CHAPTER 2 - CLASSIFIERS BASED ON BAYES DECISION THEORY

$*$ Statistical nature of feature vectors

$$
\underline{x}=\left[x_{1}, x_{2}, \ldots, x_{l}\right]^{T}
$$

* Assign the pattern represented by feature vector \underline{x} to the most probable of the available classes

$$
\omega_{1}, \omega_{2}, \ldots, \omega_{M}
$$

That is $\quad \underline{x} \rightarrow \omega_{i}: \underset{\text { maximum }}{P\left(\omega_{i} \mid \underline{x}\right)}$

* Computation of a-posteriori probabilities
> Assume known
- a-priori probabilities

$$
\begin{gathered}
P\left(\omega_{1}\right), P\left(\omega_{2}\right) \ldots, P\left(\omega_{M}\right) \\
\text { - } \quad p\left(\underline{x} \mid \omega_{i}\right), i=1,2, \ldots, M
\end{gathered}
$$

This is also known as the likelihood of

$$
\underline{x} \text { w.r. to } \omega_{i}
$$

> The Bayes rule ($M=2$)

$$
\begin{aligned}
& p(\underline{x}) P\left(\omega_{i} \mid \underline{x}\right)=p\left(\underline{x} \mid \omega_{i}\right) P\left(\omega_{i}\right) \Rightarrow \\
& P\left(\omega_{i} \mid \underline{x}\right)=\frac{p\left(\underline{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)}{p(\underline{x})}
\end{aligned}
$$

where

$$
p(\underline{x})=\sum_{i=1}^{2} p\left(\underline{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)
$$

* The Bayes classification rule (for two classes $M=2$)
$>$ Given \underline{x} classify it according to the rule

$$
\begin{aligned}
& \text { If } P\left(\omega_{1} \mid \underline{x}\right)>P\left(\omega_{2} \mid \underline{x}\right) \underline{x} \rightarrow \omega_{1} \\
& \text { If } P\left(\omega_{2} \mid \underline{x}\right)>P\left(\omega_{1} \mid \underline{x}\right) \underline{x} \rightarrow \omega_{2}
\end{aligned}
$$

- Equivalently: classify \underline{x} according to the rule

$$
p\left(\underline{x} \mid \omega_{1}\right) P\left(\omega_{1}\right)(><) p\left(\underline{x} \mid \omega_{2}\right) P\left(\omega_{2}\right)
$$

> For equiprobable classes the test becomes

$$
p\left(\underline{x} \mid \omega_{1}\right)(><) p\left(\underline{x} \mid \omega_{2}\right)
$$

$$
R_{1}\left(\rightarrow \omega_{1}\right) \text { and } R_{2}\left(\rightarrow \omega_{2}\right)
$$

* Equivalently in words: Divide space in two regions

$$
\begin{aligned}
& \text { If } \underline{x} \in R_{1} \Rightarrow \underline{x} \text { in } \omega_{1} \\
& \text { If } \underline{x} \in R_{2} \Rightarrow \underline{x} \text { in } \omega_{2}
\end{aligned}
$$

* Probability of error
> Total shaded area

$$
>P_{e}=\frac{1}{2} \int_{-\infty}^{x_{0}} p\left(x \mid \omega_{2}\right) d x+\frac{1}{2} \int_{x_{0}}^{+\infty} p\left(x \mid \omega_{1}\right) d x
$$

* Bayesian classifier is OPTIMAL with respect to minimising the classification error probability!!!!

$>$ Indeed: Moving the threshold the total shaded area INCREASES by the extra "grey" area.
* The Bayes classification rule for many $(\mathrm{M}>2)$ classes:
$>$ Given \underline{x} classify it to ω_{i} if:

$$
P\left(\omega_{i} \mid \underline{x}\right)>P\left(\omega_{j} \underline{\mid x}\right) \forall j \neq i
$$

$>$ Such a choice also minimizes the classification error probability

* Minimizing the average risk
> For each wrong decision, a penalty term is assigned since some decisions are more sensitive than others
$>$ For $M=2$
- Define the loss matrix

$$
L=\left(\begin{array}{ll}
\lambda_{11} & \lambda_{12} \\
\lambda_{21} & \lambda_{22}
\end{array}\right)
$$

- λ_{12} penalty term for deciding class ω_{2}, although the pattern belongs to ω_{1}, etc.
$>$ Risk with respect to ω_{1}

$$
r_{1}=\lambda_{11} \int_{R_{1}} p\left(\underline{x} \mid \omega_{1}\right) d \underline{x}+\lambda_{12} \int_{R_{2}} p\left(\underline{x} \mid \omega_{1}\right) d \underline{x}
$$

$>$ Risk with respect to ω_{2}

$$
r_{2}=\lambda_{21} \int_{R_{1}} p\left(\underline{x} \mid \omega_{2}\right) d \underline{x}+\lambda_{22} \int_{R_{2}} p\left(\underline{x} \mid \omega_{2}\right) d \underline{x}
$$

> Average risk

$$
r=r_{1} P\left(\omega_{1}\right)+r_{2} P\left(\omega_{2}\right)
$$

* Choose R_{1} and R_{2} so that r is minimized
\star Then assign \underline{x} to ω_{i} if

$$
\begin{aligned}
& \ell_{1} \equiv \lambda_{11} p\left(\underline{x} \mid \omega_{1}\right) P\left(\omega_{1}\right)+\lambda_{21} p\left(\underline{x} \mid \omega_{2}\right) P\left(\omega_{2}\right) \\
& \ell_{2} \equiv \lambda_{12} p\left(\underline{x} \mid \omega_{1}\right) P\left(\omega_{1}\right)+\lambda_{22} p\left(\underline{x} \mid \omega_{2}\right) P\left(\omega_{2}\right)
\end{aligned}
$$

* Equivalently:
assign \underline{x} in $\omega_{1}\left(\omega_{2}\right)$ if

$$
\ell_{12} \equiv \frac{p\left(\underline{x} \mid \omega_{1}\right)}{p\left(\underline{x} \mid \omega_{2}\right)}>(<) \frac{P\left(\omega_{2}\right)}{P\left(\omega_{1}\right)} \frac{\lambda_{21}-\lambda_{22}}{\lambda_{12}-\lambda_{11}}
$$

ℓ_{12} : likelihood ratio

* If

$$
\begin{aligned}
& P\left(\omega_{1}\right)=P\left(\omega_{2}\right)=\frac{1}{2} \text { and } \lambda_{11}=\lambda_{22}=0 \\
& \underline{x} \rightarrow \omega_{1} \text { if } P\left(\underline{x} \mid \omega_{1}\right)>P\left(\underline{x} \mid \omega_{2}\right) \frac{\lambda_{21}}{\lambda_{12}} \\
& \underline{x} \rightarrow \omega_{2} \text { if } P\left(\underline{x} \mid \omega_{2}\right)>P\left(\underline{x} \mid \omega_{1}\right) \frac{\lambda_{12}}{\lambda_{21}} \\
& \text { if } \lambda_{21}=\lambda_{12} \Rightarrow \text { Minimum classification } \\
& \text { error probability }
\end{aligned}
$$

* An example:

$$
\begin{aligned}
& -p\left(x \mid \omega_{1}\right)=\frac{1}{\sqrt{\pi}} \exp \left(-x^{2}\right) \\
& -p\left(x \mid \omega_{2}\right)=\frac{1}{\sqrt{\pi}} \exp \left(-(x-1)^{2}\right) \\
& -P\left(\omega_{1}\right)=P\left(\omega_{2}\right)=\frac{1}{2} \\
& -L=\left(\begin{array}{cc}
0 & 0.5 \\
1.0 & 0
\end{array}\right)
\end{aligned}
$$

> Then the threshold value is:
x_{0} for minimum P_{e} :

$$
\begin{gathered}
x_{0}: \exp \left(-x^{2}\right)=\exp \left(-(x-1)^{2}\right) \Rightarrow \\
x_{0}=\frac{1}{2}
\end{gathered}
$$

> Threshold \hat{x}_{0} for minimum r

$$
\begin{gathered}
\hat{x}_{0}: \exp \left(-x^{2}\right)=2 \exp \left(-(x-1)^{2}\right) \Rightarrow \\
\quad \hat{x}_{0}=\frac{(1-\ln 2)}{2}<\frac{1}{2}
\end{gathered}
$$

Thus \hat{x}_{0} moves to the left of $\frac{1}{2}=x_{0}$ (WHY?)

DISCRIMINANT FUNCTIONS DECISION SURFACES

* If R_{i}, R_{j} are contiguous: $g(\underline{x}) \equiv P\left(\omega_{i} \mid \underline{x}\right)-P\left(\omega_{j} \mid \underline{x}\right)=0$

$$
\begin{array}{lll}
& R_{i}: P\left(\omega_{i} \mid \underline{x}\right)>P\left(\omega_{j} \mid \underline{x}\right) \\
+ & \\
\hline- & \\
& R_{j}: P\left(\omega_{j} \mid \underline{x}\right)>P\left(\omega_{i} \mid \underline{x}\right)
\end{array}
$$

is the surface separating the regions. On the one side is positive (+), on the other is negative (-). It is known as Decision Surface.

* If f (.) monotonically increasing, the rule remains the same if we use:

$$
\underline{x} \rightarrow \omega_{i} \text { if: } f\left(P\left(\omega_{i} \mid \underline{x}\right)\right)>f\left(P\left(\omega_{j} \mid \underline{x}\right)\right) \forall i \neq j
$$

* $g_{i}(\underline{x}) \equiv f\left(P\left(\omega_{i} \mid \underline{x}\right)\right) \quad$ is a discriminant function.
* In general, discriminant functions can be defined independent of the Bayesian rule. They lead to suboptimal solutions, yet, if chosen appropriately, they can be computationally more tractable. Moreover, in practice, they may also lead to better solutions. This, for example, may be case if the nature of the underlying pdf's are unknown.

THE GAUSSIAN DISTRIBUTION

* The one-dimensional case

$$
p(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

where
μ is the mean value, i.e.: $\mu=E[x]=\int_{-\infty}^{+\infty} x p(x) d x$ σ^{2} is the variance, $\quad \sigma^{2}=E\left[(x-E[x])^{2}\right]=\int^{+\infty}(x-\mu)^{2} p(x) d x$

(a)

(b)

* The Multivariate (Multidimensional) case:

$$
p(\underline{x})=\frac{1}{(2 \pi)^{\frac{\ell}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\underline{x}-\underline{\mu})^{T} \Sigma^{-1}(\underline{x}-\underline{\mu})\right)
$$

where $\underline{\mu}$ is the mean value, $\underline{\mu}=E[\underline{x}]$
and Σ is known s the covariance matrix and it is defined as:

$$
\Sigma=E\left[(\underline{x}-\underline{\mu})(\underline{x}-\underline{\mu})^{T}\right]
$$

* An example: The two-dimensional case:

$$
\begin{aligned}
& p(\underline{x})=p\left(x_{1}, x_{2}\right)=\frac{1}{\left.(2 \pi) \Sigma \Sigma\right|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}\left[x_{1}-\mu_{1}, x_{2}-\mu_{2}\right] \Sigma^{-1}\left[\begin{array}{l}
x_{1}-\mu_{1} \\
x_{2}-\mu_{2}
\end{array}\right]\right) \\
& \underline{\mu}=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]=\left[\begin{array}{c}
E\left[x_{1}\right] \\
E\left[x_{2}\right]
\end{array}\right], \quad \Sigma=E\left[\left[\begin{array}{c}
x_{1}-\mu_{1} \\
x_{2}-\mu_{2}
\end{array}\right]\left[x_{1}-\mu_{1}, x_{2}-\mu_{2}\right]\right]=\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma \\
\sigma & \sigma_{2}^{2}
\end{array}\right] \\
& \text { where } \quad \sigma=E\left[\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)\right]
\end{aligned}
$$

BAYESIAN CLASSIFIER FOR NORMAL DISTRIBUTIONS

* Multivariate Gaussian pdf

$$
\begin{aligned}
& p\left(\underline{x} \mid \omega_{i}\right)=\frac{1}{(2 \pi)^{\frac{\ell}{2}}\left|\Sigma_{i}\right|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}\left(\underline{x}-\underline{\mu}_{i}\right)^{\mathrm{T}} \Sigma_{i}^{-1}\left(\underline{x}-\underline{\mu}_{i}\right)\right) \\
& \underline{\mu}_{i}=E[\underline{x}] \text { is an } \ell \times 1 \text { vector, for } \underline{x} \in \omega_{i} \\
& \Sigma_{i}=E\left[\left(\underline{x}-\underline{\mu}_{i}\right)\left(\underline{x}-\underline{\mu}_{i}\right)^{\mathrm{T}}\right]
\end{aligned}
$$

is the $\ell \times \ell$ covariance matrix.

* $\ln (\cdot)$ is monotonic. Define:

$$
\begin{aligned}
& >g_{i}(\underline{x})=\ln \left(p\left(\underline{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)\right)= \\
& \ln p\left(\underline{x} \mid \omega_{i}\right)+\ln P\left(\omega_{i}\right) \\
& > \\
& g_{i}(\underline{x})=-\frac{1}{2}\left(\underline{x}-\underline{\mu}_{i}\right)^{T} \Sigma_{i}^{-1}\left(\underline{x}-\underline{\mu}_{i}\right)+\ln P\left(\omega_{i}\right)+C_{i} \\
& C_{i}=-\left(\frac{\ell}{2}\right) \ln 2 \pi-\left(\frac{1}{2}\right) \ln \left|\Sigma_{i}\right| \\
& > \\
& \text { Example: } \quad \Sigma_{i}=\left(\begin{array}{cc}
\sigma^{2} & 0 \\
0 & \sigma^{2}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
> & g_{i}(\underline{x})=-\frac{1}{2 \sigma^{2}}\left(x_{1}^{2}+x_{2}^{2}\right)+\frac{1}{\sigma^{2}}\left(\mu_{i 1} x_{1}+\mu_{i 2} x_{2}\right) \\
& -\frac{1}{2 \sigma^{2}}\left(\mu_{i 1}^{2}+\mu_{i 2}^{2}\right)+\ln \left(P \omega_{i}\right)+C_{i}
\end{aligned}
$$

That is, $g_{i}(x)$ is quadratic and the surfaces

$$
g_{i}(\underline{x})-g_{j}(\underline{x})=0
$$

quadrics, ellipsoids, parabolas, hyperbolas, pairs of lines.

* Example 1:

* Example 2:

* Decision Hyperplanes
$>$ Quadratic terms: $\underline{x}^{T} \sum_{i}^{-1} \underline{x}$

If ALL $\Sigma_{i}=\Sigma$ (the same) the quadratic terms are not of interest. They are not involved in comparisons. Then, equivalently, we can write:

$$
\begin{aligned}
& g_{i}(\underline{x})=\underline{w}_{i}^{T} \underline{x}+w_{i o} \\
& \underline{w}_{i}=\Sigma^{-1} \underline{\mu}_{i} \\
& w_{i 0}=\ln P\left(\omega_{i}\right)-\frac{1}{2} \underline{\mu}^{T}{ }_{i} \Sigma^{-1} \underline{\mu}_{i}
\end{aligned}
$$

Discriminant functions are LINEAR.
> Let in addition:

$$
\begin{aligned}
\Sigma & =\sigma^{2} I . \text { Then } \\
g_{i}(\underline{x}) & =\frac{1}{\sigma^{2}} \underline{\mu}_{i}^{T} \underline{x}+w_{i 0} \\
g_{i j}(\underline{x}) & =g_{i}(\underline{x})-g_{j}(\underline{x})=0 \\
& =\underline{w}^{T}\left(\underline{x}-\underline{x}_{o}\right) \\
\underline{w} & =\underline{\mu}_{i}-\underline{\mu}_{j}, \\
\underline{x}_{o} & =\frac{1}{2}\left(\underline{\mu}_{i}+\underline{\mu}_{j}\right)-\sigma^{2} \ln \frac{P\left(\omega_{i}\right)}{P\left(\omega_{j}\right)} \frac{\underline{\mu}_{i}-\underline{\mu}_{j}}{\left\|\underline{\mu}_{i}-\underline{\mu}_{j}\right\|^{2}}
\end{aligned}
$$

$>$ Remark :

- If $p\left(\omega_{1}\right)=p\left(\omega_{2}\right)$, then $\underline{x}_{0}=\frac{1}{2}\left(\underline{\mu}_{1}+\underline{\mu}_{2}\right)$

- If $p\left(\omega_{1}\right) \neq p\left(\omega_{2}\right)$, the linear classifier moves towards the class with the smaller probability

$>$ Nondiagonal: $\quad \Sigma \neq \sigma^{2} I$

$$
\begin{aligned}
& \text { - } g_{i j}(\underline{x})=\underline{w}^{T}\left(\underline{x}-\underline{x}_{0}\right)=0 \\
& \text { - } \underline{w}=\sum^{-1}\left(\underline{\mu}_{i}-\underline{\mu}_{j}\right) \\
& \text { - } \underline{x}_{0}=\frac{1}{2}\left(\underline{\mu}_{i}+\underline{\mu}_{j}\right)-\ln \left(\frac{P\left(\omega_{i}\right)}{P\left(\omega_{j}\right)}\right) \frac{\underline{\mu}_{i}-\underline{\mu}_{j}}{\left\|\underline{\mu}_{i}-\underline{\mu}_{j}\right\|_{\Sigma^{-1}}^{2}}
\end{aligned}
$$

where

$$
\|\underline{x}\|_{\Sigma^{-1}} \equiv\left(\underline{x}^{T} \Sigma^{-1} \underline{x}\right)^{\frac{1}{2}}
$$

> Decision hyperplane

$$
\begin{aligned}
& \text { not normal to } \underline{\mu}_{i}-\underline{\mu}_{j} \\
& \text { normal to } \Sigma^{-1}\left(\underline{\mu}_{i}-\underline{\mu}_{j}\right)
\end{aligned}
$$

* Minimum Distance Classifiers
> $P\left(\omega_{i}\right)=\frac{1}{M} \quad$ equiprobable
$\Rightarrow g_{i}(\underline{x})=-\frac{1}{2}\left(\underline{x}-\underline{\mu}_{i}\right)^{T} \Sigma^{-1}\left(\underline{x}-\underline{\mu}_{i}\right)$
$>\Sigma=\sigma^{2} I:$ Assign $\underline{x} \rightarrow \omega_{i}:$
Euclidean Distance: $d_{E} \equiv\left\|\underline{x}-\underline{\mu}_{i}\right\|$ smaller
$>\Sigma \neq \sigma^{2} I:$ Assign $\underline{x} \rightarrow \omega_{i}:$
Mahalanobis Distance: $d_{m}=\left(\left(\underline{x}-\underline{\mu}_{i}\right)^{T} \Sigma^{-1}\left(\underline{x}-\underline{\mu}_{i}\right)\right)^{\frac{1}{2}}$ smaller

Example:

Given $\omega_{1}, \omega_{2}: P\left(\omega_{1}\right)=P\left(\omega_{2}\right)$ and $p\left(\underline{x} \mid \omega_{1}\right)=N\left(\underline{\mu}_{1}, \Sigma\right)$,
$p\left(\underline{x} \mid \omega_{2}\right)=N\left(\underline{\mu}_{2}, \Sigma\right), \underline{\mu}_{1}=\left[\begin{array}{l}0 \\ 0\end{array}\right], \underline{\mu}_{2}=\left[\begin{array}{l}3 \\ 3\end{array}\right], \Sigma=\left[\begin{array}{ll}1.1 & 0.3 \\ 0.3 & 1.9\end{array}\right]$
classify the vector $\underline{x}=\left[\begin{array}{l}1.0 \\ 2.2\end{array}\right]$ using Bayesian classification :

- $\Sigma^{-1}=\left[\begin{array}{cc}0.95 & -0.15 \\ -0.15 & 0.55\end{array}\right]$
- Compute Mahalanobis d_{m} from $\mu_{1}, \mu_{2}: d^{2}{ }_{m, 1}=\left[\begin{array}{ll}1.0 & 2.2\end{array}\right]$

$$
\Sigma^{-1}\left[\begin{array}{l}
1.0 \\
2.2
\end{array}\right]=2.952, d^{2}{ }_{m, 2}=\left[\begin{array}{ll}
-2.0, & -0.8
\end{array}\right] \Sigma^{-1}\left[\begin{array}{l}
-2.0 \\
-0.8
\end{array}\right]=3.672
$$

- Classify $\underline{x} \rightarrow \omega_{1}$. Observe that $d_{E, 2}<d_{E, 1}$

ESTIMATION OF UNKNOWN PROBABILITY DENSITY FUNCTIONS

* Maximum Likelihood

Let $\underline{x}_{1}, \underline{x}_{2}, \ldots ., \underline{x}_{N}$ known and independent Let $p(\underline{x})$ known within an unknown vector parameter $\underline{\theta}: p(\underline{x}) \equiv p(\underline{x} ; \underline{\theta})$
> $X=\left\{\underline{x}_{1}, \underline{x}_{2}, \ldots \underline{x}_{N}\right\}$
$>p(X ; \underline{\theta}) \equiv p\left(\underline{x}_{1}, \underline{x}_{2}, \ldots \underline{x}_{N} ; \underline{\theta}\right)$
$=\prod_{k=1}^{N} p\left(\underline{x}_{k} ; \underline{\theta}\right)$
which is known as the Likelihood of $\underline{\theta}$ w.r. to X
The method:
$>\underline{\hat{\theta}}_{\mathrm{ML}}: \arg \max _{\underline{\theta}} \prod_{k=1}^{N} p\left(\underline{x}_{k} ; \underline{\theta}\right)$
> $L(\underline{\theta}) \equiv \ln p(X ; \underline{\theta})=\sum_{k=1}^{N} \ln p\left(\underline{x}_{k} ; \underline{\theta}\right)$
$>\underline{\theta}_{M L}: \frac{\partial L(\underline{\theta})}{\partial(\underline{\theta})}=\sum_{k=1}^{N} \frac{1}{p\left(\underline{x}_{k} ; \underline{\theta}\right)} \frac{\partial p(\underline{x} k ; \underline{\theta})}{\partial(\underline{\theta})}=\underline{0}$

If, indeed, there is a $\underline{\theta}_{0}$ such that

$$
\begin{aligned}
& p(\underline{x})=p\left(\underline{x} ; \underline{\theta}_{0}\right), \text { then } \\
& \lim _{\mathrm{N} \rightarrow \infty} E\left[\underline{\hat{\theta}}_{M L}\right]=\underline{\theta}_{0} \\
& \lim _{\mathrm{N} \rightarrow \infty} E\left\|\underline{\hat{\theta}}_{M L}-\underline{\theta}_{0}\right\|^{2}=0
\end{aligned}
$$

Asymptotically unbiased and consistent

* Example:

$p(\underline{x}): N(\underline{\mu}, \Sigma): \underline{\mu}$ unknown, $\underline{x}_{1}, \underline{x}_{2}, \ldots, \underline{x}_{N} \quad p\left(\underline{x}_{k}\right) \equiv p\left(\underline{x}_{k} ; \underline{\mu}\right)$
$L(\underline{\mu})=\ln \prod_{k=1}^{N} p\left(\underline{x}_{k} ; \underline{\mu}\right)=C-\frac{1}{2} \sum_{k=1}^{N}\left(\underline{x}_{k}-\underline{\mu}\right)^{T} \Sigma^{-1}\left(\underline{x}_{k}-\underline{\mu}\right)$
$p\left(\underline{x}_{k} ; \underline{\mu}\right)=\frac{1}{(2 \pi)^{\frac{l}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}\left(\underline{x}_{k}-\underline{\mu}\right)^{T} \Sigma^{-1}\left(\underline{x}_{k}-\underline{\mu}\right)\right)$
$\frac{\partial L(\underline{\mu})}{\partial \underline{\mu}} \equiv\left[\begin{array}{c}\frac{\partial L}{\partial \mu_{1}} \\ \cdot \\ \cdot \\ \dot{\partial L} \\ \frac{\partial \mu_{l}}{}\end{array}\right]=\sum_{k=1}^{N} \Sigma^{-1}\left(\underline{x}_{k}-\underline{\mu}\right)=\underline{0} \Rightarrow \underline{\mu}_{M L}=\frac{1}{N} \sum_{k=1}^{N} \underline{x}_{k}$
Remember: if $A=A^{T} \Rightarrow \frac{\partial\left(\underline{\alpha}^{T} A \underline{\alpha}\right)}{\partial \underline{\alpha}}=2 A \underline{\alpha}$

* Maximum a-posteriori Probability Estimation
$>$ In ML method, $\underline{\theta}$ was considered as a parameter
$>$ Here we shall look at $\underline{\theta}$ as a random vector described by a pdf $p(\underline{\theta})$, assumed to be known
> Given

$$
X=\left\{\underline{x}_{1}, \underline{x}_{2}, \ldots, \underline{x}_{N}\right\}
$$

Compute the maximum of

$$
p(\underline{\theta} \mid X)
$$

>From Bayes theorem

$$
\begin{aligned}
& p(\underline{\theta}) p(X \mid \underline{\theta})=p(X) p(\underline{\theta} \mid X) \text { or } \\
& p(\underline{\theta} \mid X)=\frac{p(\underline{\theta}) p(X \mid \underline{\theta})}{p(X)}
\end{aligned}
$$

> The method:

$$
\begin{aligned}
& \underline{\hat{\theta}}_{M A P}=\arg \max _{\underline{\theta}} p(\underline{\theta} \mid X) \text { or } \\
& \underline{\hat{\theta}}_{M A P}: \frac{\partial}{\partial \underline{\theta}}(P(\underline{\theta}) p(X \mid \underline{\theta}))
\end{aligned}
$$

If $p(\underline{\theta})$ is uniform or broad enough $\underline{\hat{\theta}}_{M A P} \cong \underline{\theta}_{M L}$

* Mixture Models

$$
\begin{aligned}
p(\underline{x}) & =\sum_{j=1}^{J} p(\underline{x} \mid j) P_{j} \\
\sum_{j=1}^{M} P_{j} & =1, \int_{\underline{x}} p(\underline{x} \mid j) d \underline{x}=1
\end{aligned}
$$

$>$ Assume parametric modeling, i.e., $p(\underline{x} \mid j ; \underline{\theta})$
$>$ The goal is to estimate $\underline{\theta}$ and $P_{1}, P_{2}, \ldots, P_{J}$ given a set $X=\left\{\underline{x}_{1}, \underline{x}_{2}, \ldots, \underline{x}_{N}\right\}$
$>$ Why not ML? As before?

$$
\max _{\underline{\theta}, P_{1}, \ldots, P_{J}} \prod_{k=1}^{N} p\left(\underline{x}_{k} ; \underline{\theta}, P_{1}, \ldots, P_{J}\right)
$$

$>$ This is a nonlinear problem due to the missing label information. This is a typical problem with an incomplete data set.
$>$ The Expectation-Maximisation (EM) algorithm.

- General formulation
- $\quad \underline{y}$ the complete data set $\underline{y} \in Y \subseteq R^{m}$, with $p_{\underline{y}}(\underline{y} ; \underline{\theta})$, which are not observed directly.

We observe

$$
\underline{x}=g(\underline{y}) \in X_{o b} \subseteq R^{l}, l<m \text { with } p_{\underline{x}}(\underline{x} ; \underline{\theta}),
$$

a many to one transformation

- Let $\quad Y(\underline{x}) \subseteq Y$ all $\underline{y}^{\prime} s \rightarrow$ to a specific \underline{x}

$$
p_{\underline{x}}(\underline{x} ; \underline{\theta})=\int_{Y(\underline{x})} p_{\underline{y}}(\underline{y} ; \underline{\theta}) d \underline{y}
$$

- What we need is to compute

$$
\hat{\theta}_{M L}: \sum_{k} \frac{\partial \ln \left(p_{\underline{y}}(\underline{y} ; \underline{\theta})\right)}{\partial \underline{\theta}}=\underline{0}
$$

- But y_{k} 's are not observed. Here comes the EM. Maximize the expectation of the loglikelihood conditioned on the observed samples and the current iteration estimate of $\underline{\theta}$.
$>$ The algorithm:
- E-step: $\quad Q(\underline{\theta} ; \underline{\theta}(t))=E\left[\sum_{k} \ln \left(p_{\underline{y}}(\underline{y} ; k \mid x ; \underline{\theta}(t))\right]\right.$
- M-step: $\quad \underline{\theta}(t+1): \frac{\partial Q(\underline{\theta} ; \underline{\theta}(t))}{\partial \underline{\theta}}=\underline{0}$
$>$ Application to the mixture modeling problem
- Complete data $\left(\underline{x}_{k}, j_{k}\right), k=1,2, \ldots, N$
- Observed data $\quad \underline{x}_{k}, k=1,2, \ldots, N$
- $p\left(\underline{x}_{k}, j_{k} ; \underline{\theta}\right)=p\left(\underline{x}_{k} \mid j_{k} ; \underline{\theta}\right) P_{j_{k}}$
- Assuming mutual independence

$$
L(\underline{\theta})=\sum_{k=1}^{N} \ln \left(p\left(\underline{x}_{k} \mid j_{k} ; \underline{\theta}\right) P_{j k}\right)
$$

- Unknown parameters

$$
\underline{\Theta}^{T}=\left[\underline{\theta}^{T}, \underline{P}^{T}\right]^{T}, \underline{P}=\left[P_{1}, P_{2}, \ldots, P_{J}\right]^{T}
$$

- E-step

$$
\begin{aligned}
& Q(\underline{\Theta} ; \underline{\Theta}(t))=E\left[\sum_{k=1}^{N} \ln \left(p\left(\underline{x}_{k} \mid j_{k} ; \underline{\theta}\right) P_{j_{k}}\right)\right]=\sum_{k=1}^{N} E[\quad]= \\
& \sum_{k=1}^{N} \sum_{j_{k}=1}^{J} P\left(j_{k} \mid \underline{x}_{k} ; \underline{\Theta}(t)\right) \ln \left(p\left(\underline{x}_{k} \mid j_{k ;}\right) P_{j_{k}}\right)
\end{aligned}
$$

- M-step $\frac{\partial Q}{\partial \underline{\theta}}=\underline{0} \quad \frac{\partial Q}{\partial P_{j_{k}}}=0, \quad j_{k}=1,2, \ldots, J$

$$
P\left(j \mid \underline{x}_{k} ; \Theta(t)\right)=\frac{p\left(\underline{x}_{k} \mid j ; \underline{\Theta}(t)\right) P_{j}}{p\left(\underline{x}_{k} ; \underline{\Theta}(t)\right)} \quad p\left(\underline{x}_{k} ; \underline{\Theta}(t)\right)=\sum_{j=1}^{J} p\left(\underline{x}_{k} \mid j ; \underline{\Theta}(t)\right) P_{j}
$$

* Nonparametric Estimation

(a)

(b)
$>P \approx \frac{k_{N}}{N} \longleftrightarrow \begin{aligned} & k_{N} \text { in } h \\ & N \text { total }\end{aligned}$
> $\hat{p}(x) \equiv \hat{p}(\hat{x})=\frac{1}{h} \frac{k_{N}}{N},|x-\hat{x}| \leq \frac{h}{2} \quad \hat{x}-\frac{h}{2} \quad \hat{x} \quad \hat{x}+\frac{h}{2}$
In words : Place a segment of length h at \hat{x} and count points inside it.
$>$ If $p(x)$ is continuous: $\hat{p}(x) \rightarrow p(x)$ as $N \rightarrow \infty$, if

$$
h_{N} \rightarrow 0, \quad k_{N} \rightarrow \infty, \quad \frac{k_{N}}{N} \rightarrow 0
$$

* Parzen Windows
$>$ Place at \underline{x} a hypercube of length h and count points inside.

> Define

$$
\varphi\left(\underline{x}_{i}\right)=\left\{\begin{array}{cc}
1 & \left|x_{i j}\right| \leq \frac{1}{2} \\
0 & \text { otherwise }
\end{array}\right\}
$$

- That is, it is 1 inside a unit side hypercube centered at 0
- $\hat{p}(\underline{x})=\frac{1}{h^{l}}\left(\frac{1}{N} \sum_{i=1}^{N} \varphi\left(\frac{\underline{x_{i}-\underline{x}}}{h}\right)\right)$
- $\frac{1}{\text { volume }} * \frac{1}{N} *$ number of points inside
an h -side hypercube centered at \underline{x}
- The problem: $p(\underline{x})$ continuous
$\varphi($.$) discontinuous$
- Parzen windows-kernels-potential functions

$$
\varphi(\underline{x}) \text { is smooth }
$$

$$
\varphi(\underline{x}) \geq 0, \int_{r} \varphi(\underline{x}) d \underline{x}=1
$$

$>$ Mean value

$$
E[\hat{p}(\underline{x})]=\frac{1}{h^{l}}\left(\frac{1}{N} \sum_{i=1}^{N} E\left[\varphi\left(\frac{\underline{x_{i}}-\underline{x}}{h}\right)\right]\right)=\int_{\underline{x}^{\prime}} \frac{1}{h^{l}} \varphi\left(\frac{\underline{x^{\prime}}-\underline{x}}{h}\right) p\left(\underline{x}^{\prime}\right) d \underline{x}^{\prime}
$$

- $h \rightarrow 0, \frac{1}{h^{l}} \rightarrow \infty$
- $h \rightarrow 0$ the width of $\varphi\left(\frac{\underline{x^{\prime}-\underline{x}}}{h}\right) \rightarrow 0$
- $\int \frac{1}{h^{l}} \varphi\left(\frac{\underline{x}^{\prime}-\underline{x}}{h}\right) d \underline{x}=1$
- $h \rightarrow 0 \frac{1}{h^{l}} \varphi\left(\frac{\underline{x}}{h}\right) \rightarrow \delta(\underline{x})$

$$
E[\hat{p}(x)]=\int_{\underline{x}^{\prime}} \delta\left(\underline{x}^{\prime}-\underline{x}\right) p\left(\underline{x}^{\prime}\right) d \underline{x}^{\prime}=p(\underline{x})
$$

Hence unbiased in the limit

$>$ Variance

- The smaller the h the higher the variance

$>$ The higher the N the better the accuracy
$>$ If
- $h \rightarrow 0$
- $N \rightarrow \infty$
- $h_{N} \rightarrow \infty$

asymptotically unbiased

$>$ The method

- Remember:

$$
\begin{aligned}
& l_{12} \equiv \frac{p\left(\underline{x} \mid \omega_{1}\right)}{p\left(\underline{x} \mid \omega_{2}\right)}(><) \frac{P\left(\omega_{2}\right)}{P\left(\omega_{1}\right)} \frac{\lambda_{21}-\lambda_{22}}{\lambda_{12}-\lambda_{11}} \equiv \theta \\
& \frac{1}{N_{1} h^{l} \sum_{i=1}^{N_{1}} \varphi\left(\frac{\underline{x}_{i}-\underline{x}}{h}\right)} \\
& \frac{1}{N_{2} h^{l}} \sum_{i=1}^{N_{2}} \varphi\left(\frac{\underline{x}_{i}-\underline{x}}{h}\right)
\end{aligned}
$$

* CURSE OF DIMENSIONALITY

$>$ In all the methods, so far, we saw that the highest the number of points, N, the better the resulting estimate.
$>$ If in the one-dimensional space an interval, filled with N points, is adequate (for good estimation), in the two-dimensional space the corresponding square will require N^{2} and in the ℓ-dimensional space the ℓ dimensional cube will require N^{ℓ} points.
$>$ The exponential increase in the number of necessary points in known as the curse of dimensionality. This is a major problem one is confronted with in high dimensional spaces.

>An Example :

* NAIVE - BAYES CLASSIFIER

$>$ Let $\underline{x} \in \mathfrak{R}^{\ell}$ and the goal is to estimate $p\left(\underline{x} \mid \omega_{i}\right)$ $i=1,2, \ldots, M$. For a "good" estimate of the pdf one would need, say, N^{t} points.
$>$ Assume $x_{1}, x_{2}, \ldots, x_{\ell}$ mutually independent. Then:

$$
p\left(\underline{x} \mid \omega_{i}\right)=\prod_{j=1}^{\ell} p\left(x_{j} \mid \omega_{i}\right)
$$

$>$ In this case, one would require, roughly, N points for each pdf. Thus, a number of points of the order $N \cdot \ell$ would suffice.
$>$ It turns out that the Naïve - Bayes classifier works reasonably well even in cases that violate the independence assumption.

The Nearest Neighbor Rule

$>$ Choose k out of the N training vectors, identify the k nearest ones to \underline{x}
$>$ Out of these k identify k_{i} that belong to class ω_{i}
$>\operatorname{Assign} \underline{x} \rightarrow \omega_{i}: k_{i}>k_{j} \forall i \neq j$
> The simplest version

$$
k=1!!!
$$

$>$ For large N this is not bad. It can be shown that: if P_{B} is the optimal Bayesian error probability, then:

$$
P_{B} \leq P_{N N} \leq P_{B}\left(2-\frac{M}{M-1} P_{B}\right) \leq 2 P_{B}
$$

$>P_{B} \leq P_{k N N} \leq P_{B}+\sqrt{\frac{2 P_{N N}}{k}}$
$>k \rightarrow \infty, P_{k N N} \rightarrow P_{B}$
$>$ For small $P_{B}: P_{N N} \cong 2 P_{B}$

$$
P_{3 N N} \cong P_{B}+3\left(P_{B}\right)^{2}
$$

> An example:

* Voronoi tesselation

BAYESIAN NETWORKS

* Bayes Probability Chain Rule

$$
\begin{gathered}
p\left(x_{1}, x_{2}, \ldots, x_{\ell}\right)=p\left(x_{\ell} \mid x_{\ell-1}, \ldots, x_{1}\right) \cdot p\left(x_{\ell-1} \mid x_{\ell-2}, \ldots, x_{1}\right) \cdot \ldots \\
\ldots \cdot p\left(x_{2} \mid x_{1}\right) \cdot p\left(x_{1}\right)
\end{gathered}
$$

$>$ Assume now that the conditional dependence for each x_{i} is limited to a subset of the features appearing in each of the product terms. That is:

$$
p\left(x_{1}, x_{2}, \ldots, x_{\ell}\right)=p\left(x_{1}\right) \cdot \prod_{i=2}^{\ell} p\left(x_{i} \mid A_{i}\right)
$$

where

$$
A_{i} \subseteq\left\{x_{i-1}, x_{i-2}, \ldots, x_{1}\right\}
$$

$>$ For example, if $\ell=6$, then we could assume:

$$
p\left(x_{6} \mid x_{5}, \ldots, x_{1}\right)=p\left(x_{6} \mid x_{5}, x_{4}\right)
$$

Then:

$$
A_{6}=\left\{x_{5}, x_{4}\right\} \subseteq\left\{x_{5}, \ldots, x_{1}\right\}
$$

> The above is a generalization of the Naïve - Bayes. For the Naïve - Bayes the assumption is:

$$
A_{i}=\emptyset, \text { for } i=1,2, \ldots, \ell
$$

$>$ A graphical way to portray conditional dependencies is given below

$>$ According to this figure we have that:

- x_{6} is conditionally dependent on x_{4}, x_{5}
- x_{5} ○п x_{4}
- x_{4} on x_{1}, x_{2}
- x_{3} on x_{2}
- x_{1}, x_{2} are conditionally independent on other variables.
$>$ For this case:
$p\left(x_{1}, x_{2}, \ldots, x_{6}\right)=p\left(x_{6} \mid x_{5}, x_{4}\right) \cdot p\left(x_{5} \mid x_{4}\right) \cdot p\left(x_{3} \mid x_{2}\right) \cdot p\left(x_{2}\right) \cdot p\left(x_{1}\right)$
> Definition: A Bayesian Network is a directed acyclic graph (DAG) where the nodes correspond to random variables. Each node is associated with a set of conditional probabilities (densities), $p\left(x_{i} \mid A_{i}\right)$, where x_{i} is the variable associated with the node and A_{i} is the set of its parents in the graph.
$>$ A Bayesian Network is specified by:
- The marginal probabilities of its root nodes.
- The conditional probabilities of the non-root nodes, given their parents, for ALL possible values of the involved variables.
$>$ The figure below is an example of a Bayesian Network corresponding to a paradigm from the medical applications field.

> This Bayesian network models conditional dependencies for an example concerning smokers (S), tendencies to develop cancer (C) and heart disease (H), together with variables corresponding to heart ($\mathrm{H} 1, \mathrm{H} 2$) and cancer (C1, C2) medical tests.
$>$ Once a DAG has been constructed, the joint probability can be obtained by multiplying the marginal (root nodes) and the conditional (non-root nodes) probabilities.
$>$ Training: Once a topology is given, probabilities are estimated via the training data set. There are also methods that learn the topology.
>Probability Inference: This is the most common task that Bayesian networks help us to solve efficiently. Given the values of some of the variables in the graph, known as evidence, the goal is to compute the conditional probabilities for some of the other variables, given the evidence.
* Example: Consider the Bayesian network of the figure:

$$
\begin{array}{clll}
P(x 1)=0.60 & P(y 1 \mid x 1)=0.40 & P(z 1 \mid y 1)=0.25 & P(w 1 \mid z 1)=0.45 \\
& P(y 1 \mid x 0)=0.30 & P(z 1 \mid y 0)=0.60 & P(w 1 \mid z 0)=0.30 \\
P(x 0)=0.40 & P(y 0 \mid x 1)=0.60 & P(z 0 \mid y 1)=0.75 & P(w 0 \mid z 1)=0.55 \\
& P(y 0 \mid x 0)=0.70 & P(z 0 \mid y 0)=0.40 & P(w 0 \mid z 0)=0.70 \\
& P(y 1)=0.36 & P(z 1)=0.47 & P(w 1)=0.37 \\
& P(y 0)=0.64 & P(z 0)=0.53 & P(w 0)=0.63
\end{array}
$$

a) If x is measured to be $x=1(x 1)$, compute $P(w=0 \mid x=1)[P(w 0 \mid x 1)]$.
b) If w is measured to be $w=1$ ($w 1$) compute $P(x=0 \mid w=1)$ [$P(x 0 \mid w 1)]$.
$>$ For a), a set of calculations are required that propagate from node x to node w. It turns out that $P(w 0 \mid x 1)=0.63$.
$>$ For b), the propagation is reversed in direction. It turns out that $P(x 0 \mid w 1)=0.4$.
$>$ In general, the required inference information is computed via a combined process of "message passing" among the nodes of the DAG.

* Complexity:
$>$ For singly connected graphs, message passing algorithms amount to a complexity linear in the number of nodes.

