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CHAPTER 2 CHAPTER 2 –– CLASSIFIERS BASED ON CLASSIFIERS BASED ON 

BAYES DECISION THEORYBAYES DECISION THEORY

� Statistical nature of feature vectors

� Assign the pattern represented by feature vector 
to the most probable of the available classes

That is
maximum
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� Computation of a-posteriori probabilities

� Assume known

• a-priori probabilities

•

This is  also known as the likelihood of 
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� The Bayes rule (Μ=2)

where
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� The Bayes classification rule (for two classes M=2)

� Given classify it according to the rule

� Equivalently:  classify according to the rule 

� For equiprobable classes the test becomes
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� Equivalently in words:  Divide space in two regions 

� Probability of error

� Total shaded area

�

� Bayesian classifier is OPTIMAL with respect to 
minimising the classification error probability!!!!
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� Indeed:  Moving the threshold the total shaded 
area INCREASES by the extra “grey” area.
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� The Bayes classification rule for many (M>2) classes:

� Given   classify it to    if:

�Such a choice also minimizes the classification error 
probability

� Minimizing the average risk

� For each wrong decision, a penalty term is assigned since 
some decisions are more sensitive than others
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�For M=2

• Define the loss matrix

• penalty term for deciding class        ,
although the pattern belongs to       ,  etc.

�Risk with respect to
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�Risk with respect to 

�

�Average risk

2ω

xdxpxdxpr
RR

)()( 2222212

21

ωλωλ ∫∫ +=

)()( 2211 ωω PrPrr +=

⇒ Probabilities of wrong decisions, 
weighted by the penalty terms



11

� Choose     and      so that r is minimized

� Then assign      to       if 

� Equivalently:

assign x in if

:  likelihood ratio
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� An example:
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�Then the threshold value is:

�Threshold    for minimum r
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Thus     moves to the left of 
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DISCRIMINANT FUNCTIONS DISCRIMINANT FUNCTIONS 

DECISION SURFACESDECISION SURFACES

� If are contiguous:

is the surface separating the regions.  On the one 
side is positive (+), on the other is negative (-). It is 
known as  Decision Surface.
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� If f (.) monotonically increasing, the rule remains the same if we use:

� is a discriminant function.

� In general, discriminant functions can be defined independent of the 
Bayesian rule.  They lead to suboptimal solutions, yet, if chosen 
appropriately, they can be computationally more tractable. 
Moreover, in practice, they may also lead to better solutions. This, 
for example,  may be case if the nature of the underlying pdf’s are 
unknown.  
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THE GAUSSIAN DISTRIBUTIONTHE GAUSSIAN DISTRIBUTION

� The one-dimensional case

where

is the mean value, i.e.: 

is the variance, 
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� The Multivariate (Multidimensional) case:

where is the mean value, 

and         is known s the covariance matrix and it is defined as: 

� An example: The two-dimensional case:
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BAYESIAN CLASSIFIER FOR NORMAL BAYESIAN CLASSIFIER FOR NORMAL 

DISTRIBUTIONSDISTRIBUTIONS

� Multivariate Gaussian pdf

is  the         covariance matrix.
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� is monotonic.  Define:

�

�

� Example:
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�

That is, is quadratic and the surfaces  

quadrics, ellipsoids, parabolas, hyperbolas, 
pairs of lines.

iiii

iii

CP

xxxxxg

+++−

+++−=

)ln()(
2

1

)(
1

)(
2

1
)(

2

2

2

12

22112

2

2

2

12

ωµµ
σ

µµ
σσ

)(xgi

0)()( =− xgxg ji



� Example 1:

� Example 2:
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� Decision Hyperplanes

�Quadratic terms:

If ALL (the same) the quadratic 
terms are not of interest.  They are not 
involved in comparisons.  Then, equivalently, 
we can write:

Discriminant functions are LINEAR.
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� Let in addition:

•

•

•

• 2
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�Remark :

• If                             , then 
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• If                            , the linear classifier moves towards the 
class with the smaller probability
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�Nondiagonal:

•

•

•

�Decision hyperplane
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� Minimum Distance Classifiers

� equiprobable

�

�

Euclidean Distance:

smaller

�

Mahalanobis Distance:

smaller
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� Maximum Likelihood

�

�

�

�

{ }

:method The

  to w.r. of Likelihood   theasknown  iswhich 

);(

);,...,();(

,...,

);()(  : parameter 

ctorunknown vean in known with )(Let 

tindependen andknown   ,...., ,Let 

1

21

21

21

X

xp

xxxpXp

xxxX

xpxp

xp

xxx

k

N

k

N

N

N

θ

θ

θθ

θθ

=
Π=

≡

=

≡

ESTIMATION OF UNKNOWN PROBABILITY 

DENSITY FUNCTIONS



33

�

�

� 0
)(

)(

)(

1

)(

)(
  :ˆ

);(ln);(ln)(

);(maxarg  :ˆ

; 

; 
1

1

1
ML

=
∂

∂
Σ=

∂
∂

Σ=≡

Π

=

=

=

θ
θ

θθ
θ

θ

θθθ

θθ
θ

k

k

N

k
ML

k

N

k

k

Ν

k

xp

xp

L

xpXpL

xp



34



35

Asymptotically unbiased and consistent
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� Example:
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� Maximum a-posteriori Probability Estimation

� In ML method, θ was considered as a parameter

�Here we shall look at θ as a random vector
described by a pdf p(θ), assumed to be known

�Given

Compute the maximum of 

�From Bayes theorem
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�The method:
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� Mixture Models

�

� Assume parametric modeling, i.e.,

�The goal is to estimate

given a set

�Why not ML?  As before?
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�This is a nonlinear problem due to the missing 
label information.  This is a typical problem with 
an incomplete data set.

�The Expectation-Maximisation (EM) algorithm.

• General formulation

–

which are not observed directly.

We observe 

a many to one transformation
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• Let 

• What we need is to compute

• But         are not observed.  Here comes the EM.  
Maximize the expectation of the loglikelihood
conditioned on the observed samples and the  
current iteration estimate of 
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�The algorithm:

• E-step:

• M-step:

�Application to the mixture modeling problem

• Complete data

• Observed data

•

• Assuming mutual independence
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• Unknown parameters

• E-step

• M-step
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� Nonparametric Estimation

�

�

In words : Place a segment of length h at     
and count points inside it.

� If        is continuous:                  as            , if 
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� Parzen Windows

� Place at    a hypercube of length     and count 
points inside.

x h
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� Define

• That is, it is 1 inside a unit side hypercube centered 
at 0

•

•

• The problem:

• Parzen windows-kernels-potential functions
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�Mean value

•

•

•

•

Hence  unbiased in the limit
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�Variance

• The smaller the h the higher the variance

h=0.1, N=1000 h=0.8, N=1000



50

h=0.1, N=10000

�The higher the N the better the accuracy
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� If

•

•

•

asymptotically unbiased

�The method

• Remember:

•
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� CURSE OF DIMENSIONALITY

� In all the methods, so far, we saw that the highest
the number of points, N, the better the resulting 
estimate.

� If in the one-dimensional space an interval, filled 
with N points, is adequate (for good estimation), in 
the two-dimensional space the corresponding square 
will require N2 and in the ℓ-dimensional space the ℓ-
dimensional cube will require Nℓ points.

�The exponential increase in the number of necessary 
points in known as the curse of dimensionality. This 
is a major problem one is confronted with in high 
dimensional spaces.



�An Example :
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� NAIVE – BAYES CLASSIFIER

�Let           and the goal is to estimate 

i = 1, 2, …, M. For a “good” estimate of the pdf
one would need, say, Nℓ points. 

�Assume x1, x2 ,…, xℓ mutually independent. Then:

� In this case, one would require, roughly, N points 
for each pdf. Thus, a number of points of the 
order N·ℓ would suffice.

� It turns out that the Naïve – Bayes classifier 
works reasonably well even in cases that violate 
the independence assumption.
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� The Nearest Neighbor Rule

� Choose k out of the N training vectors, identify the k
nearest ones to x

� Out of these k identify ki that belong to class ωi

�

� The simplest version

k=1 !!!

� For large N this is not bad.  It can be shown that: 
if PB is the optimal Bayesian error probability, then:
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�

�

� For small PB:

� An example: 
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� Voronoi tesselation
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� Bayes Probability Chain Rule

�Assume now that the conditional dependence for 
each xi is limited to a subset of the features 
appearing in each of the product terms. That is:

where

BAYESIAN NETWORKS

)()|(...                     

...),...,|(),...,|(),...,,(

112

1211121

xpxxp

xxxpxxxpxxxp

⋅⋅

⋅⋅= −−− lllll

∏
=

⋅=
l

l

2

121 )|()(),...,,(
i

ii Axpxpxxxp

{ }121  ,..., , xxxA iii −−⊆



59

�For example, if ℓ=6, then we could assume:

Then:

�The above is a generalization of the Naïve – Bayes. 
For the Naïve – Bayes the assumption is:

Ai = Ø, for i=1, 2, …, ℓ
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�A graphical way to portray conditional dependencies
is given below 

�According to this figure we 
have that:

• x6 is conditionally dependent on 
x4, x5

• x5 on x4

• x4 on x1, x2

• x3 on x2

• x1, x2 are conditionally
independent on other variables.

�For this case:
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� Bayesian Networks

�Definition: A Bayesian Network is a directed acyclic
graph (DAG) where the nodes correspond to random 
variables. Each node is associated with a set of 
conditional probabilities (densities), p(xi|Ai), where xi

is the variable associated with the node and Ai is the 
set of its parents in the graph.

�A Bayesian Network is specified by:

• The marginal probabilities of its root nodes.

• The conditional probabilities of the non-root nodes, 
given their parents, for ALL possible values of the 
involved variables.
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�The figure below is an example of a Bayesian 
Network corresponding to a paradigm from the 
medical applications field.

�This Bayesian network 
models conditional 
dependencies for an 
example concerning 
smokers (S), 
tendencies to develop 
cancer (C) and heart 
disease (H), together 
with variables 
corresponding to heart 
(H1, H2) and cancer 
(C1, C2) medical tests.
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�Once a DAG has been constructed, the joint 
probability can be obtained by multiplying the 
marginal (root nodes) and the conditional (non-root 
nodes) probabilities.

�Training: Once a topology is given, probabilities are 
estimated via the training data set. There are also 
methods that learn the topology.

�Probability Inference: This is the most common task 
that Bayesian networks help us to solve efficiently. 
Given the values of some of the variables in the 
graph, known as evidence, the goal is to compute 
the conditional probabilities for some of the other 
variables, given the evidence.
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� Example:  Consider the Bayesian network of the 
figure:

a) If x is measured to be x=1 (x1), compute 
P(w=0|x=1) [P(w0|x1)].

b) If w is measured to be w=1 (w1) compute 
P(x=0|w=1) [ P(x0|w1)].
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�For a), a set of calculations are required that 

propagate from node x to node w. It turns out that 

P(w0|x1) = 0.63.

�For b), the propagation is reversed in direction. It 
turns out that P(x0|w1) = 0.4.

� In general, the required inference information is 
computed via a combined process of “message 
passing” among the nodes of the DAG.

�Complexity:

�For singly connected graphs, message passing 
algorithms amount to a complexity linear in the 
number of nodes.


