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Numerical Methods for Modeling Computer
Networks Under Nonstationary Conditions

DAVID TIPPER, MEMBER, IEEE, AND MALUR K. SUNDARESHAN, MEMBER, IEEE

Abstract—Computer communication networks are frequently sub-
jected to a variety of nonstationary phenomena during operation, re-
sulting in considerable periods when nonstationary conditions prevail.
However, the majority of available techniques for network modeling
in order to conduct studies of performance evaluation or the design of
network control strategies have been developed under simplifying ap-
proximations of steady-state conditions. In this paper, we discuss nu-
merical techniques for modeling computer networks under nonstation-
ary conditions, and two distinct approaches are presented. The first
approach employs a queueing theory formulation to develop differential
equation models which describe the behavior of the network by time-
varying probability distributions. In the second approach a nonlinear
differential equation model is developed for representing the dynamics
of the network in terms of time-varying mean quantities. This ap-
proach allows multiple classes of traffic to be modeled and establishes
a framework for the use of optimal control techniques in the design of
network control strategies. Numerical techniques for determining the
queue behavior as a function of time for both approaches are discussed
and their computational advantages are contrasted with simulation.

1. INTRODUCTION

FUNDAMENTAL to the problems of performance
evaluation and the design of efficient control strate-
gies (viz. routing, flow control, buffer management, etc.)
for computer networks is the development of an appro-
priate model for representing the network. Although a
wide variety of techniques and mathematical tools have
been used in handling the modeling problem, most of
these focus on the principal feature of a computer net-
work, viz. the contention for shared resources, and the
resultant queueing for these resources. Quite naturally,
the most widely used models are based on queueing the-
ory and these models represent the computer network as
a network of interconnected queues. There has been a
considerable effort in analyzing queueing networks with
particular emphasis on their applications to computer
communication systems [1], [2].

Although very significant advances have been made in
the development of queueing network models, which have
served as the basis for various studies aimed at perfor-
mance evaluation and control design procedures, these
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models often make several oversimplifying assumptions
not always justifiable in practice. Specifically, a major
shortcoming of a vast majority of the currently available
queueing models is that they describe only the steady-state
or stationary (i.e., long-term) behavior of the queueing
system; consequently, any control algorithm tailored on
the basis of such models can ensure optimal performance
only under steady-state conditions.

Recently, it has been increasingly noted that computer
communication networks not only must have good steady-
state performance but also must deliver acceptable per-
formance under nonstationary and transient conditions
[3]-[10]. Transient or nonstationary conditions occur in
computer networks when the statistics of the packet ar-
rival processes to the various network queues or the ser-
vice rates of the queues vary with time. A simple evalu-
ation of the time constant (relaxation time) of the widely
used M/M/1 queueing model of a network link [3] in-
dicates that the time taken by the queue at the link to reach
steady-state after an event that generates transient condi-
tions will be quite long, particularly when the link is
heavily loaded; hence periods of nonstationary or tran-
sient behavior prevail during much of the time.

Typical events that give rise to nonstationary or tran-
sient conditions in computer networks are load sharing,
changes in routing and flow control parameters (i.e.,
adaptive routing and flow control), failures of links,
nodes, or other network resources, topological changes,
network start-up and shutdown, and, most importantly,
nonstationary input loads. It is well known [11] that in
many packet switched computer networks, the user de-
mand for data communication varies so rapidly that the
load is essentially nonstationary for large time periods. In
fact, it is in recognition of the nonstationary conditions
that exist in most packet switched wide area networks
(WAN?’s) that there has been such a considerable effort to
develop adaptive routing and flow control methods. Fur-
thermore, it has recently been noted [4] that a class of data
networks called rapidly reconfigurable networks (RRN’s)
exists. These networks are subject to frequent, if not con-
tinuous, changes in the combination of network geome-
try, user demand for data communication, and transmis-
sion link capacity, such that nonstationary conditions
always exist and the nonstationary behavior is the only
meaningful measure of performance. Thus there exists a
need for techniques to analyze the time-varying behavior
of computer communication networks.
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In this paper, the problem of modeling computer net-
works under nonstationary conditions is considered with
the focus on techniques that can be used in the perfor-
mance evaluation and the design of control procedures. It
should be emphasized that the techniques developed
herein are not limited to computer networks, but are ap-
plicable to the general class of nonstationary queueing
systems. The organization of the paper is as follows. In
Section I, a Markov-process-based queueing theory ap-
proach is employed to develop differential equation
models which describe the network queues by time-vary-
ing probability distributions. Numerical methods for solv-
ing the differential equations to determine the queue be-
havior in a nonstationary environment are discussed and
numerical examples presented. In Section III, a nonlinear
differential equation model for representing the queue dy-
namics at the various transmission links in the network in
terms of time-varying mean quantities is presented. The
numerical solution of this state variable model in order to
conduct nonstationary performance evaluations of
queueing systems is discussed and a framework for using
this model to design control strategies which ensure op-
timum network performance under both nonstationary and
steady-state conditions is described. Lastly, Section IV
summarizes the paper.

II. A NUMERICAL QUEUEING THEORY APPROACH

The most widely known analytical models of computer
networks for use in the performance evaluation and design
of routing and flow control algorithms are queueing net-
work models. Most of the literature on queueing networks
focuses on the steady-state conditions under which an
analysis may readily be carried out. Tractable analysis of
a queueing network is possible when the network lends
itself to the so-called product form solution [11, [2], [12].

The traditional approach using queueing theory meth-
ods for designing ‘‘optimal’’ routing and flow control
strategies is to formulate a steady-state product form
queueing model for the network or a portion of the net-
work under consideration (i.e., a node or a virtual circuit)
and to then derive an expression for a suitable perfor-
mance measure in terms of the queueing model. One can
then pose an optimization problem to be solved by math-
ematical programming techniques to determine the opti-
mal steady-state control parameters. To provide a certain
degree of adaptivity to changes in the incoming traffic de-
mand and/or network topology, an updating of the routing
and flow control parameters is commonly employed by
monitoring the network conditions at periodic intervals
and recalculating the optimum steady-state control at each
period. This is the so-called quasi-static or quasi-station-
ary approach [2]. It may be noted that this approach as-
sumes static loading conditions during each updating pe-
riod allowing the network to attain steady state. Thus the
network may be assumed to go through a series of steady-
state periods. Although extensively referred to in the lit-
erature, there has been very little effort to determine the
conditions under which the quasi-static assumption may
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be justified, further emphasizing the desirability of devel-
oping models which can capture the more general time-
varying behavior of computer networks.

A. Evaluation of Nonstationary Queue Dynamics

There have been few studies concerning the nonstation-
ary characteristics of data networks, largely because there
are few time-dependent solutions currently available for
the queueing models of these networks [12], [13]. Fur-
thermore, the queueing models that do exist are often
complex from a computational perspective and are awk-
ward to manipulate. In this section, we describe a numer-
ical scheme for evaluating the nonstationary behavior of
computer networks. For a concise description of the pro-
cedure that will be followed, we begin with the well-
known Chapman-Kolmogorov differential equations de-
scribing the time-dependent state probabilities of a finite
capacity M /M /1 queue with time-varying average arrival
and service rates [12]:

d-p;ﬂ = =N(0)p°(1) + u' ()P (1)

Pyt = ) + W 0] 0
+ ')t (n), 0<n<K

dl% = M) pR () - w5 (1) PR(). (1)

Here p" (1) is the probability of n customers in the system
(i.e., queue + service) at time f, N'(t) is the average
arrival rate to the queue if there are n customers in the
system, p"(t) is the average service rate if there are n
customers in the system, and K is the capacity of the sys-
tem.

This set of differential equations is notoriously difficult
to solve analytically due to the time-varying coefficients.
Even in the simplest case, when the arrival rate and ser-
vice rate are constant (i.e., A"(¢) =\, p"(¢) = p)and a
steady-state equilibrium will eventually be reached, the
solution of (1) for the transient behavior of p"(#) involves
an infinite sum of Bessel functions [12]. This is compu-
tationally difficult and there has been a considerable effort
[14]-[16] to develop efficient computational methods to
accurately determine p"(¢) for this simplest case. It is well
recognized that in the general nonstationary case, the so-
lution of (1) by analytical means to obtain a compact
expression for p” (1) is very difficult even if N'(t) and
" () are smooth well-behaved functions [12]. This prob-
lem can be circumvented by applying numerical tech-
niques using an approach similar to that proposed by
Odoni and Roth [17] and in a separate study by Van As
[5]. The basic idea is to approximate the time-varying
average arrival and service rates by constants over small
time intervals. This allows one to numerically solve (1)
for the state probabilities over one time interval and to
repeat the procedure for all time intervals of interest. The
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Fig. 1. Time-varying behavior of the average number in the system for an
M/M/1/20 queue.

exact steps in the solution technique proposed here are
described in the following.

Begin with some known boundary condition p"(0),
such as having no customers in the queue at time zero.
Over the first interval [0, r,], assume a constant arrival
rate N"(7) = N"(#,/2) and service rate " () = p"(1,/2)
for each state n. Then use a numerical technique to solve
the set of differential equations (1) for p"(¢) over the in-
terval [0, 7;]. Numerical studies have shown that the
fourth- or fifth-order Runge-Kutta [5], [18] method pro-
vides a good balance between accuracy and computing
time. The state of the system at the end of the first time
interval is given by the probability distribution p” (¢,) and
this becomes the boundary condition for the next time in-
terval [#,, 7,]. One then selects new constant arrival and
service rates for the new time interval and solves the dif-
ferential equations for p" () again. This procedure is re-
peated for each time interval in the time horizon.

From the solution of (1) for the time-dependent state
probabilities p"(t), one can study the nonstationary per-
formance of the system for a given time-varying arrival
and service pattern. However, one of the general difficul-
ties in analyzing the time-varying behavior of queueing
systems is formulating meaningful performance mea-
sures; the standard time-averaged performance measures
such as average delay and power cannot be directly used
in the nonstationary case. Furthermore, during nonsta-
tionary periods many of the standard queueing relation-

ships (e.g., output rate of queue = input rate) do not hold
and performance measures must be determined from the
state probabilities p"(¢) using basic probability princi-
ples. Some examples of possible performance measures
are L (1), the expected number of customers in the system
at time 7, which is given by L(z) = IX_, np"(¢), and
D(t), the departure rate from the queue at time ¢, which
is determined by D(t) = LX_, u"p"(1).

To illustrate some of the issues discussed above, con-
sider the problem of determining the time varying re-
sponse of an M/M /1 /20 queue with (A*(z) = X\ = 0.8
vn, p'(t) = p = 1.0 ¥n) and the queue in an initial
empty state. Note that after an initial transient the system
will attain a steady state. A possible performance measure
for this system is L(¢), which can be determined using
the procedure presented above. In Fig. 1, the average
number in the system L(¢) is plotted along with the aver-
age number in the system as determined from an ensemble
average of 50 and 5000 independent simulation runs. One
can clearly see that a large number of independent simu-
lation runs must be generated to get an accurate portrayal
of the system behavior; hence large amounts of computer
run time are required. A detailed treatment of simulation
methods for estimating the nonstationary behavior of
computer networks can be found in [26].

In the following, we develop a numerical procedure
similar to the one given above for a single queue to ap-
proximately model a computer network, allowing one to
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incorporate such features as adaptive routing and finite
buffering into the time-varying model. As in the case of
the product form queueing network models, we consider
a network consisting of M queues connected in an arbi-
trary topology. We assume that customers arrive at the
network according to nonstationary Poisson processes
with mean rate v,(¢) at queue i at time . We denote the
finite buffer existing at each queue i by b,. Focusing on
an arbitrary queue / in the network, we assume that it can
be approximately modeled as an M /M /1/b; queue with
state-dependent arrival rate A (¢) and service rate u} (),
where the state n is the number of packets at the link.
Typically, the arrival rate is independent of the state n
(i.e., N/ (£) = N (1) vn); likewise the service rate is in-
dependent of the state » and proportional to the link ca-
pacity C; (i.e., pi (1) = uC; ¥V n, where 1 /u is the average
packet length). Defining p7(t) as the probability of n
packets being in the ith queueing system at time ¢, the
differential equation model (1) for queue i becomes

P — 0 (1) p20) + wCl(0)

LD _ N (0)p1 (1) — M) + wC] pE(0)
+uCptti(1), O0<n<b

dp? (1)

S = () P () = wCpl (). (2)

Given the time-varying link load A;(¢), one can solve
(2) using the numerical technique discussed earlier with
the number of equations K fixed at the finite buffer size
(i.e., K = b;). To evaluate the performance of the net-
work as a whole, the arrival rate at each link must be
known and this can be found in a fashion similar to that
for product form queueing networks. Letting r;(#) rep-
resent the time-varying routing probability that a packet
at queue i is routed to queue j, then the total arrival rate
at queue { at time ¢ is given by

M

M) = wi(0) + L pC(1 = pi(n) r(r) - (3)
where the first term on the right-hand side represents the
arrival rate of external packets to queue i and the second
term represents the arrival rate of traffic from other net-
work queues. Note that the output from a queue / is given
by the service rate uC; times the probability that the server
is busy (1 — p?(1)) since, as previously noted, during
nonstationary periods the output rate p C,(1 — p¥(¢)) is
not equal to the input rate of the queue \; (1) (1 — p'(1)).
In order for the M /M /1 /b; assumption to hold, the link
arrival rate \;(¢#) must be a nonstationary Poisson pro-
cess. This assumption can be justified by noting that the
superposition of a number of point processes approaches
a Poisson process in the limit as the number of point pro-
cesses increases [19]. Alternately one can justify this as-
sumption based upon a more stringent condition, which is
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to assume that the departure process of each queue [ is
approximately a nonstationary Poisson process with mean
rate p C,(1 — p¥(1)). In [20], Taafe has studied the out-
put process of nonstationary finite Markovian systems in
detail and shown that the nonstationary Poisson process
approximation is reasonably accurate. The assumption
made here is not as strong as an independence assump-
tion, as there is clearly a dependence between the queues
through (3).

In the same fashion as the method discussed previously
for a single queue, one can apply standard numerical in-
tegration techniques in an iterative fashion over the time
intervals of interest to solve (2) together with (3) for the
state probabilities pi (7) at each queue. When steady-state
conditions occur, the solution of (2) and (3) by numerical
techniques allows the steady-state behavior to be evalu-
ated and the settling time to be determined empirically.

It is interesting to compare the approach proposed above
with an exact Markovian analysis. We can define a Mar-
kov process ( N (1), No(t), * - -, Ny(t)>, where N;(1)
is the number in the system at queue i at time ¢. In theory,
one can develop the Chapman-Kolmogorov equations for
the Markov process and then apply numerical integration
techniques to solve the equations. The practicality of such
an approach is extremely limited owing to the dimen-
sionality of the state space. In fact, an exact analysis will
require the solution of oM, (b; + 1) differential equa-
tions, whereas for the approximate approach given above
one need solve only L, (b, + 1) equations. As an ex-
ample of the computational savings consider the tandem
queueing system of Fig. 2(a) with an equal buffer space
of 50 at each queue (i.e., b; = 50 Vi). An exact analysis
will require the solution of 132 651 differential equations
versus 153 equations for the approximate approach.

As previously noted, the standard performance mea-
sures of average network delay, throughput, and power
are not directly useful in evaluating the nonstationary be-
havior of the network, and alternative performance mea-
sures must be considered. Some possible network perfor-
mance measures are LN(t), the expected number of
packets in the network at time ¢, which is given by

M b
IN(r) = 20 2 npl(1),
1= n=
RR (1), the rate at which packets are rejected by the net-
work at time ¢, which is given by

RR(1) = ;Zl N(1) pi' (1),

and TN (1), the total network link flow at time ¢, which
can be determined by

M
ING) = 2 G(1 = ().
This total network link flow is not the same as the network

throughput since packets that are transmitted through one
link may be dropped before reaching the destination.
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Fig. 2. Queueing models studied.

These performance measures can be used to evaluate the
performance of data networks under nonstationary con-
ditions.

As an illustration of the numerical method and its ac-
curacy, consider the system of three tandem queues shown
in Fig. 2(a) with all the queues having the same buffer
size of 7 (i.e., b; = 7 Vi) and the same service rate of 1
(i.e., pC; = 1 ¥i). In order to demonstrate the accuracy
of the departure process approximation, the rate of exter-
nally arriving packets to queues 2 and 3 was set to O (i.e.,
Y2(t) = v3(¢t) = 0) and several numerical studies were
conducted and contrasted with simulation results. The re-
sults of a typical study are shown in Fig. 3, where the
average number in the system for each queue (i.c., L, (1),
L,(¢), L3(¢)) is plotted along with an equivalent quantity
estimated from an ensemble of 5000 independent simu-
lation runs. The input process at the first queue was cho-
sen to be a function which varies between light and heavy
load conditions, specifically v, () = 0.5 + 0.4 sin (0.2(¢
+ 20)). Fig. 3 clearly shows that the numerical approach
given above provides accurate results. Furthermore, the
numerical approach presented here is considerably more
computationally efficient than the comparable simulation.
For example, typical run times for a simulation study like
the one in Fig. 3 coded in SLAM required approximately
66 min and 40 s of CPU time on a Sun IV workstation,
whereas the numerical integration approach implemented
using the fourth-order Runge-Kutta routine in MATLAB
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Fig. 3. Nonstationary behavior of tandem queucing system.

required only 20 min on a personal computer equivalent
to an IBM PC AT. Additional performance evaluation
studies have been conducted which follow the present ap-
proach and these may be found in [6], [21]. In these
works, a comparative nonstationary performance evalua-
tion of different buffer management schemes implemented
in a network subjected to dynamically varying load con-
ditions is reported.

III. A STATE MODEL REPRESENTATION OF QUEUE
DynaMics

As described in Section II, the time-varying behavior
of a computer network can be analyzed by solving, for
each queue, the set of differential equations describing the
queue length probability distributions. While this ap-
proach, as shown earlier, is particularly useful for a nu-
merical evaluation of the network performance during
both nonstationary and steady-state periods, one is limited
by the computational complexity to considering small
systems. Also, obtaining analytical expressions for net-
work performance measures that may be used in an opti-
mization problem to design efficient control algorithms is
difficult. Here we note that routing and flow control pro-
cedures are commonly based on optimization and feed-
back of average quantities, such as the average number of
packets in the queues or the average delay on the links,
and it is difficult to determine the time-varying behavior
of such mean quantities from queueing models [12]. In
this section, we develop an alternative approach that char-
acterizes the dynamics of the network by a set of nonlin-
ear differential equations describing the time-varying be-
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havior of the mean queue lengths at the various network
queues. This approach offers the advantage of a consid-
erable reduction of computational time in performance
evaluations. It also establishes a framework for the for-
mulation of precise control problems with different per-
formance objectives, allowing the rich theory of optimal
control to be employed in the determination of network
control algorithms. The model is developed by focusing
on the dynamics of the packet queues at the transmission
links in the network. Because of the similarity of this
model to the state variable models popularly used in mod-
emn control theory, we shall refer to it as a state model.

A. A State Model for a Single Communication Link

Consider an arbitrary transmission link in a computer
network of the type shown in Fig. 2(b). We define C as
the capacity of the link, N () as the number in the system
(i.e., queue + server) at time ¢z, and x(¢) as the state
variable representing the average number in the system at
time ¢. Note that the state variable is the ensemble average
of the number in the system at time ¢ (i.e., x(t) =
E{N(t)}). Let d(r) represent the flow out of the system
at time ¢, and a(t) the flow into the system at time ¢.
Defining f,,, () and f;, () as the ensemble average of flow
out and flow in of the queue, respectively (i.e., f,, (1) =
E{d(t)} and f,(t) = E{a(t)}), then from the flow
conservation principle, the rate of change of the state
variable can be related to the ensemble average flow in
and flow out by a differential equation of the form

-x(t) = _ﬂ)ut([) +fin(t)' (4)

This equation is intuitive in nature and can be found in
several places in the literature [7], [8], [22], [23] in var-
ious forms and is often called a fluid flow equation. Note
that the approach taken here is different from the com-
monly used fluid flow approximations, which are devel-
oped to approximate the time-varying behavior of N(t)
[24]. It should be emphasized that (4) is quite general in
nature and can be used to model a wide range of queueing
and contention systems.

Assuming that the queue storage capacity is unlimited
(i.e., x € [0, o), and that customers arrive at the queue
according to a nonstationary Poisson process with rate
A(1), then f;, (1) is just the offered load A(¢) since no
packets are dropped. The flow out of the system, f,, (1),
can be related to the ensemble average utilization of the
link p () by fou () = Cp(r). Note that p(1) = P(N(t)
>0)="L;., P(N(t)=i)= (1 —P(N(t) = 0)). We
assume that p(¢) can be approximated by a function
G(x(t)), which represents the ensemble average utiliza-
tion of the link at time ¢ as a function of the state variable.
Since x(r) = 0 = f,,,(1) = 0, G(0) = 0 and since x(¢)
=0 = f . (t) = C, G(x») = 1. Thus, in order to model
the physical system, G (x(t)) must range over x(¢) € [0,
o) with values belonging to [0, 1) and pass through the
origin, i.e., G(0) = 0. Furthermore, to show the effects
of congestion, G(x(r)) must be a nonnegative, strictly

1687

concave function. Thus, the dynamics of the link queue
can be represented by a nonlinear differential equation:

£(r) = = CG(x(1)) + A (1) (5)

with initial condition x(0) = x,.

This type of model has been proposed by several re-
searchers [7], [23] to describe the dynamic behavior of
queueing systems in terms of time-varying mean quan-
tities. The exact form of the utilization function G(x(¢))
which will accurately model the system will depend on
the queue under study and the data available. If experi-
mental data from an existing system can be obtained, then
the function can be determined statistically [22]. How-
ever, such data are normally unavailable and one must
determine G (x(t)) by other means, such as the technique
suggested by Agnew [22], which requires matching the
steady-state equilibrium point of (5) with that of the
equivalent queueing theory model representation. Making
the standard product from queueing network assumption
that the packet transmission time is proportional to the
packet length and that the packets are exponentially dis-
tributed in length with mean length 1 /u [1], then the link
is modeled as an M /M /1 queue. Note that when the ar-
rival rate to the queue is constant (i.e., N(7) = A Vt) the
average number in the system at steady state is given by
N/(uC — \) from the M/M/1 queueing formulas [1].
Thus requiring that x(#) = A/(uC — \) when x(t) = 0
= G(x(1)) = N(t)/Cresults in G(x(1)) = plx(1)/(1
+ x(1))] and the state model becomes

o x(1)
x(t) = —[I.C<1 " x(t)> + A1) (6)

with initial condition x (0) = x,. The validity of matching
the steady-state equilibrium point of the state model with
that of the queueing model has been checked using sim-
ulation by Filipiak [7] and Rider [23] and shown to lead
to an accurate approximation to the time-varying mean
number in the system.

Obviously one can use the numerical integration ap-
proach given in the previous section for a single queue to
solve the state model for the average number in the system
(i.e., x(t)) as a function of time. In order to check the
accuracy of the state model we use the technique proposed
in [17] of approximating the M/M/1 queue by a
M/M/1/K queue with K large enough that the probabil-
ity of blocking is negligible. One can then use the method
of Section II to numerically solve the Chapman-Kolmo-
gorov equation (1) for the nonstationary behavior of the
M/M/1/K queue and use this as a benchmark. For ex-
ample, consider the queueing system of Fig. 2(b) when
the link capacity is 1 (i.e., C = 1), the average packet
length is 1 (i.e., u = 1), and the arrival rate is given by
A(t) = 0.6 forr < 40 and A(z) = 0.2 forz = 40. In
Fig. 4 the results of integrating the state model for x ()
are shown along with the average number in the system
L(t) as determined from an M /M /1 /40 queue. One can
see that the state model is reasonably accurate, and the




1688

Average Number in System
-

T T 1
o 2 0 @ -]
Time

Fig. 4. Comparison of the M/M/1 state model with solution of Chap-
man-Kolmogorov equations.

computational advantages of solving a single differential
equation are obvious. Several additional numerical stud-
ies were conducted on the same system to compare the
accuracy of the state model with a benchmark solution
and the results of a typical study given in Fig. 5. In gen-
erating Fig. 5, the arrival rate was determined by A(¢) =
0.5 + 0.4 sin (0.1(# + 20)) and the comparison curve
is the result of an ensemble average of 5000 simulation
runs. Simulation was used here to determine the bench-
mark since at heavy loads K must be very large for the
M /M /1 /K approximation technique to be accurate. From
our numerical studies we conclude that the state model
always produces the same form of response as the bench-
mark solution (i.e., curves have the same shape) but con-
sistently overshoots the magnitude of peaks and valleys
in the response.

Note that, in deriving the state model (5), the only sto-
chastic model assumption made is that of Poisson arrivals
and thus (5) holds for queues of the M/G/1 type. In or-
der to obtain a closed expression for G(x(r)) from the
technique of matching the steady-state equilibrium points,
the steady-state average number in the system for the
queueing model must only be a function p, the steady-
state utilization of the queue. As a second example of the
approach, consider an M /D /1 queue. Under steady-state
conditions (i.e., ¥(¢) = 0) requiring that x(z) = p +
p?/[2(1 — p)1, where p = A(1) /. C, results in the state
model

#(1) = —uC(x(t) + 1 = Vx(e) + 1) + A(1). (7)

As a simple illustration of the accuracy of the approx-
imation technique, consider the queueing model of Fig.
2(b) when the capacity of the link is 1 (i.e., C = 1) and
the packets have a constant length of 1 (i.e., p = 1). The
results of a typical numerical study are shown in Fig. 6,
where the arrival process was allowed to vary between
light and heavy load conditions, specifically A(z) = 0.5
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+ 0.4 sin (0.2(z + 20)). In Fig. 6, the curve labeled
state model was determined by integrating (7) for the state
variable using the Runge-Kutta routine in MATLAB and
is plotted along with the average number in the system
determined from an ensemble average of 5000 simulation
runs. Clearly the model is reasonably accurate and the
computational advantages of solving a single differential
equation over simulation are evident.

In computer networks, the traffic in the network is nor-
mally divided into a number of classes, and the control
actions (i.e., routing and flow control) are based on the
class type. Since the traffic is already grouped into classes,
it would be advantageous for performance evaluation and
control purposes if the state model could be modified to
represent the dynamic behavior of each class separately.
Here we show that this can be accomplished by modeling
the link by a set of coupled state equations where there is
a state defined for each class of traffic.

Consider an arbitrary transmission link of a network
shown in Fig. 2(c). There are § different classes of pack-
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ets arriving at the link with the average arrival rates A, (t),
A (1), * + -, Ns(1). Let x;(t) represent the ensemble aver-
age number of packets of class / in the system at time 7.
Making the standard assumptions [2] so that the link can
be modeled as an M /M /1 queue, then the model (6) de-
scribing the average total number of packets in the system
xr(t) = E,S=1 x;(t) will become

__MLI)> + ()\l(t)

1+xT(

k(1) = —uc(

+ M) + 0+ Ns(0)). (8)
Now, since the flow conservation will hold for each class
of packets, a state model of the form of (5) can be devel-
oped for each class as

x(2) = = CG(x,(1), x7(2)) + N(1)
vi=1,2,---,8 (9)

where G;(x,(t), xp(t)) represents the average utilization
of the link by the class / traffic. Note that if there are only
class I packets present in the link (i.e., x;(t) = 0, \;(¢)
=0,Vvj,j # I, x7(t) = x/(1)), then G, will be a function
of the class / packets x;(#) only and must have the form
of the utilization function in state model (6) (i.e., G, =
nCx; (1) /(1 + x;(1))) since it will represent the dynam-
ics of an M/M /1 queue with only one class of traffic.
However, if additional classes of traffic are also present
in the link, they will use part of the transmission capacity
of the link, and the portion of link capacity seen by the
class [ packets will depend on the total amount of link
capacity being used. Thus G, will be a function of both
the average number of class / packets in the system and
the average total number of packets in the system. Deter-
mination of G, can be done by using the technique of
matching the steady-state equilibrium points of the state
model and the equivalent stochastic model. Then from the
M /M /1 queueing model of the link with S classes of cus-
tomers, when the arrival rates are constant (i.e., \;(#) =
A\;Vtand ¥ ) a steady state will result and we require that

A
x(t) = —— VL
pC— 2N

Jj=1

(10)

Now, at steady state x;(t) = 0 = CG,(x,;(1), xp(1)) =
N Viand xr(1) = 0 = pC(xr(1)/1 + x7(1)) = £
\;(t). Hence, substituting in (10) and solving for G re-
sults in

Gl(x1(t),xr(t))_“<i(fl_>

1 + xp(2)

|

x(1)
g

1+ 2 x(1)

J=1

v!
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and the state model for the transmission link now becomes

x(1) = —puC %‘ + N(1),
1+ 2 (1)
J= (11)
=12, ---,8

Note that since x7(1) = L3_, x,;(1), we have xp(1) =
i, X;(t) and substitution of (11) into this expression re-
sults in (8), as expected. Thus the link can be described
by the set of § state equations of the form (11) represent-
ing the behavior of each class of traffic separately. One
can use an approach similar to developing (11) to derive
a state model for the M /D /1 queue with multiple classes
of traffic.

In order to illustrate the advantages and quantify the
accuracy of the state model developed here, several nu-
merical studies were conducted to compare the state model
(11) with a simulation of the same system. A typical com-
parison for a queue with two classes of traffic (i.e., § =
2) is shown in Fig. 7, where step loads of A; = 0.5 and
A, = 0.2 are applied to an initially empty queue with ser-
vice rate u C = 1. The evolution of the queue depicted by
the state model was determined by numerical integration
of (11), whereas the simulation curves were generated by
averaging 5000 independent simulation runs. Obviously,
the state model is sufficiently accurate and saves consid-
erable computation. A relative idea of the magnitude of
the computational savings can be seen by noting that the
simulation which was conducted in SLAM required 5 h,
35 min, and 42 s of actual CPU execution time on a VAX
11/750 system, whereas the numerical solution of the state
model using fifth-order Runge-Kutta technique coded in
Fortran required only 13 s of CPU execution time on the
same system.

In comparison with the analytical methods described in
Section II, which are based on the Chapman-Kolmogorov
differential equations, it is to be noted that the state model
offers several advantages. The most obvious are the con-
siderable reduction in computational complexity and the
ability to model a wider range of queueing systems. An-
other strong feature is the simplicity in modeling queueing
systems with multiple classes of traffic when the behavior
of each class is to be examined separately.

B. Development of State Models for Networks

The state model (6) represents the dynamics of a single
link and can be extended to describe the time-varying be-
havior of a computer network. Consider a network con-
sisting of M queues interconnected in an arbitrary topol-
ogy. The traffic is assumed to arrive from outside the
network at each queue i according to a nonstationary Pois-
son process with rate v;(¢). Let us define r;(¢) as the
routing probability that the traffic at queue i is routed to
queue j. Also, let u C; denote the exponential service rate
of queue i, \; (1) represent the average arrival rate to queue
i, and x;(tz) be the state variable denoting the average
number in the system at queue i. Under these assump-
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tions, one can readily obtain the state variable model for
each queue i in the network as

&(t) = —,;q(ﬂ) (D).

T+ (1) (12)

The queue arrival rate, \;(¢), can be determined as

M
x(1)

N(1) = vi(1) + 1§1 I/-C1<1 n xl(t)>rli(t)- (13)

Note that the term summed represents the arrival rate of
traffic from other queues to link i. Unlike the finite queue
case discussed in Section II, the output process of an
M/M /1 queue is a Poisson process and the only approx-
imation here is the one used in determining G (x(r)). One
can easily show that under steady-state conditions, the
state model defined by (12) and (13) yields exactly the
same average number in the system at the network queues
as the corresponding steady-state product form queueing
network. The fact that the state model above, (12), ap-
proximately describes the time-varying behavior of the
average number in the system at the various queues in the
network is of considerable interest for performance eval-
uation. One can easily conduct quick network perfor-
mance studies by numerically integrating the state model
(12) along with (13) over the time interval of interest uti-
lizing the approach discussed in Section II. Note that the

number of differential equations to be solved is only M,
allowing reasonably large networks to be studied. As a
simple illustration of the use of the model, consider the
tandem queueing model shown in Fig. 2(a) for the case
where the buffer space is unlimited, each link has a ca-
pacity of 1 (i.e., C; = 1 Vi), the packet length is 1 (i.e.,
p = 1), and the arrival pattern of external traffic is y, =
0.5, v, = v3 = 0. In Fig. 8 the time-varying behavior of
the state variable for each queue is plotted along with the
average number in the system at each queue as estimated
from an ensemble average of 5000 simulation runs. One
can see that the state model is reasonably accurate. The
computational advantages of the state model approach are
significant, as the simulation coded in SLAM requires of
the order of 66.67 min of CPU time on a SUN IV work-
station, whereas the state model can be solved using the
Runge-Kutta routines in MATLAB on a personal com-
puter equivalent to an IBM PC AT in approximately 1 min
of CPU time. Note that one can approximately estimate
the settling time of the network (time until last queue at-
tains steady state) from the numerical solution of the state
model.

In a fashion similar to that above, one can use the state
model defined by (11) to model a computer network where
the traffic is split into distinct classes. Consider a network
consisting of M queues interconnected in an arbitrary to-
pology in which S classes of traffic exist. Each class of
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traffic, v, is assumed to arrive from outside the network
at each queue i according to a nonstationary Poisson pro-
cess with rate v/ (). We define x?(¢) as the state variable
denoting the average number of class v in the system at
queue i at time #, and rj;(¢) as the routing probability that
the v traffic at queue i is routed to queue j at time 7. Also,
let p C; denote the exponential service rate of queue 7, and
N/ (1) represent the average arrival rate of class v traffic
to queue i at time ¢. Under these assumptions, one can
readily obtain the state variable model for each queue i in
the network as

xi (1)
3

1+ 2 x!(r)

v=1

x/(1) = —uG + N (1),

v=1,2,---,8. (14)

The queue arrival rate, N/ (t), can be determined as
x (1) v
5

ri(t),
1+ 2 x(t)

v=1

v=1,2,---,8.

M
N(6) = 7i(1) + % uC,

(15)

Note that the term summed the arrival rate of class v traffic
from other queues to link i. As before, one can conduct
network performance studies by numerically integrating
the state model (14) along with (15) over the time interval
of interest utilizing the approach discussed in Section II.
Note that the number of differential equations to be solved

is only SM. Also notice that the routing variables can be
defined to represent source-destination pair routing vari-
ables, in contrast to the routing variables of model (12)
and (13), which represent the portion of total link flow
routed to a particular queue.

As an example of the use of the system consider the
tandem queueing model shown in Fig. 2(d), which is often
used to represent a single source-destination path in a
computer network. The traffic traversing all of the queues
could represent a virtual circuit session and the traffic en-
tering and exiting at each queue would represent the back-
ground traffic from other sessions in the network. Con-
sider the case where there are three queues in the model
(i.e., M = 3), each link has a capacity of 1 (i.e., C; =
1 Vi) and the packet length is 1 (i.e., u = 1). We denote
the traffic which is traversing all three queues as class 1
traffic, and the background traffic at each queue is denoted
as class 2 traffic. From Fig. 2(d) we have that r, = r,3
= 1 and all other routing variables are 0; and thus A/ (t)
can be determined from (15) for a given arrival pattern.
Several different numerical studies of this system have
been conducted and compared with simulation studies.
The results of two typical studies are given in Figs. 9 and
10. For Fig. 9 the arrival pattern of external traffic is v} (1)
=0.2,%{(1) = 0.4, y3(1) = 0,73 (1) = 0.5, v}(r) = 0,
v3(t) = 0.6. For Fig. 10 the external arrival pattern is
given by v (#) = [29 cos (0.1(¢+ + 20)) + 31]/60,
vi (1) = [29 sin (0.05(¢ + 20) + 7) + 311/60, vi(¢)
=0, v3(1) = [29 cos (0.05(t + 20)) + 31]/60, y3(1)
=0, v3(2) = [29 cos (0.1(¢ + 20)) + 31]/60. The
simulation results shown in Figs. 9 and 10 are the result
of averaging the number of each type of traffic in the sys-
tem over 5000 simulation runs. From these figures it can
be seen that the shape of the response is accurately repro-
duced, but the state model overshoots and undershoots
peaks and valleys in the response. However the state
model is accurate enough to allow one to determine pos-
sible bottlenecks and its computational simplicity makes
it a valuable tool in obtaining a rough idea of the nonsta-
tionary behavior of large networks. A detailed treatment
of the simulation methods employed here can be found in
[26].

Another possible application of the state model is as a
predictor of the queue lengths in a fashion similar to that
proposed by Stern [9] and can be explained as follows.
Adaptive routing algorithms typically use a periodic mon-
itoring and collection of network status information to
adaptively select the best routes. This normally involves
each node measuring its status information (e.g., queue
lengths or link delays) and disseminating this information
through the network on a node by node exchange basis or
transmitting the information to a network control center.
This exchange of status information can introduce consid-
erable communication and processing overhead and it is
desirable to transmit this information infrequently. Here
we note that the state model allows us to reduce the fre-
quency of exchange of status information and to make in-
telligent use of the status information between update pe-
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riods. Specifically, the nodes can periodically measure the
number in the system at the queues and the arrival rates
on their links and exchange this information in the proper
fashion. Between updates the nodes can predict the be-
havior of the network queues by numerically integrating
(12) or (14) to solve for the state (average number in sys-
tem) using the most recent status information as initial
values for the state variables and the link arrival rates (i.e.,
the forcing functions).

C. A Framework for the Application of Optimal Control
Methods

In this subsection, we discuss certain properties that es-
tablish a framework for the use of the model along with
optimal control theory in the design of optimal control
strategies. A more detailed discussion of such issues as
stability, settling time, and step response can be found in
[21], and specific examples of routing strategies designed
on the basis of (5) are given in [7], [21], and [25].

1) Establishment of Performance Measures: A princi-
pal advantage of the state model approach is the flexibility
it affords in establishing various performance measures
that can be used further in the design process for an op-
timal selection of network parameters. Nonstationary per-
formance measures of delay and throughput can be easily
established in a form appropriate to use in conjunction
with the state model (6) for formulating optimal control
problems. The total mean throughput of a queue during a
time interval [¢,, 1] can be defined in two ways—either
as the total mean flow into the queue during the time in-
terval or as the total mean flow out. Since no traffic is
dropped, the total mean throughput into the queue is just
the total amount of traffic arriving at the link over the time
interval [, #;] and can be represented by

I

0
On the other hand the total mean flow out of the queue
during [#, #] is given by

7
x(t)
o= (20 )
T = )y ¥ <1 + x(t)>
The delay over the time interval [z, t¢] can be approxi-
mately estimated from Little’s formula [1], which in terms
of the state variable x (1) becomes x(t) = \(t)D, where

D is the average packet delay on the link. Thus the total
average delay seen by packets on the link is given by

_("x()
JD = Smm t.

Note that Little’s law only holds under steady-state con-
ditions and (18) may be inappropriate for nonstationary
periods. However an alternative measure of the delay can
be formulated by assuming that the cost of waiting in the
system is proportional to the number of customers in the
system, as in [7]. Hence, minimizing the number of cus-

(17)

(18)
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tomers is equivalent to minimizing the delay, and the per-
formance measure is determined as

i
Jpy = S x(1) dr.
0

I

(19)

Normally, minimizing the delay is chosen as the objective
in designing routing algorithms, while flow control is se-
lected to maximize the throughput [1], [2]. In recognition
of the conflicting nature of delay and throughput and the
realization that the consideration of a single performance
measure to the exclusion of the other can lead to poor
performance, alternative performance measures have been
proposed. The most widely recognized of these alterna-
tive indices is Kleinrock’s combined performance mea-
sure of power [28], which is defined as the ratio of
throughput to delay. In terms of the present state variable,
the power, P, can be estimated by P = \/D = A?/x and
the total power of the link is represented by

- S'sz(t)

0 x(t)

The control objective in this case is to maximize the power
Jp. Another important performance measure which has
been used extensively in the operations research literature
[29] is to optimize the average net benefit or cost of op-
erating the system. If we associate a cost or loss with
holding customers in the system and a reward or profit for
each customer served by the system, then a linear net ben-
efit performance criterion can be formulated as the differ-
ence between the total holding cost and the total reward.
The optimization of the linear net benefit criterion has
been shown to result in social optimization of the queueing
system rather than individual optimization [29]. In terms
of the state variable used here, the linear net benefit can
be represented by

(20)

JIwp (21)

7
S (wx(r) = @N(1)) dt
L]

where w(0 < w < 1) is a weighting constant represent-
ing the holding cost per unit time per packet in the system,
and similarly @(0 < @ < 1) is a weighting constant re-
flecting the reward for each packet successfully transmit-
ted on the link. In the context of computer networks, the
performance criterion (21) can be interpreted as simulta-
neously optimizing delay and throughput, with w and &
being weighting constants reflecting the relative impor-
tance of delay and throughput.

Several other performance indexes similar to the ones
discussed can be proposed [21]. Suitable network perfor-
mance measures can be formulated by summing one of
the performance indexes for a single link discussed above
over all the queues in the network. Note that the perfor-
mance measures discussed above are time-varying quan-
tities and with the proper specifications of the limits of
integration, they can be used to measure the performance
of the queue over any time period of interest. Lastly, the
integrands in the performance measures above represent
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instantaneous performance measures similar to those dis-
cussed in Section II-B, and under stationary conditions
these quantities will correspond to the appropriate time
average measures.

2) An Illustration of the Application of Optimal Con-
trol: As mentioned earlier, an advantage of the state
model representation of the queue dynamics is the possi-
bility of employing the mathematical framework of opti-
mal control theory in the design of network control strat-
egies. To provide specific examples to illustrate this
approach, let us consider the following problem of con-
trolling X (7), the arrival rate of packets to a transmission
link, in order to optimize a specified performance mea-
sure. The problem can be formulated in terms of the state
model (6) as follows.

Problem P: Optimize J such that

x(t) = —#C(%) + )\(t)

(€2) At) = 0.

In this problem, (C1) and (C2) are the constraints under
which optimization with respect to A(z) is to be per-
formed, J can be any of the performance measures defined
earlier, and by optimize we mean either minimization or
maximization, depending on the specific performance
measure considered. Note that in contrast to the available
literature on the optimal control of queueing systems [29],
which are based on steady-state queueing models, an as-
sumption of steady-state conditions is not necessary.

As a simple illustration of the general solution tech-
nique for Problem P, consider the problem of determining
the optimal arrival rate, N*(¢), that maximizes the linear
net benefit Jyp given by (21). For the solution, one may
employ the standard Hamilton-Jacobi technique [27],
forming the Hamiltonian 3C, which is given by

I = wx(t) — dN (1)

(Ccn)

e p0)| —ne(205) ea0] @

where p (1) is the costate variable and is determined by

33¢ 1V

P = =50 = ot puc( ) @)
Using Pontryagin’s minimum principle, the optimal con-
trol A* () is determined by minimizing JC with respect to
A(t). Thus, setting dJC/dN = 0, one obtains p(t) = &.
This is the optimal value of the costate variable p*(?),
which is a constant. Hence, under the conditions of op-
timality, p(¢z) = 0. Now setting the right-hand side of
(23) to 0 and solving for x(¢), the optimum value of the
state variable can be determined as

vouC

x*(1) = - 1. (24)
Since x*(t) is a constant, x*(¢) = 0; hence setting the

right-hand side of constraint equation (C1) to zero, one



1694 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 8, NO. 9, DECEMBER 1990

can readily determine the optimal arrival rate, A\*(t), as
x*(t) YopuC
MNe(1) = pCl ——= | = pC — ———.

1+ x*(¢) @

It may be noted that A*(#) < uC = p* < 1; hence, the
queue is stable and will attain a steady-state equilibrium
condition. Also, to satisfy constraint (C2), we note from
(25) that A*(¢) = 0if ®uC = w. It is easy to see that
when @u C < w, the system is unprofitable at any positive
arrival rate since the holding cost w is greater than the
average reward & u C. Thus we require that A* (¢) = 0 if
dpC < wand N*(r) is given by 25) if ouC = w. It is
interesting to note that the optimal arrival rate is time-
invariant, resulting in steady-state conditions after an ini-
tial transient period and the optimal control in this case is
an open-loop control. Furthermore, the value of A* (7) de-
termined here agrees with the socially optimal arrival rate
for an M/M /1 queue determined by Stidham [29] using
queuing theory methods.

As a second illustration, the solution of the problem of
determining the optimal arrival rate, N*(¢), for maximiz-
ing the power Jp, given by (20), can be obtained follow-
ing the same procedure as

N (1) = P*(t)zx*(t)

(25)

(26)

where the evolutions of p* (), the optimal costate, and
x*(t), the optimal state, are governed by

e 0\ P

x(1) = ”C<1 +x*(t)> T

N A O I 1y

0 = s e (1) - @)

Details of these computations may be found in [21]. Note
that the optimal arrival rate defined by (26) is a feedback
control law and can be determined by numerically solving
(27) with appropriate boundary conditions. Actual imple-
mentation of the resulting control would entail estimation
of the state variable x(7), which can be determined by a
number of Kalman filtering techniques [30], [31]. For
comparison with certain known steady-state results for this
problem, observe that setting x(#) = 0 and p(¢) = 0 will
yield

x*¥(1) =1 and WN*(¢) = uC/2, (28)

i.e., the optimal arrival rate should equal half the service
rate, and power is maximized when the average number
of customers in the system is 1. These values precisely
agree with those computed by Kleinrock [28] using a
queueing theory model under stationary conditions.
Following the solution technique outlined above, the
optimal arrival rate, A\*(¢), can be determined for the
other performance measures in a similar fashion [21]. A
specific example of using the network state model for
multiple classes of traffic (14) in the design of a virtual
circuit routing algorithm can be found [21] and [25].

IV. CONCLUSIONS

In this paper we have developed modeling techniques
appropriate for conducting performance evaluation stud-
ies and designing control strategies for computer net-
works under nonstationary conditions. This work has been
motivated by the observation that the majority of cur-
rently available analytical and simulation techniques for
studying computer networks are valid only under steady-
state operating conditions. However, owing to a variety
of nonstationary phenomena in operating networks, non-
stationary or transient conditions prevail during consid-
erable periods of time. This paper offers two distinct ap-
proaches, with complementary capabilities, for accurately
modeling the network behavior under both nonstationary
and steady-state conditions. The first approach, based on
a queueing theory formulation, uses the fundamental
Chapman-Kolmogorov equations of Markov processes for
determining the probability distribution of the number of
packets at a queue and develops a method for numerical
evaluation of performance measures of the nonstationary
queue behavior. In the second approach, a nonlinear state
model for representing the dynamics of the packet queues
at the various transmission links in terms of time-varying
mean quantities is developed. The principal advantages
offered by this approach are a considerable reduction in
the computational burden, the ability to obtain simple
expressions for different network performance measures,
and ease in formulation of precise optimal control prob-
lems for designing routing and flow control strategies that
ensure optimal performance under both nonstationary and
steady-state operating conditions. The two approaches
taken together allow the modeling of nonstationary queue
behavior in computer networks for purposes of perfor-
mance evaluation and controller design with different de-
grees of accuracy and detail.
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