaves the maximum margin from both classes.
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� Support Vector Machines
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� Margin:  Each hyperplane is characterized by:

• Its direction in space, i.e., 

• Its position in space, i.e.,

• For EACH direction, , choose the hyperplane that 
leaves the SAME distance from the nearest points 
from each class. The margin is twice this distance.
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� The distance of a point  from a hyperplane 
is given by: 

� Scale, so that at the nearest points, from 
each class, the discriminant function is ±1:

� Thus the margin is given by:

� Also, the following is valid
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� SVM (linear) classifier

� Minimize

� Subject to

� The above is justified since by  minimizing

the margin is maximised.
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� The above is a quadratic optimization task, subject to 
a set of linear inequality constraints.  The Karush-
Kuhh-Tucker conditions state that the minimizer
satisfies:

• (1)

• (2)

• (3)

• (4)

• Where is the Lagrangian
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� The solution:  from the above, it turns out that:

•

•
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� Remarks:

• The Lagrange multipliers can be either zero or
positive.  Thus,

–

where , corresponding to positive
Lagrange multipliers.

– From constraint (4) above, i.e.,

the vectors contributing to
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– These vectors are known as SUPPORT 
VECTORS and are the closest vectors, from 
each class, to the classifier.

– Once  is computed,  is determined from 
conditions (4).

– The optimal hyperplane classifier of a support 
vector machine is UNIQUE.

– Although the solution is unique, the resulting 
Lagrange multipliers are not unique. 

w 0w
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� Dual Problem Formulation

• The SVM formulation is a convex programming 
problem, with

– Convex cost function

– Convex region of feasible solutions

• Thus, its solution can be achieved by its dual 
problem, i.e.,

– maximize

– subject to

),,( 0 λwwL

0

0
1

1

≥

=

=

∑

∑

=

=

λ

λ

λ

i

N

i

i

ii

N

i

i

y

xyw

λ



32

• Combine the above to obtain:

– maximize

– subject to
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� Remarks:

• Support vectors enter via inner products.

� Non-Separable classes
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In this case, there is no hyperplane such that:

• Recall that the margin is defined as twice the 
distance between the following two hyperplanes:
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� The training vectors belong to one of  three possible 
categories

1) Vectors outside the band which are correctly
classified, i.e.,

2) Vectors inside the band, and correctly classified,
i.e.,

3) Vectors misclassified, i.e.,
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� All three cases above can be represented as:

1)

2)

3)

are known as slack variables.
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� The goal of the optimization is now two-fold:

• Maximize margin

• Minimize the number of patterns with          .

One way to achieve this goal is via the cost

where C is a constant and

• I(.) is not differentiable.  In practice, we use an 
approximation. A popular choice is:

•

• Following a similar procedure as before we obtain:
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� KKT conditions
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� The associated dual problem

Maximize

subject to

� Remarks: The only difference with the separable class 
case is the existence of     in the constraints.
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� Training the SVM: A major problem is the high 
computational cost. To this end, decomposition 
techniques are used. The rationale behind them 
consists of the following:

• Start with an arbitrary data subset (working set) that 
can fit in the memory. Perform optimization, via a 
general purpose optimizer.

• Resulting support vectors remain in the working set, 
while others are replaced by new ones (outside the set) 
that violate severely the KKT conditions.

• Repeat the procedure.

• The above procedure guarantees that the cost function 
decreases.

• Platt’s SMO algorithm chooses a working set of two 
samples, thus analytic optimization solution can be 
obtained.
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� Multi-class generalization

Although theoretical generalizations exist, the most 
popular in practice is to look at the problem as M two-
class problems (one against all).

� Example:

� Observe the effect of different values of C in the case of 
non-separable classes.


