CHAPTER 3 — LINEAR CLASSIFIERS

“* The Problem: Consider a two class task with w,, o,

> g(x)=w x+w,=0=

WX, +WoX, +.. WX + W,

>  Assume x,x, on the decision hyperplane:
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O=w x;+wW,=w x, +wW, =
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> Hence:

w_ L1 onthe hyperplane
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% The Perceptron Algorithm

» Assume linearly separable classes, i.e.,
3 w*: w* x>0 Vxeow

w* x<0 Vxew,

A o
» Thecase w x+w,

falls under the above formulation, since



» Our goal: Compute a solution, i.e., a hyperplane w,
so that
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e The steps
— Define a cost function to be minimized.

— Choose an algorithm to minimize the cost
function.

— The minimum corresponds to a solution.



» The Cost Function
Jw)= (5w x)

xeY

e Where Y is the subset of the vectors wrongly
classified by w. When Y=0 (empty set) a solution
IS achieved and

e Jw=0

® o0 =-11f xe¥ and xe o,

o.=+11f xe¥ and xew,

e J(W)20



« J(w) is piecewise linear (WHY?)

» The Algorithm

e The philosophy of the gradient descent is
adopted.
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e Wherever valid
aJ(w) _ 0 oW n=>6x

aV_V aV_V xeY xeY

o (Wir+l)=w(t)-p, > 5.x

xeY

This is the celebrated Perceptron Algorithm.



» An example:

S e

w(t+D)=w()+p,x
=w(t)-po.x (0,=-1)

» The perceptron algorithm converges in a finite
number of iteration steps to a solution if
lim Z P, = ©,lim Z P < +w
k=0 L)
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% A useful variant of the perceptron algorithm

T
t <0
wE+1) = w(e) + px,, , L DEO
Xy € W
T
t >0
Wi+ 1) = W) - pr g, 2 e
Xy € W,

w(t+1)=w(t) otherwise

> Itisa

reward and punishment

algorithm.
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¢ The perceptron
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w,'s synapses or synaptic weights
w,  threshold

» The network is called perceptron or neuron.
» It is a learning machine that learns from the

training vectors via the perceptron algorithm.
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At some stage ¢ the perceptron algorithm
results in

w =1, w, =1, w, =-0.5
x+x,—0.5=0

The corresponding hyperplane is
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% Least Squares Methods

> If classes are linearly separable, the perceptron output
results in +1

> If classes are NOT linearly separable, we shall compute
the weights, w,, w,,...,w,, so that the difference
between

e The actual output of the classifier, w' x , and

e The desired outputs, e.g.,
+1if x e w,
~lif xew,

to be SMALL.
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» SMALL, in the mean square error sense, means to choose w
so that the cost function:

e J(w)=E[(y—w' x)*]becomes minimum.

e Ww=arg minJ(w)

e y 1s the correspond ing desired response.
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» Minimizing

J(w) w.r. to wresults in :
oI (w) _ 0

E[(y-w x)*1=0

ow

ow

=2E[x(y—x w)]=

E[xx lw=E[xy]=

W= R E[xy]

where R _is the autocorrelation matrix

and E[xy]=

Elxx ]

'0) Pap ] ALY D [0 6 dy

the crosscorrelation vector.
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» Multi-class generalization
e The goal is to compute M linear discriminant functions:

g, (x)=w x

according to the MSE.

e Adopt as desired responses y.:
y,=1 1 xeo

vy, =0 otherwise

o et ¥
P S ahe

e And the matrix

W =W, Wy Wy, |
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e The goal is to compute W:

A 2 M
W = arng;nE[HX—WT)_CH } = arnginE{Z(yi — x)z}

=

e The above is equivalent to a number A/ of MSE minimization
problems. That is:

Design each w;so that its desired output is 1 for x € @, and 0 for
any other class.
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% SMALL in the sum of error squares sense means

% J(m)=2<yi—v_v%i>2

(¥,,X;): training pairs that is, the input x, and its
corresponding class label y; (£1).

WTEi)z =0=

AU Z_‘,(y,-—

ow ow ‘5

N N
(Dol )= Yooky,
i=1 ]
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» Pseudoinverse Matrix

> Define
= N
X,
T
X =|*
r
B
_y]_
X:
[

> X _[xpxza

(an Nx/ matrix)

corresponding desired responses

xy] (an IxN matrix)

i e Z_Z_l

= Zz
=l
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Thus  (Q_x; x)= (2 x.3)

X' X)w=X"y=
V_’i}:(XTX)_lXTX
:Xiy

X*=(X"X)"'x" Pseudoinverse of X

» Assume N=/ = X square and invertible. Then

() 2 e X e Y L XN e S

JEe=a
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» Assume N>[. Then, in general, there is no solution to
satisfy all equations simultaneously:

X, W= .
o L T equations >/ unknowns

T
XvW=DVy

> The “solution” w=X"y corresponds to the minimum
sum of squares solution.
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s Support Vector Machines

» The goal: Given two linearly separable classes, design
the classifier

g(x)=w x+w, =0

that leaves the maximum margin from both classes.

direction 2

— — --
— —

———

Xy
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» Margin: Each hyperplane is characterized by:
e [Its direction in space, i.e., w
e Its position in space, i.e., w,

e For EACH direction, w, choose the hyperplane that
leaves the SAME distance from the nearest points
from each class. The margin is twice this distance.
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> The distance of a point x from a hyperplane
IS given by:

> Scale, w, w,, so that at the nearest points, from
each class, the discriminant function is +1:

g(x)| =1 {g(x) = +1for @, and g(x) = 1 for @, }

» Thus the margin is given by:
1 1 2

+ ==
o

> Also, the following is valid

wx+w, 21 Vx e,
T
w x+w,<-1 Vxeon,
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» SVM (linear) classifier
g(x)=w x+w,
» Minimize :
2
J () =7 ]
» Subject to
yw x,+w)=L i=12,... N

y,=L1orx, e w,

y,=—Lforx, ew,

> The above is justified since by minimizing HV—"H

Y
the margin M is maximised.
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» The above is a quadratic optimization task, subject to
a set of linear inequality constraints. The Karush-
Kuhh-Tucker conditions state that the minimizer
satisfies:

19
o —L(w,w,, 4)=0
(1) Py (W, Wy, 4)=0

(2 2 Lt Wy, 2)=0

Wo

«(3) 4,>0,i=12,.,N

e (4) Al x +w)-1]=0,i=12,., N

o Where L(e,ee) s the Lagrangian

L(w, wo,i)—lw wW— Z/l[yl(_ w X, +w,)]
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» The solution: from the above, it turns out that:

N
M| Z A,
=

N
v Zﬂ“iyi =0
i=1
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e The Lagrange multipliers can be either zero or
positive. Thus,

NS
R Zﬂ“iyi)_ci
i=1

where N <N, , corresponding to positive
Lagrange multipliers.

— From constraint (4) above, i.e.,

Aly.(w x, +w)—-1]=0, i=12,.,N

—1

the vectors contributing to w satisfy

/3
w X, +w, ==l
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—These vectors are known as SUPPORT
VECTORS and are the closest vectors, from
each class, to the classifier.

—Once wis computed, w,is determined from
conditions (4).

— The optimal hyperplane classifier of a support
vector machine is UNIQUE.

— Although the solution is unique, the resulting
Lagrange multipliers are not unique.
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» Dual Problem Formulation

e The SVM formulation is a convex programming
problem, with

— Convex cost function
— Convex region of feasible solutions

e Thus, its solution can be achieved by its dual
problem, i.e.,

— maximize L(w,w,,A)
A

— subject to
N
Wi Zﬂ“iyizi
i=l
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e Combine the above to obtain:

N
1
—~ maéimize Q4= > A 5 O )
J - 7

— subject to

N
Zﬂ’iyi =0
i=1

420
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> Remarks:
e Support vectors enter via inner products.

» Non-Separable classes




In this case, there is no hyperplane such that:

W X+ w,(><)1, Vx

e Recall that the margin is defined as twice the

distance between the following two hyperplanes:

T
w o x+w, =1

T
R A e |
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» The training vectors belong to one of three possible
categories

1) Vectors outside the band which are correctly
classified, i.e.,

yi(V_VTI'l' Wo) > 1

2) Vectors inside the band, and correctly classified,
l.e.,

0 < %(KTE"FWO) <l

3) Vectors misclassified, i.e.,

yi(mTi‘F Wo) <0

35



> All three cases above can be represented as:

v, x+w,)=1-¢

1) e
2) —0<g <1
Sl = s

&, are known as slack variables.
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» The goal of the optimization is how two-fold:
e Maximize margin
e Minimize the number of patterns with & >0 .
One way to achieve this goal is via the cost

1 N
I, wy, &) =l + CY ()
p=]l
where C is a constant and
1 &£ >0
](é:i) 3
0 é‘ =0
« 1(.) is not differentiable. In practice, we use an
approximation. A popular choice is:

1 N
o J(w, Wy, &)= EHv_sz + czl g

e Following a similar procedure as before we obtain:
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> KKT conditions

N
(D) w= Zjﬁyizi
i=1

N
(2) Z}“iyi =0
i=l1
B3 C-p—2,=0,i=12,.. N
4) ALy.(w x,+w,)—1+&E]1=0, i=12,...,N
G e == |
(e A = L



» The associated dual problem

N
I 1
Maximize (E ﬂi_i E ,ﬂiijyiyjzfij)
i=1 I,j

A
subject to
0<A<C,i=12,.,N
N
Zﬂ”iyi =0
=

The only difference with the separable class
case is the existence of C in the constraints.
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» Training the SVM: A major problem is the high
computational cost. To this end, decomposition
techniques are used. The rationale behind them
consists of the following:

e Start with an arbitrary data subset (working set) that

can fit in the memory. Perform optimization, via a
general purpose optimizer.

e Resulting support vectors remain in the working set,
while others are replaced by new ones (outside the set)
that violate severely the KKT conditions.

e Repeat the procedure.

e The above procedure guarantees that the cost function
decreases.

e Platt’'s SMO algorithm chooses a working set of two
samples, thus analytic optimization solution can be
obtained.

40



» Multi-class generalization

Although theoretical generalizations exist, the most

popular in practice is to look at the problem as M two-
class problems (one against all).

) A
4 (™ ' 4
5
3 Nl
2 2 o
=, - \“"a.._‘_ '- ot ._T ___-:_ _t._ —;‘ =
l - - I+ a - P
- + L +
0 e FY ] e -
- - & - s ™ i -. -
7 ‘.1 - ! '!-l-
_2 L ] _2 | -
32 -1 0 1 2 3 4 5, 3 -2 -1 0 1 2 3 4 5,
{a) (k)

> Observe the effect of different values of C in the case of
non-separable classes.
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