CHAPTER 2 — CLASSIFIERS BASED ON
BAYES DECISION THEORY

+» Statistical nature of feature vectors

T
= [x],xz,..., x,]

< Assign the pattern represented by feature vector X
to the most probable of the available classes

@, @ 5,y @y,

Thatis X — @, :P(wi‘g)
maximum



% Computation of a-posteriori probabilities
» Assume known
e a-priori probabilities

P(w),P(w,)...,P(w,,)
. p({‘a)l.),i =\,2..., M.

This is also known as the likelihood of

X wr. lo ..



> The Bayes rule (M=2)

p(X)P(w,|x) = p(x|w,)P(w,) =

A p(l‘a)i)P(a)i)
p(x)

P(w;|x)

where !
A E0) = Z p(xlo,)P(w,)



% The Bayes classification rule (for two classes M=2)
> Given X classify it according to the rule

If P(w)x) > P(@,)x) x >

If P(w,|x) > P(w]x) x = o,

> Equivalently: classify X according to the rule

p(x|o)P(@,)(><) p(x|w,)P(®,)

» For equiprobable classes the test becomes

p(x|o)(><) p(x|w,)




p(x|w)

_ p(x|lw,)

Ly

R(—> w) and R (— w,)



“ Equivalently in words: Divide space in two regions

If xeR = xmm o,

If xeR, = x1n o,

s Probability of error
> Total shaded area

1} 17
>P :Ej;op(x‘a)z)dx+§)£p(x‘a)l)dx

s Bayesian classifier is OPTIMAL with respect to
minimising the classification error probability!!!!



p(x|w)

Lo

>

» Indeed: Moving the threshold the total shaded
area INCREASES by the extra “grey” area.



% The Bayes classification rule for many (M>2) classes:
» Given x classify it to w;if:

P(w,

x)> P(w,|x) Vj#i

> Such a choice also minimizes the classification error
probability

 Minimizing the average risk
» For each wrong decision, a penalty term is assigned since
some decisions are more sensitive than others



> For M=2
e Define the loss matrix

L=(

A ﬁqz)

2’21 2’22

. Ay, penalty term for deciding class w, |,
although the pattern belongs to @, , etc.

> Risk with respect to o,

= | Pja)dx+

ﬂ12jp®@)d5




> Risk with respect to @,

(= Ay J‘p()_c‘a)z)d)_c t+ Ay, jp(ﬁ‘wz)dic
R, R,

> — Probabilities of wrong decisions,
weighted by the penalty terms

> Average risk
r=nP(w)+nP(o,)
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<+ Choose R, and R, so that r is minimized

< Then assign X to w, if
0, =4, p(x@) P(@) + Ay p(He ) P(,) <

0, = A, p(X@)P(@) + Ay, (X, ) P(,)

s Equivalently:
assign x in o,(w,) if

p(ﬁ‘a)l) > (<) P(w,) A, =4,
p(ﬁ‘wz) P(w) 4, -4,

512 . likelihood ratio

612
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o If 1
P(wl):P(wz)ZEandﬂn =4, =0

x> o, if P(xj@)> P(xjw,) 2

)112

x> w, 1t P(xlow,)> P(x|o, 7
21

if 4,, = 4,, = Minimum classification

error probability
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p(d,) = %exp(—xﬂ

p(a,) = %exp(_@_l)z)
1
P(@,) = P(w,) =5

0 0.5
e —
(1.0 0 j
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» Then the threshold value is:
x, for minimum P, :

e exp(—xz) = exp(—(x— 1)2) =

Xy =—

2

» Threshold x, for minimum r

N

X, exp(—x°) =2exp(—(x—1)*) =
Ay (1-/n2) <l
2 2

14



p(x|w)

Thus x , moves to the left of ;—
(WHY?)
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DISCRIMINANT FUNCTIONS
DECISION SURFACES

)-A@)=0

% If R,, R; are contiguous: g(x)=A@

R : P(w,

x) > P(w,|x)

- g(x)=0
R;: P(w,]x) > P(w)]x)

is the surface separating the regions. On the one
side is positive (+), on the other is negative (-). It is
known as Decision Surface.
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% If /(.) monotonically increasing, the rule remains the same if we use:

x—aif: f(Aax)> f(Awlx) Vi+;

X xX)=f(P (0)1- X)) is a discriminant function.

% In general, discriminant functions can be defined independent of the
Bayesian rule. They lead to suboptimal solutions, yet, if chosen
appropriately, they can be computationally more tractable.
Moreover, in practice, they may also lead to better solutions. This,
for example, may be case if the nature of the underlying pdf’s are
unknown.
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THE GAUSSIAN DISTRIBUTION

%+ The one-dimensional case

I G =
X) = cX o3
p(x) e p[ e j
where e

1 is the mean value, i.e.: 4= E|x]= | xp (x)dx

—©9)

oisthe variance, o = E|(x - E[x]?]= [(x - p)* p(x)dx

Plx)k plx) &

(@) (b) L



% The Multivariate (Multidimensional) case:

p(x)= 1[ eXp(—l(i—g)TZI(z—g)j

(27[)5‘2‘% :

where 4 isthe meanvalue, y4 =£ [g]

and X is known s the covariance matrix and it is defined as:
X E( ) ) 5]

The two-dimensional case:

1 I s
= p(xl’xz): T €XPp _5[)61—/11,)62—/12]2 1|: 1 IUI:D
(272')(2‘2 owiet o

I I o) SV B

where O E[(xl T ﬂ1)(x2 L luz)] 19




BAYESIAN CLASSIFIER FOR NORMAL
DISTRIBUTIONS

% Multivariate Gaussian pdf

p(¥w,) = : : eXp(—%(z—gi)TZil (z—g,.)j

(27)2[Z,]2

M, = E|x] is an ¢ x1 vector, for x € o,

S, = E|(x— g )ax—p)']

is the /x ¢ covariance matrix.
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R

* In(-) is monotonic. Define:

) (J_C) 5 111(1?(1 wi)P(wi)) -
In p(xj@.)+In P(@,)

1 '
> g(x)= _E(J_C_ﬁi)Tzil(J_C_ﬁi)+1nP(a)i)+Ci

1 1
C.=—()n27—()In
; (2) (2)

=50
Zi :(G 2]
0 o o

Zi




|
2 2

> g(x)=- ('xl T X, ) "‘ (ﬂnxl + 4, X,)

2 0) (luzl+luz2)+ln(Pa))+C

That is, g,(x) is quadratic and the surfaces
g (x)—g;(x)=0

quadrics, ellipsoids, parabolas, hyperbolas,

pairs of lines.
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s Example 1:

% Example 2:

va. L.

oz

Ay L — T T

—

iy Wy
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¢ Decision Hyperplanes

T N
> Quadratic terms: X 2 ' X

— l

IfALL 2. = 2 (the same) the quadratic
terms are not of interest. They are not
involved in comparisons. Then, equivalently,
we can write:

%
g(X)=w, x+w,

w=X"u

—1

—1

|
W, = hlP((()l.)—EETiZ—l/J

=7

Discriminant functions are LINEAR.
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> Let in addition:
- > =o*l. Then
1
g, (x) :—2£j§+wi0
o

¢ g(¥)=g1x)-g;(x)=0

=w (x-x,)
§ W= —p
1 %
f _O_E(ﬁi ﬁ])_

25



1
)=p@,) ,then x, =g, + 1)

> Remark :
e If p(o




o If p(a)1 ) # p(a)z) , the linear classifier moves towards the
class with the smaller probability

B

x
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> Nondiagonal: > # o’/
T
e g ()=w (x—x,)=0

o w=X(u-p)

—1

1 P(w. WL
e x,=—(u +u)-—in( (’)) .
iy S P(w,) -
S TR
where
|
HE‘ gl = (ETZ_I x)*

not normal to M, = ﬁj

> Decision hyperplane <

normal to Z_l(ﬁi _ﬁj)
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» Minimum Distance Classifiers

]
> P(w.)=—  equiprobable
(w,) 7 quip
Y 1 (ST By SR
> gi(z)——z(z—gi) X (x—p)

> T=0"1: Assignx - o, :

Euclidean Distance: d, = Hg—yi
smaller

> Y20l Assignx - , :

|
Mahalanobis Distance: d,, =((x—u) 2" (x—x )y
smaller

29



()

(b)
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Given w,, o, : P(w,) = P(w,) and p()_c‘a)l) =N(u,2),

0 3 1.1 0.3
p(xl,)=N(y,,2), u, :M» H, :M’ z{03 19}

1.0
classify the vector x = L 2} using Bayesian classification :

i _[ 095 -0.15
o =
—0.15 0.55

e Compute Mahalanobis d  from g, i1, : d’m; =[1.0, 2.2]

1.0 s e
2 [72952,4d w2 =[-2.0, —08]Z g |=3672

o (lassity x — w,. Observethatd,, <d,,
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ESTIMATION OF UNKNOWN PROBABILITY

DENSITY FUNCTIONS

» Maximum Likelihood

>
>

V VYV

Letx,, x,,...., X, known and independent
Let p(x) known within an unknown vector
parameter 6: p(x)= p(x;0)

o= {51952»--{1\7}

p(X;0) = p(x),x,,..Xy:0)

N
=11 p(x,;0)

which 1s known as the Likelihood of & w.r.to X
The method :

32



4 N
Opy @ arg e {_Il p(x,;0)

N
L(0) =In p(X:0) = X In p(x,:0)

O _ Y 1 .0

ML * =0
od) * px,.0) o)

D>

33



p(X;0)

34



If, indeed, there 1s a @, such that
p(x) = p(x;0,),then

I}im L :QML 1= Qo
A 2
Illim k QML _Qo =0

Asymptotically unbiased and consistent

35



p(x): N(u,2): punknown, x,,x,,...xy p(x;)= p(x;u)

N 1 N .
L(ﬁ)zlngp(lk;ﬁ):C_Eka(lk_ﬁ)TZ I(Ek_ﬁ)
1 1 -
p(x,; ) = 7 leXp(—E(zk—g) 2 (x,— 1)
(27)?|2]2
_8_L_
Ot
OL() . SvaLe 15
R e =z2 (Ek_ﬁ):QDEML:ﬁglzk
aL
Ot |

d(a' Ac)
oo

Remember: if A=4" = =2Ax

36



s Maximum a-posteriori Probability Estimation
» In ML method, 8 was considered as a parameter

> Here we shall look at & as a random vector
described by a pdf p(6), assumed to be known

> Given
= {51’52’"-: EN}

Compute the maximum of
p(6|X)
» From Bayes theorem
p(0) p(X|0) = p(X)p(6|X) or

p(0)p(X|0)

0| X)=
AL T 5




> The method:

éMAP ey p(Q‘X) OT

A i
O vap Y (P(Q)p(X‘Q))

If p(#)is uniform or broad enough & el

38



_pX10)

__p(®)

(b)
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*» Mixture Models
J
> p(x)=. p(x/)P,
j=1

M
e e 1 e sl
j=1

X

» Assume parametric modeling, i.e., p(x|/j;6)
» The goal is to estimate 8 and P, P,,..., P,
givenaset X ={x,x,..x,/|

» Why not ML? As before?

N

max Hp(zlmga})laapj)

Q,Pl ..... PJ k:1

40



» This is a nonlinear problem due to the missing
label information. This is a typical problem with
an incomplete data set.

» The Expectation-Maximisation (EM) algorithm.

e General formulation
—  ythecompletedataset y e Y < R™, with 2 (»,0),

which are not observed directly.

We observe
=g(y)eX,,cR,I<m with p (x;0),

a many to one transformation
41



elet Y(x)cVYally's— toaspecificx
p.(x0)= jpl(z; 0)d y
Y (x)

e What we need is to compute

. OMn(p,(y.:0)
Oy : Z é@ =0

k

e But y 's are not observed. Here comes the EM.

Maximize the expectation of the loglikelihood
conditioned on the observed samples and the
current iteration estimate of 6.

42



» The algorithm:
o E-step: Q(Q;Q(f))=E[Zln(pz(xk;Q1X ;0(0))]

o M-step:

o aQ(%ﬁé’(l‘)) i

> Application to the mixture modeling problem
e Complete data (x,,/,),k=12,..,N

e Observed data x,,k=12,...N

o p(x,,j;0)= p(zk\jk;Q)ij

e Assuming mutual independence

L(O) = X In(p(x,|ji:0)Py)

43



e Unknown parameters
® =[6,P1, P=[R,B, B[

o E-step
0(0:;0(t)) = Ezlnw(xk\fk,e)f’ SN

> 3 [P @0 n(pli0)P )

k=1 j.=I
o0 0Q .
Sl EVT = = B
M-step 7 0 0 oP) 0, j. =12,..,
| P8P g o
RO OO ey =5 P(x,;0(1) = ;p(a_ck\ Jj;00)P

44



“ Nonparametric Estimation

O | =

p(x) p(x)
AN
A 11N
20N
(a) ’ (b) }
> k k, in h
P~*X 4
T i <
1 k, M AN
> X = — 2
p(x) = p(x) = T =% i3-S
In words : Place a segment of length # at x
and count points inside it.
> If p(x) is continuous: p(x) —>p(x) as N - o, if
h, =0, k, — o, k—N—>O 45
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» Parzen Windows

> Place at x a hypercube of length % and count

points inside.

46



» Define e {4
1 < =
@(x;) = o AR
|~ otherwise |
e That is, it is 1 inside a unit side hypercube centered
at 0
p X, —x
e P(X)=— —Zco(
o 1 x L number of points inside

volume N
an h -side hypercube centered at x

e The problem: p(x) continuous

¢(.) discontinuous

e Parzen windows-kernels-potential functions
@(x)1s smooth

()20, [p(x)dx=1



> Mean value

[p(0)]=

. jhllco(

ZE (=== j > <o<— —2) p(x')dx’

X'— X

a’x—l
h)

°* h—0 h—ga( )—>§(x)

E[p(x)] = [ 8(x'—0) p(x)dx'= p(x)

Hence

unbiased in the limit

48



> Variance

e The smaller the 4 the higher the variance

h=0.1, N=1000

p (.’L‘) ‘ ||
0.12 | i

0.06 | i R
] 'ﬂ!l \
!

p(x)

0.12 |

0.06

h=0.8, N=1000

10 20 4

(b)

49



p(x)

0.12 ¢

0.06 |

h=0.1, N=10000

Por
’Llfll :'::5 ﬁ;\:JI
Fo S
\ /
[ \/
f \A 7
if W/
J’r.J
|Jlr
/
/
/
F
/
J 1
10
(b)

»The higher the N the better the accuracy



> If
o >0

e N>
* hy > o

asymptotically unbiased

> The method
e Remember:

l, = p(i‘a)l) (><) P(@,) A, — A, -0
p(l‘a)z) P(w,) 4, — 4y,




“» CURSE OF DIMENSIONALITY

> In all the methods, so far, we saw that the highest
the number of points, N, the better the resulting
estimate.

> If in the one-dimensional space an interval, filled
with N points, is adequate (for good estimation), in
the two-dimensional space the corresponding square
will require N? and in the ¢-dimensional space the ¢-
dimensional cube will require N points.

» The exponential increase in the number of necessary
points in known as the curse of dimensionality. This
IS @ major problem one is confronted with in high
dimensional spaces.
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»An Example :

0

02 04 06 08 1

(a)

0.6/
0.4

0.2}

0.8}

=
0

02 04 06 0.8
(b)

1
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“* NAIVE — BAYES CLASSIFIER

> Let x € R’ and the goal is to estimate p(x|®.)

i=1,2,...,M. For a“good” estimate of the pdf
one would need, say, N points.

> Assume x,, x2 WeE g mutuaIIy independent. Then:
x | a) Hp( )

» In this case, one would require, roughly, N points
for each pdf. Thus, a number of points of the
order N-¢ would suffice.

> It turns out that the Naive — Bayes classifier
works reasonably well even in cases that violate
the independence assumption.



% The Nearest Neighbor Rule

» Choose £ out of the N training vectors, identify the &
nearest ones to x

» Out of these £ identify £, that belong to class o,
> Assignx > @, - k; >k, Vi# j

» The simplest version
k=11

» For large N this is not bad. It can be shown that:
if P, is the optimal Bayesian error probability, then:

M
Py < Py SR(Q2-——R)<2P,

55



280
k

S ] e el L

b lle — Capae B e — R

> Forsmall P;: P, =2P,
])3NN = PB +3(PB)2

» An example:



»» Voronoi tesselation

=ed(xx)<d(x,x,)i# j§

57



BAYESIAN NETWORKS
 Bayes Probability Chain Rule

P(X15X55005%) = P(X, | Xy gseesXy) s DXy | Xy g5
e p(X, [ X)) p(x;)

» Assume now that the conditional dependence for
each x; is limited to a subset of the features
appearing in each of the product terms. That is:

/
P, %y0%,) = p(x)- | | (x| 4)
=D
where

Af - {xi—19 xz‘—zﬂ'“axl}

58



» For example, if ~6, then we could assume:
P(Xg | Xs5eensX)) = P(Xg | X5, %,)
Then:

A = {x5>x4}§ {‘XS?‘“?‘XI}

» The above is a generalization of the Naive — Bayes.
For the Naive — Bayes the assumption is:

G o=l e

59



> A graphical way to portray conditional dependencies
IS given below

L1 Lo > According to this figure we
® have that:

* x, is conditionally dependent on
LS

* X;0NXx,
Ly ‘ L3 & NON ey
* x;0Nx,
o * x;, X, are conditionally
5 independent on other variables.

2@

» For this case:
DX, Xy 50X ) = P(Xg | X5, %) p(Xs | X,) - PO | X,) - p(x,) - p(x,)
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s Bayesian Networks

> Definition: A Bayesian Network is a directed acyclic
graph (DAG) where the nodes correspond to random
variables. Each node is associated with a set of
conditional probabilities (densities), p(x|4,), where x;
is the variable associated with the node and 4. is the
set of its parents in the graph.

> A Bayesian Network is specified by:
e The marginal probabilities of its root nodes.

e The conditional probabilities of the non-root nodes,

given their parents, for ALL possible values of the
involved variables.
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» The figure below is an example of a Bayesian
Network corresponding to a paradigm from the
medical applications field.

P(S)
True | False
040 | 0.60
P(H|S) P P(CIS)
S | True | False I' _S_/\ S True | False
True | 0.40 | 0.60 / \ True | 0.20 | 0.80
False| 0.15 | 085 [Fakse| O.11 | 0.89
x
I“‘:v»H/’I \®
— \
f‘( \ ’/ x'\.h
\ '
P(H1[H) \ P(C1|C) \
H | True @ False :'!__ C | True | False )
True | 095 | 005 | (] HZK\‘:- True | 0.99 | 0.0l @
False | 0.01 0.99 N False| 0.10 | 0.90
P(H2[H) P(C2/C)
H | True @ False C | True | False
True | 098 @ 0.02 True | 0.98 0.02
False | 0.05 0.95 False  0.05 0.95
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» Once a DAG has been constructed, the joint
probability can be obtained by multiplying the
marginal (root nodes) and the conditional (non-root
nodes) probabilities.

» Training: Once a topology is given, probabilities are
estimated via the training data set. There are also
methods that learn the topology.

» Probability Inference: This is the most common task
that Bayesian networks help us to solve efficiently.
Given the values of some of the variables in the
graph, known as evidence, the goal is to compute
the conditional probabilities for some of the other
variables, given the evidence.
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< Example: Consider the Bayesian network of the
figure:

P(x1)=0.60 P(yl|x1)=040 P(1|y1)=025 P(wl|z1)=0.45

P(y1|20)=0.30 P(z1|50)=0.60  P(w1|20)=0.30
® @ »® @

P(x0)=040 P(y0|x1)=0.60 P(z0|y1)=0.75 P(w0|21)=0.55
P(y0]x0)=0.70  P(z0|50)=040  P(w0|z0)=0.70
P(y1)=0.36 P(z1)=047 P(wl)=0.37
P(y0)=0.64 P(z0)=0.53 P(w0)=0.63

a) If x is measured to be x=1 (x1), compute
P(w=0[x=1) [P(wO|x1)].

b) If w is measured to be w=1 (wl) compute
P(x=0\w=1) [ P(x0|wl)].
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» For a), a set of calculations are required that

propagate from node x to node w. It turns out that
PwO0[x1)=0.63.

» For b), the propagation is reversed in direction. It
turns out that P(x0jw1) = 0.4.

> In general, the required inference information is
computed via a combined process of "message
passing” among the nodes of the DAG.

s Complexity:
» For singly connected graphs, message passing

algorithms amount to a complexity linear in the
number of nodes. 65



