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1. INTRODUCTION 
 
 In many fields of science and technology (the physical sciences, engineering, 
economics) the question is often posed: �what is the best way to achieve a specified goal?� 
For energy systems, in particular, this question may be expressed in several ways, including 
the following:  

• Given the energy needs, what is the best type of energy system to be used?  
• What is the best system configuration (components and their interconnections)?  
• What are the best technical characteristics of each component (dimensions, material, 

capacity, etc.)?  
• What are the best flow rates, pressures and temperatures of the various working fluids? 
• What is the best operating point of the system at each instant of time?  

When a number of plants are available to serve a certain region, questions such as the 
following arise:  

• Which plants should be operated, and at what load under certain conditions?  
• How should the operation and maintenance of each plant be scheduled in time?  

A rational answer to these types of questions can be given by a systematic procedure, which 
is called optimization. 
 Methods appropriate for optimization of energy systems are presented in brief in this 
lecture. For a thorough knowledge of the subject, a study of the relevant literature is 
necessary. 
 
The need for optimization 
 Energy systems in more or less complex forms have been built and operated since the 
18th century. In a conventional design procedure, the aim is to reach a workable system, i.e 
a system that performs the assigned task within the imposed constraints. However, in 
general, there will be more than one workable design; and, in fact, there may be any number 
of better designs that the conventional procedure may not identify. The role of optimization 
is to reveal the best (under certain criteria and constraints) design and the best operational 
point of the system automatically, with no need for the designer to study and evaluate one 
by one the multitude of possible variations.  

 The following aspects show the necessity of applying optimization procedures in the 
design and operation of energy systems: 

• Increasing the quality and capacity of the plants while reducing costs in order to be 
competitive. 

• Fulfilling ever increasing specification as well as considering reliability and safety, 
observing strict pollution regulations, and saving energy and material resources. 

• Saving time and increasing the designer�s creativity. 
 
 
2. DEFINITION OF OPTIMIZATION 
 
A goal called an objective function is specified and is expressed as a mathematical function 
of certain variables. Then, optimization could be defined as follows: 
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 Optimization is the process of finding the conditions, i.e. the values of 
variables, that give the minimum (or maximum) of the objective function. 

 
In the literature on energy systems, the word �optimization� is often used in cases where the 
proper word is �improvement.� The two words do not have the same meaning and care 
should be exercised in their use. 
 
 
3. LEVELS OF OPTIMIZATION OF ENERGY SYSTEMS 
 
 The questions posed in the Introduction reveal that optimization of an energy system 
can be considered at three levels: 
 
A. Synthesis optimization. The term �synthesis� implies the components that appear in a 

system and their interconnections. After the synthesis of a system has been successfully 
composed, the flow diagram of the system can be drawn.  

B. Design optimization. The word �design� here is used to imply the technical 
characteristics (specifications) of the components and the properties of the substances 
entering and exiting each component at the nominal load of the system. The nominal 
load is usually called the �design point� of the system. One may argue that design 
includes synthesis too. However in order to distinguish the various levels of 
optimization and due to the lack of a better term, the word �design� will be used with 
the particular meaning given here.  

C. Operation optimization. For a given system (i.e. one in which the synthesis and design 
are known) under specified conditions, the optimal operating point is requested, as it is 
defined by the operating properties of components and substances in the system (speed 
of revolution, power output, mass flow rates, pressures, temperatures, composition of 
fluids, etc.).  

  
Of course if complete optimization is the goal, each level cannot be considered in complete 
isolation from the others. Consequently, the complete optimization problem can be stated 
by the following question:  

 What is the synthesis of the system, the design characteristics of the components 
and the operating strategy that lead to an overall optimum? 

The degree of freedom increases further if the task of the system (i.e. its production rates) is 
not pre-specified but is to be determined by the optimization procedure. Time-dependent 
optimization adds one more dimension, which increases the complexity of the problem. 
 
 
4. FORMULATION OF THE OPTIMIZATION PROBLEM 
 
4.1 Mathematical Statement of the Optimization Problem 
 
 The general optimization problem consists of a determination of the extremum 
(minimum or maximum) of an objective function under certain constraints. It is usually 
stated mathematically as follows: 
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  min imize f ( )
x

x  (4.1) 

 
with respect to  x = (x1, x2, �, xn) (4.2) 
 
subject to the constraints 
 
  hi(x) = 0 i = 1, 2, �, m (4.3) 
 
  gj(x) ≤ 0 j = 1, 2, �, p (4.4) 
 
where 
 x set of all the independent variables, 
 hi equality constraint functions (�strong� constraints), which constitute the simulation 

model of the system and are derived by an analysis of the system (energetic, 
exergetic, economic, etc.), 

 gj inequality constraint functions (�weak� constraints) corresponding to design and 
operation limits, state regulations, safety requirements, etc. 

 
It is often helpful to arrange the independent variables into three sets: 
 
  x ≡ (v, w, z) (4.5) 
 
where 
 v set of independent variables for operation optimization (load factors of 

components, mass flow rates, pressures and temperatures of streams, etc.), 
 w set of independent variables for design optimization (nominal capacities of 

components, mass flow rates, pressures and temperatures of streams, etc.), 
 z set of independent variables for synthesis optimization; there is only one variable 

of this type for each component, indicating whether the component exists in the 
optimal configuration or not; it may be a binary (0 or 1), an integer, or a 
continuous variable such as the rated power of a component, with a zero value 
indicating the non-existence of a component in the final configuration.  

 
Then, Eq. (4.1) is written 
  

, ,
min imize f ( , , )

v w z
v w z  (4.1)´ 

 
 For a given synthesis (structure) of the system, i.e. for given z, the problem becomes 
one of design and operation optimization:   
 
  d

,
min imize f ( , )

v w
v w  (4.1) d 

 
Furthermore, if the system is completely specified (both z and w are given), then an 
operation optimization problem is formulated: 
 
  opmin imize f ( )

v
v  (4.1) op 
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 Maximization is also covered by Eq. (4.1), since: 
 
  min f(x) = max {- f(x)} (4.6) 
 

 
4.2 Objective Functions 
 
 The decision regarding which criterion is to be optimized is of crucial importance and 
the answer depends on the particular application: for example, in an aircraft or space 
vehicle, it may be the minimum weight of the system; in an automobile, it may be the 
minimum size of the system; in a stationary power plant it may be the minimum life cycle 
cost (LCC) of the system. Examples of other objective functions for energy systems 
include: maximization of efficiency, minimization of fuel consumption, minimization of 
exergy destruction, maximization of the net power density, minimization of emitted 
pollutants, maximization of the internal rate of return (IRR), minimization of the payback 
period (PBP), etc. Some of these are pure technical objectives, while the rest are 
(thermo)economic objectives.  
 In a complex world, a single objective may result in a system that does not satisfy 
other requirements. Consequently, the final design may deviate from, e.g., the least cost 
one, in order to take environmental, social, aesthetic or other aspects into consideration. 
Methods have been developed under the name �multiobjective optimization,� which 
attempt to take two or more objectives into consideration simultaneously. The optimum 
point they reach does not satisfy each objective in isolation but it corresponds to a 
compromise, often subjective, of the various objectives. Multi-objective optimization can 
also be written in the form of Eq. (4.1), but only if the various objectives are combined into 
one objective function by means of weighting factors. 
 
 
4.3 Independent Variables 
 
 Each component and the system as a whole is defined by a set of quantities. Certain of 
those are fixed by external conditions (e.g., environmental pressure and temperature, fuel 
price) and are called parameters. The remaining are variables, i.e. their value may change 
during the optimization procedure. Those variables, the values of which do not depend on 
other variables or parameters, are called independent variables. The rest can be determined 
by the solution of the system of equality constraints and they are called dependent 
variables. The number of dependent variables is equal to the number of equality constraints. 
Thus, the task of the optimization procedure is to determine the values of the independent 
variables x. Of course, if the number of equality constraints is higher than the number of all 
the variables, then the problem is over-specified and there is no room for optimization. 
 
 
4.4 Equality and Inequality Constraints 
 
 The functions appearing in Eqs. (4.3) and (4.4) are expressions involving design 
characteristics and operating parameters or variables of the components as well as the 
system as a whole. For example, the required mass flow rate of steam in a steam turbine is 
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given as a function of the power output and the properties of steam at the inlet and outlet of 
the turbine. On the other hand, the safety and operability of the system impose inequality 
constraints such as the following: speed of revolution not higher than a certain limit; quality 
(dryness) of steam at the exit of the steam turbine not lower than a certain limit, etc.  
 The set of equality and inequality constraints is derived by an analysis of the system 
and constitutes the mathematical model of the system. Models may initially be developed at 
the level of each component, which are then integrated to form the model of the whole 
system.  
 A word of caution: describing reality by mathematics is not an easy task and it is often 
accompanied by simplifying assumptions, which introduce inaccuracies. This is mentioned 
not in order to deter one from applying modeling and optimization techniques, but to make 
it clear that the solution (synthesis, design or operation point) reached is optimal only under 
the assumptions made in modeling the system; and it is as close to the real optimum as any 
discrepancies between model and reality allow. However, most probably, if a care has been 
taken, it is closer than a decision based only on past experience or similar preceding 
designs. 
 
 
 
5 MATHEMATICAL METHODS FOR SOLUTION  
 OF THE OPTIMIZATION PROBLEM 
 
 In spite of their apparent generality, there is no single method available for solving 
efficiently all the optimization problems stated by Eqs. (4.1) � (4.4). A number of methods 
have been developed for solving different types of optimization problems. They are known 
as mathematical programming methods and they are usually available in the form of a 
mathematical programming algorithm.  
 
 
5.1 Classes of Mathematical Optimization Methods 
 
 Optimization problems and the techniques developed for their solution can be 
classified in several ways, depending on the criterion. The classification is very useful from 
the computational point of view, because there are many special methods available for the 
efficient solution of particular classes of problems.  
 
 
 5.1.1 Constrained and unconstrained programming 
 Any optimization problem can be classified as constrained or unconstrained, 
depending on whether or not constraints exist in the problem.  
 
 
 5.1.2 Search and calculus (or gradient) methods 
 A search method uses values of the objective function in order to locate the optimum 
point, with no use of derivatives. On the contrary, calculus methods use first and (some of 
them) second derivatives; this is why they are called also gradient methods. Search methods 
calculate the values of the objective function at a number of combinations of values of the 
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independent variables and seek for the optimum point. The search may be random or 
systematic, the second one usually being more efficient.  
 In general, gradient methods converge faster than the search methods, but in certain 
cases they may not converge at all. 
 If the objective function is continuous, by applying a search method the exact 
optimum can only be approached, not reached, by a finite number of trials, because only 
discrete points are examined. However, the region, in which the optimum point is located, 
can be reduced to a satisfactorily small size at the end of the procedure. On the other hand, 
there are problems for which search methods may be superior to calculus methods, as for 
example in optimization of systems with components available only in finite sizes.  
 
 
 5.1.3 Linear, nonlinear, geometric and quadratic programming 
 This classification is based on the nature of the equations involved. If the objective 
function and all the constraints are linear functions of the independent variables, then a 
linear programming (LP) problem is at hand. If at least one of the functions (no matter 
whether it is the objective function or one of the constraint functions) is nonlinear, then the 
problem is a nonlinear programming (NLP) problem.  
 A geometric programming (GMP) problem is one in which the objective function and 
the constraints are expressed as posynomials in x. A function f(x) is called a posynomial, if 
it has the form  
 
  N1 N211 12 Nn1n a aa a aa

1 n N n1 2 1 2f ( ) c x x ...x ... c x x ...x= + +x  (5.1) 
 
where ci and aij are constants and ci > 0, xj >0. 

 A quadratic programming (QP) problem is a nonlinear programming problem with a 
quadratic objective function and linear constraints.  
 
 
 5.1.4 Integer- and real-valued programming 
 This classification is based on the values permitted for the independent variables. If 
some or all of the independent variables of an optimization problem are restricted to take on 
only integer (or discrete) values, then the problem is called an integer programming (IP) 
problem. If all the independent variables are permitted to take any real value, then the 
optimization problem is called a real-valued programming problem.  
 The existence of integer variables in linear and nonlinear programming problems 
leads to mixed integer linear programming (MILP) and mixed integer nonlinear 
programming (MINLP) problems, respectively.  
 
 
 5.1.5 Deterministic and stochastic Programming 
 If some or all of the prespecified parameters and/or independent variables are 
probabilistic (nondeterministic or stochastic), then the optimization problem is a stochastic 
programming problem. Otherwise, it is a deterministic programming problem.  
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 5.1.6 Separable programming 

 A function f(x), x = (x1, x2, �, xn), is called separable if it can be expressed as the 
sum of n single-variable functions: 
 

  
n

i i
i 1

f ( ) f (x )
=

= ∑x  (5.2) 

 
A separable programming problem is one in which the objective function and the 
constraints are separable functions.  
 
 
 5.1.7 Single and multiobjective programming 
 Depending on the number of objective functions, optimization problems can be 
classified as single-objective or multiobjective programming problems. In most of the 
problems there is no single point x* that satisfies all the objectives simultaneously. 
Therefore, there is usually need of a compromise, often subjective.  
 
 
 5.1.8 Dynamic programming and calculus of variations 
 Dynamic programming (DP) or calculus of variations (COV) is applied when an 
optimal function rather than an optimal point is sought. The calculus of variations seeks a 
function that optimizes an integral; in a single variable, the problem is stated as 
 

  
2

1

x

y x
min I F(x, y, y ', y '')dx= ∫  (5.3) 

 

where  y=y(x) is the function sought, F is a known function and    
2

2
dy d yy ' , y ''
dx dx

= =  

 Dynamic programming is applicable to staged processes or to continuous functions 
that can be approximated by staged processes. Thus, the decision variables are sought for 
which, for a specified input to stage n and a specified output from stage 1, the summation  

  
n

i
i 1

f (y)
=
∑    

is optimum. 

 COV and DP are both methods to determine y(x). Which method is precise and which 
is an approximation depends on the problem. If, for example, the velocity of a vehicle is 
continuously adjusted during a trip to minimize the total fuel consumption, COV is a 
precise representation and DP is an approximation (since it would represent the varying 
speed as a series of steps). If, however, the problem were to optimize the sizes of a series of 
heat exchangers, DP would be the precise method and COV an approximation.  
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 5.1.9 Genetic Algorithms 
 Genetic Algorithms (GAs) have been developed by J. Holland in an attempt to 
simulate growth and decay of living organisms in a natural environment. Even though 
originally designed as simulators, GAs proved to be a robust optimization technique. 
Philosophically GAs are based on the concepts of biological evolution (natural genetics and 
natural selection) and Darwin�s theory of survival of the fittest. The basic elements of 
natural genetics, i.e., reproduction, crossover and mutation, are used in the genetic search 
procedure. The main characteristics of the GAs, which highlight also their differences from 
the traditional methods of optimization, are the following: 
 
1. A population of points (instead of a single point) inside the optimization space, 

selected randomly, is used to start the procedure. Since several points are used as 
candidate solutions, GAs are less likely to be trapped at a local optimum.  

2. The GAs use only the values of the objective function. The derivatives are not used.  
3. In GAs the decision variables are represented as strings of binary variables that 

correspond to the chromosomes in natural genetics. Any type of variables, either 
discrete (e.g. integers) or continuous, can be handled. For continuous variables, the 
string can be selected so that the desired resolution is achieved.  

4. The value of the objective function of each string in a population plays the role of 
fitness in natural genetics.  

5. A new population is generated (reproduction) by applying randomized crossover and 
mutation on the old one. The value of the objective function is used so that �weak� 
strings are dropped out, while �strong� strings give more offsprings in the new 
population. The procedure is repeated until no further improvement is achieved.  

 
 The aforementioned show that GAs are appropriate for problems with mixed discrete-
continuous variables and discontinuous and non-convex decision spaces. Furthermore, in 
most cases they have a high probability in finding the global optimum.  
 
 
 5.1.10 Simulated Annealing  
 Simulated annealing is a combinatorial optimization technique based on random 
evaluation of the objective function. The name of the method is derived from the thermal 
annealing of the solids. The method proceeds as follows. Let xi be the current point 
(vector). Random moves are made along each coordinate, in turn. The new coordinate 
values are uniformly distributed around the corresponding coordinate of xi. One half of 
these intervals along the coordinates are stored as the step vector si. A candidate decision 
vector xi is accepted or rejected according to a criterion known as the metropolis criterion: 
 

If  ∆f ≤ 0, accept the new point and set xi+1 = x. Otherwise, accept the new point with 
a probability of  

 
  f / kTP( f ) e−∆∆ =  (5.4) 
 
where  i 1f f ( ) f ( )+∆ = −x x , k is a scaling factor called Boltzmann’s constant, and T is a 
parameter called temperature.  
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 The value of k influences the convergence characteristics of the method. Various 
cooling schedules, defining the variations of k and T from one iteration to the other have 
been studied. A high initial temperature T0 is selected and then it is gradually reduced. 
Although the method requires a large number of function evaluations to find the optimum 
solution, it will find the global optimum with high probability, even for ill-conditioned 
functions with numerous local minima.  
 

 5.1.11 Other methods 
 In addition to the aforementioned, there are optimization techniques based on neural 
networks, as well as methods for optimization of fuzzy systems. However, their description 
is beyond the limits of this lecture. 
 
 
5.2 Basic Principles of Calculus Methods 
 
 The classical methods of optimization are analytical and make use of differential 
calculus to locate the optimum points. They are applicable on problems with continuous 
and differentiable functions. Many practical problems either do not satisfy these 
requirements or they are expressed by a system of equations, which cannot be solved 
analytically. In such cases there is need of numerical methods for their solution. A study of 
the calculus methods of optimization is useful not only for the cases these methods are 
applicable, but also because they form the basis for most of the numerical optimization 
techniques. Only the basic principles are presented in the following.  
 
 5.2.1 Single-variable optimization 
 A function f(x) is said to have a relative or local minimum at x* if  f (x*) f (x * ε)≤ +  
for all sufficiently small positive and negative values of ε . A function f(x) is said to have 
an absolute or global minimum at x* if  f (x*) f (x)≤  for all x in the domain over which 
f(x) is defined. Similar definitions are applicable for points where f(x) is maximized. A 
function with more than one minimum or maximum point is called multimodal. Figure 1 
shows examples of local and global optimum points.  

A1.

.

.

.
.

A2

A3

B1

B2

x
a b

f(x)
A1, A2, A3  : Relative maxima
              A2 : Global maximum
       B1, B2 : Relative minima
              B1 : Global minimum

 
Fig. 5.1.  Local and global optimum points. 
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Theorem 1: Necessary condition. 
 Necessary condition for x* to be a local minimum or maximum of f on the open 
interval (a, b) is that  
 
  f '(x*) 0=  (5.5) 
 
The condition is necessary in the sense that, if it is not satisfied, x* is neither a minimum 
nor a maximum, but if it satisfied, there is no guarantee that x* is a minimum or maximum; 
it may be an inflection point (Fig. 5.2). A point x*, where Eq. (5.5) is satisfied, is called 
stationary point (Fig. 5.2). 
 

f(x)

x

global minimum

inflection point

local minimum

global maximum

 
 

Fig. 5.2.  Stationary points. 
 
 
Theorem 2: Sufficient condition. 
 Let all the derivatives of a function up to order (n-1) be equal to zero and that the nth 
order derivative is nonzero: 
 
  (n 1)f '(x*) f ''(x*) ... f (x*) 0−= = = = ,                  (n)f (x*) 0≠  (5.6) 
 

where 
n

(n)
n

d f (x)f (x)
dx

=  (5.7) 

 
If n is odd, then x* is a point of inflection. 
If n is even, then x* is a local optimum. Moreover: 
 If   (n)f (x*) 0> ,   then x* is a local minimum. 

 If   (n)f (x*) 0< ,   then x* is a local maximum. 
 
Notes.  
1.  The end points of the interval [a, b] are not covered by the preceding theorems, i.e., 

points x=a and x=b may be optimum points even if the necessary and sufficient 
conditions are not satisfied.  
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2. Theorems 1 and 2 may not hold for optimum points where the derivatives are not 
uniquely defined.  

  
Example 
 In a two-stage compressor the gas leaving the first stage passes through a heat 
exchanger where it is cooled down to its initial temperature T1, and then it enters the second 
stage. If the total pressure ratio is r, determine the pressure ratio r1 of the first stage that 
minimizes the input work to the compressor. For simplicity, assume isentropic compression 
in both stages. 
 
Solution.  The compression work per unit mass of gas is given by the equation 
 

  
γ

γ
p 1 1

1

rw c T r 2
r

   = + −    
 

 
where   γ (k 1) / k= −  
 k specific heat ratio: p vk c / c=  

 pc  specific heat at constant pressure, 

 vc  specific heat at constant volume.  
 
The necessary condition to minimize w is:  1dw / dr 0= . Since pc  and T1 are constant, the 

condition is equivalent to 1df / dr 0= , where  
 

  
γ

γ
1

p 1 1

w rf r 2
c T r

 
≡ = + − 

 
 

 

The condition  γ-1 -γ-1γ
1 1

1

df γr r γr 0
dr

= − =  

 
results in   *

1r r=  
 

The second derivative of f is 
2

γ-2 -γ-2γ
1 12

1

d f γ(γ-1)r γ(γ+1)r r 0
dr

= + >  

i.e., it is positive for every value of r1, including *
1r  (note that r>1, r1>1). Consequently, *

1r  
is a minimum point of f and w.  
 
 
 5.2.2 Multi-variable optimization with no constraints 
 The necessary and sufficient conditions are extended to optimization problems with 
many decision variables, initially with no constraints. Before stating the theorems 
(optimality conditions), there is need of certain definitions. 
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Definitions 

 The first derivatives of a function f(x) of n variables are written as  
  

  ( ) ( ) ( ) ( )
1 2 n

f f f
f , , ,

x x x
∂ ∂ ∂ 

∇ =  ∂ ∂ ∂ 

x x x
x …  (5.8) 

 
where ( )f∇ x  is treated as an n-component column vector (or matrix).  
 The matrix of second partial derivatives of f(x), which is called Hessian matrix, is 
written  

 ( ) ( ) ( )

2 2 2

2
1 2 1 n1

2 2 2

2 2
f 2 1 2 n2

2 2 2

2
n 1 n 2 n

f f f
x x x xx

f f f
F H f x x x xx

f f f
x x x x x

 ∂ ∂ ∂
 ∂ ∂ ∂ ∂∂ 
 ∂ ∂ ∂ 

≡ ≡ ∇ = ∂ ∂ ∂ ∂∂ 
 
 
 ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂  

x x x

…

…

" " "

…

 (5.9) 

 
 Principal minor of order k of a symmetric matrix n×n is the matrix, which is derived 
if the last n-k lines and columns of the initial matrix are deleted. Every n×n matrix has n 
principal minors.  
 If A is an n×n matrix and z is an n-component vector, i.e., ( )T

1 2 nz , z , , z=z … , then 
matrix A is  

 positive definite if for every  z≠0 it is zTAz > 0 
 positive semidefinite if for every  z≠0 it is zTAz ≥ 0 
 negative definite if for every  z≠0 it is zTAz < 0 
 negative semidefinite if for every  z≠0 it is zTAz ≤ 0 
 indefinite if for some  z it is zTAz > 0 
  and for other z it is zTAz < 0 
 
A practical rule to determine the type of a matrix A is the following. The principal minor of 
order k is given the symbol kA . Matrix A is 

 positive definite if for every  k = 1, 2, �, n it is kA  > 0 

 positive semidefinite if for every  k = 1, 2, �, n it is kA  ≥ 0 

 negative definite if the value of kA   has the sign (-1)k 

 negative semidefinite if the value of kA   has the sign (-1)k or it is zero. 
 
Theorem 3: Necessary conditions. 

 Necessary conditions for an interior point x* of the n-dimensional space nRΩ ⊂  to 
be a local minimum or maximum of f(x) is that  
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 ( )f 0∗∇ =x  (5.10) 

and 
 ( )2 f ∗∇ x  is positive semidefinite. (5.11) 

 
If Eq. (5.10) is satisfied, then x* is a minimum, maximum or saddle point. A saddle point is 
the extension of the inflection point to the n-dimensional space. A visualization of the 
saddle point in the two-dimensional space (n=0) is given in Fig. 5.3. 
 

f(x1,x2)

x2

x1

x*

 
 

Fig. 5.3.  Saddle point: x*. 
 
 
Theorem 4: Sufficient conditions. 

 If an interior point x* of the space nRΩ ⊂  satisfies Eq. (5.10) and ( )2 f ∗∇ x  is 

positive (or negative) definite, then x* is a local minimum (or maximum) of f (x). 
 
 
 5.2.3 Multi-variable optimization with equality constraints (Lagrange theory) 
 The optimization problem is stated for this case as follows:  
 
 ( )min f

x
x  (5.12a) 

subject to 
 ( )ih 0, i 1, 2, , m= =x …  (5.12b) 
 
It is converted to a problem with no constraints by means of the Lagrangian function:  
 

 ( ) ( ) ( )
m

i i
i 1

L , f h
=

= + λ∑x λ x x  (5.13) 

 
where  ( )1 2 m, , ,= λ λ λλ …   are the Lagrange multipliers. 
 The necessary conditions are:  
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 ( )L , 0∗ ∗∇ =x x λ  (5.14a) 

 ( )L , 0∗ ∗∇ =λ x λ  (5.14b) 

 
Equation (5.14b) is, in fact, a restatement of the equality constraints, Eq. (5.12b). The 
system of Eq. (5.14) consists of n+m equations, and its solution gives the values of the n+m 
unknown x* and λ*. 
 The sufficient conditions are stated in a similar way as in Theorem 4, where 

( )2 L ,∗ ∗∇ x x λ  is used, instead of ( )2 f ∗∇ x . 

 
 
 5.2.4 The general optimization problem (Kuhn - Tucker theory) 
 Lagrange�s theory has been extended by Kuhn and Tucker in order to solve problems 
with both equality and inequality constraints, as stated by Eqs. (4.1) � (4.4).  
 
Definitions 

 A point x* which satisfies all the equality and inequality constraints is called a 
feasible point. 
 A point x* which satisfies the equality constraints ( )ih 0, i 1, 2, , m= =x … , is called 

a regular point of the constraints, if the gradient vectors ( )ih , i 1, 2, , m∗∇ =x … , are 

linearly independent. 
 An inequality constraint ( )jg 0∗ ≤x  is called active at the point x*, if it is 

( )jg 0∗ =x . 

 A point ∗ ∈Ωx  is called strict local minimum of f(x) in Ω , if there exists an ε 0≥  

such that f(x) ≥ f(x*) for every ∗ ∈Ωx  in a distance ε  from x* (i.e., ε∗− <x x ). 

 
Kuhn – Tucker conditions (necessary conditions) 

 Let x* be a local minimum of the optimization problem (4.1) � (4.4) and a regular 
point of the equality and active inequality constraints. Then, there exists a vector mR∈λ  
and a vector pR∈µ , with 0≥µ , such that 
 
 ( ) ( ) ( )f 0∗ ∗ ∗∇ + ⋅ ∇ + ⋅ ∇ =x λ h x µ g x  (5.15a) 

 ( ) 0∗⋅ =µ g x  (5.15b) 

where 
 ( )1 2 mh , h , , h=h …  

 ( )1 2 pg , g , , g=g … . 
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Sufficient conditions 

 Sufficient conditions that a feasible point x* be a strict local minimum of the 
optimization problem is that there exist m pR , R∈ ∈λ µ , 0≥µ , such that Eqs. (5.15) are 
satisfied and the Hessian matrix  
 

 ( ) ( ) ( ) ( )
pm

i i j j
i 1 j 1

F λ H µ G∗ ∗ ∗ ∗

= =
= + +∑ ∑x x x xLLLL  (5.16) 

 
is positive definite at every point z of the subspace  
 
 { }jM : ( *) 0, g ( *) 0 j J= ∇ ⋅ = ∇ ⋅ = ∀ ∈z h x z x z  (5.17a) 
 
where 
 ( ){ }j jJ j : g 0, µ 0∗= = >x  (5.17b) 

i.e. 
 ( )T 0∗ >z x zLLLL  (5.18) 

 
 
5.3 Nonlinear Programming Methods 
 
 Application of the theory presented in Subsection 5.3 leads to a system of equations 
(obtained by the necessary conditions) with respect to x. The solution of this system gives 
the optimum point x*. However in real-world problems, the analytic solution is often 
difficult or even impossible. To overcome these difficulties, numerical methods have been 
and continue being developed. Many of these do not use the necessary conditions, but they 
exploit certain properties of the functions.  
 Many optimization methods have been developed throughout the years. Only five of 
these will be presented in brief in the following, which have been successful in solving 
problems of energy systems optimization. All five methods belong to �classical� 
mathematical programming, i.e. they are not based on genetic algorithms, simulated 
annealing or other evolutionary techniques. For more complete information, the interested 
reader may study the bibliography [e.g., Luenberger 1973, Reklaitis et al. 1983, Rao 1996, 
Papalambros and Wilde 2000].  
 It is clarified that linear programming methods are not presented here, because most 
of the energy systems optimization problems are nonlinear.  
 
 
 5.3.1 Single-variable nonlinear programming methods 
  
 Golden section search 
 The method uses values of the function with no need of derivatives.  
 Before applying the method, there is need to determine the interval [a, b], where a 
minimum point x* exists. This can be done by a random search or, more systematically, by 
the Swann method [Reklaitis et al. 1983]. Then, the optimum point is determined as 
follows. 
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 The length of the initial interval containing the optimum point is 
 
   L0 = b � a 
 
The function f(x) is evaluated at the two points: 
 
  ( )1 0x α 1 τ L= + −  (5.19a) 

 2 0x α τL= +  (5.19b) 
 
where τ  is the golden section ratio, obtained as the positive solution of the equation 
  

 21 τ τ 1 τ τ
τ 1
− = ⇒ − =  (5.20) 

i.e.: 

 1 5τ 0,61803...
2

− += =  

 
If  f(x1) < f(x2),  then x* is located in the interval  (a, x2). 
If  f(x1) ≥ f(x2),  then x* is located in the interval  (x1, b). 
 

f(x)

xa bx1 x2

L0

τL0

τL0(1-τ)L0

(1-τ)L0

x3

τ2L0

τ

1-τ

 
 

Fig. 5.4.  Golden section search. 
 
 
Whichever the new interval is, its length is 
 
   1 2 1 0L x a b x = τL= − = −  
 
The procedure is repeated. After N iterations, the interval of uncertainty, i.e. the interval 
containing the optimum point, has a length of 
 
   N

N 0L τ L=  (5.21) 
 
The iterations are terminated when one or more of the convergence criteria are satisfied: 
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 (i) N ≥ Nmax (large number of iterations), 
(ii) N 1L ε≤  (sufficiently small interval of uncertainty), 

(iii) ( ) ( )N 1 N 2f x f x ε+ − ≤  (negligible improvement in the value of the objective 

function from one iteration to the other). 
 
If a satisfactory interval of uncertainty, LN, is specified, then the number of iterations 
needed is determined from the solution of Eq. (5.21) with respect to N: 
 

 ( )N 0n L L
N

n τ
=
#
#

 (5.22) 

 
 Newton � Raphson method 
 The method requires that f(x) is twice differentiable. It begins with a point x1 that is 
an initial estimate of the stationary point, i.e. of the solution of the equation ( )f x 0′ = . A 

linear approximation of the function ( )f x′  is constructed, and the point at which the linear 
approximation becomes equal to zero (the straight line crosses the horizontal axis) is taken 
as the next trial point, x2 (Fig. 5.5). Thus, the series of trial points is determined by the 
equation 
 

 ( )
( )

k
k 1 k

k

f x
x x

f x+
′

= −
′′

 (5.23) 

 
which converges to x*, as shown in Fig. 5.5. 
 

x*

f'(x)

x

x1

x2x3

 
 

Fig. 5.5.  Newton � Raphson method (convergence). 
 
 
 One or more of the following convergence criteria are used for termination of the 
procedure: 

 (i) ( )k 1 1f x ε+′ ≤  
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(ii) k 1 k 2x x ε+ − ≤  

(iii) ( ) ( )k 1 k 3f x f x ε+ − ≤  

where 1 2 3ε , ε , ε  are sufficiently small numbers. 
 When it converges, the Newton � Raphson method is the fastest of all. However the 
form of ( )f x′  and the starting point may make the procedure to diverge instead of 
converging to the stationary point. Such a case is illustrated in Fig. 5.6: if the starting point 
is to the right of x0, then the successive approximations lead away from the stationary point 
x*. 
 

f'(x)

xx1 x2 x3x0x*
 

 
Fig. 5.6.  Divergence of Newton � Raphson method. 

 
 
 One more disadvantage of the method is that, if the function ( )f x′  is very flat, a point 
xk+1 may satisfy all the three aforementioned criteria of convergence and, consequently, the 
iterations are terminated, but the point xk+1 may still be far from the optimum x*. 
 
 Modified Regula Falsi method (MRF) 
 Two initial points a0 and b0 are determined such that f(x) is continuous on [a0, b0] and  

 ( ) ( )0 0f a f b 0′ ′⋅ <  

Then it is 0 0a x b∗< <  
 
The procedure is illustrated in Fig. 5.7 and consists of the following steps [Conte and de 
Boor, 1980]: 
 
1. Set ( ) ( )0 0 0 0F f a , G f b , x a′ ′= = =  
 
2. For   n = 0, 1, 2,�   until convergence  

  calculate n n
n 1

G a Fbx
G F+

−=
−

 (5.24) 

  If ( ) ( )n n + 1f a f x 0′ ′⋅ ≤ ,   set 
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   ( )n + 1 n n + 1 n + 1 n + 1a a , b x , G f x′= = =  

   If also  ( ) ( )n n + 1f x f x 0′ ′⋅ > ,   set   F = F/2 

  If ( ) ( )n n + 1f a f x 0′ ′⋅ > ,   set 

   ( )n + 1 n + 1 n + 1 n n + 1a x , b b , F f x′= = =  

   If also ( ) ( )n n + 1f x f x 0′ ′⋅ > ,   set   G = G/2 

  The function  ( )f x 0′ =   has a solution in the interval [an+1, bn+1]. 

The following criteria of convergence can be used: 

(i) ( )n 1 1f x ε+′ ≤  

(ii) n 1 n 1 2b a ε+ +− ≤  

(iii) ( ) ( )n 1 n 3f x f x ε+ − ≤  

 
 

f '(x)

x

a0 a1 a2=a3

b0=b1=b2b3

 
 

Fig. 5.7.  Modified Regula Falsi method. 
 
 
 Advantages of the method are the guaranteed convergence and bracketing of the 
solution in a known and sufficiently small interval of uncertainty [an+1, bn+1]. 
 
 
 5.3.2 Multi-variable nonlinear programming methods 
 Relatively simple optimization problems can be solved by one of the single-variable 
methods described in §5.3.1, which is applied on one direction after the other, in a cyclic 
approach. Such a procedure has been successful in optimization problems of energy systems 
with up to six independent variables and functions rather smooth. Even in these cases, 
however, it may be preferable (at least from the point of view of speed) to apply one of the 
many methods, which have been developed for multi-variable nonlinear optimization 
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problems. Only the two most successful of these methods for energy systems optimization 
are described in brief in the following. 
 
 Generalized Reduced Gradient method (GRG) 
 The method is an extension of the reduced gradient method that was developed 
initially for solving problems with linear constraints only. It is based on the idea that, if an 
optimization problem has n independent variables x and m equality constraints, then, at 
least in theory, the system of m equations can be solved for m of the independent variables. 
Thus, the number of independent variables is reduced to n-m, the dimensionality of the 
optimization problem is decreased and the solution is facilitated. 
 In the GRG method, the optimization problem is initially stated as follows: 
 
 ( )min f x  (5.25a) 
subject to 
 ( )jh 0, j 1, 2, ,m= =x …  (5.25b) 

 ( )kg 0, k 1,2, , p≤ =x …  (5.25c) 

 L U
i i ix x x , i 1, 2, , n≤ ≤ = …  (5.25d) 

 
where L

ix  and U
ix  are the lower and upper limits of xi.  By adding a nonnegative slack 

variable to each of the inequality constraints, the problem can be stated as 
 
 ( )min f x  (5.26a) 
subject to 
 ( )jh 0, j 1, 2, ,m= =x …  (5.26b) 

 ( )k n kg x 0, k 1, 2, , p++ = =x …  (5.26c) 

 L U
i i ix x x , i 1, 2, , n≤ ≤ = …  (5.26d) 

 n kx 0, k 1,2, , p+ ≥ = …  (5.26e) 
 
The new problem has n+k variables and can be written in a general form as 
 
 ( )min f x  (5.27a) 
subject to 
 ( )j 0, j 1,2, ,m pϕ = = +x …  (5.27b) 

 L U
i i ix x x , i 1, 2, , n + p≤ ≤ = …  (5.27c) 

 
The lower and upper bounds on the slack variables xi, (i = n+1, n+2, �, n+p), are taken as 
0 and a large number (infinity), respectively.  
 Of the n+p variables, m+p can be evaluated by the solution of the system of equality 
constraints, Eq. (5.27b). For this purpose, the set of variables x is divided into two subsets: 
 
 ( ) ( ),=x y z  (5.28a) 
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 ( ) 1 2 n my , y , , y −=y …  (5.28b) 

 ( ) 1 2 m pz , z , , z +=z …  (5.28c) 
where 
 y independent variables, 
 z dependent variables, i.e. they depend on the independent variables so, that the 

equality constraints, Eq. (5.27b) are satisfied. 

The independent variables are called also decision variables. The dependent variables are 
called also state variables.  
 The generalized reduced gradient, GR, is defined for the problem (5.27) as: 
 

 ( )
R

d f
d

≡
x

G
y

 (5.29) 

It is known that a necessary condition for the existence of a minimum of an unconstrained 
function is that the components of the gradient (first derivatives) are zero. Similarly, a 
constrained function obtains its minimum value when the appropriate components of the 
reduced gradient are zero. In fact, the generalized reduced gradient GR can be used to 
generate a search direction towards the optimum point. A complete mathematical 
description of the method and the algorithmic steps are presented in [Rao, 1996]. 
 
 
 Sequential Quadratic Programming (SQP) 
 The sequential quadratic programming is one of the most recently developed and one 
of the best methods of optimization.  
 An optimization problem is called a problem of quadratic programming, if it consists 
of a quadratic objective function and linear constraints. It is stated as: 
 

 
( ) T

n n n

j j ij i j
j 1 i = 1 j 1

min f

c x d x x
= =

= + =

= +∑ ∑ ∑

x Cx x Dx
 (5.30a) 

 
 ≤A x B  (5.30b) 

 0≥x  (5.30c) 
 
where [ ]1 2 nx , x , , x=x …  

 [ ]1 2 nc , c , , c=C …  

 [ ]1 2 mb , b , , b=B …  
 

 

11 12 1n 11 12 1n

21 22 2n 21 22 2n

m1 m2 mn n1 n2 nn

a , a , , a d , d , , d
a , a , , a d , d , , d

a , a , , a d , d , , d

   
   
   = =
   
   
      

A D

… …
… …

" " " " " "
… …
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It is considered that D is positive definite (for minimization problems), and consequently 
f(x) is strictly convex. Furthermore, due to the linear constraints, the space of feasible 
solutions is convex, and consequently the local optimum is also global optimum. For the 
same reasons, the necessary optimality conditions are also sufficient.  
 For the solution of the problem, the inequality constraints are converted to equality 
constraints by means of slack variables, the Lagrangian function is formed, and the 
necessary conditions are written. Since the objective function is of second degree 
(quadratic) and the constraints are linear, the necessary conditions lead to a system of linear 
equations, which is solved easily. 
 The SQP approach tries to exploit the aforementioned special features of the quadratic 
programming problems in order to solve the general nonlinear programming problem. At 
each iteration point x(k), an appropriate quadratic programming problem is stated that is an 
approximation to the real problem. A sequential application of this technique leads from 
point x(k) to point x(k+1), until convergence to the optimum point x*. A complete 
presentation of the procedure and application examples appear in [Reklaitis et al. 1983, Rao 
1996, Papalambros and Wilde 2000]. 
 
 
5.4 Decomposition 
 
 If an optimization problem is of separable form, i.e., if it can be written in the form 
 

   
K

k k
k 1

min f ( ) f ( )
=

= ∑
x

x x  (5.31a) 

subject to 
 
  k k( ) 0=h x  k = 1, 2, �, K (5.31b) 
 
  k k( ) 0≤g x  k = 1, 2, �, K (5.31c) 
 
where the set x of  the independent variables is partitioned into k disjoint sets, 
 
   1 2 k K, , ..., , ...,=x x x x x  (5.32) 
 
then the problem can be decomposed into K separate subproblems: 
 
  

k
k kmin f ( )

x
x  (5.33a) 

subject to 
 
  k k( ) 0=h x  (5.33b) 
 
  k k( ) 0≤g x  (5.33c) 
 
Each subproblem is solved independently from the other subproblems and the solution thus 
obtained is the solution of the initial problem too. Since each subproblem has a smaller 
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number of independent variables and constraints than the whole problem, its solution is 
much easier; this is the main reason for applying decomposition.  
 The main application is the decomposition of a system into subsystems (or 
components), in which case fk and xk are the objective function and the set of the 
independent variables for the kth subsystem (or component). Another application of 
decomposition is in operation optimization over a number of independent time intervals (if 
it can be assumed that the operation in a time interval does not affect the operation in other 
time intervals). 
 
 
5.5 Procedure for Solution of the Problem by a  
 Mathematical Optimization Algorithm 
 
 Analytical application of the necessary and sufficient conditions is possible in rather 
simple optimization problems. For most of the optimization problems in energy systems, a 
numerical solution is necessary. Several general-purpose (i.e., not restricted to energy 
systems) algorithms have been developed, based on methods mentioned in Subsections 5.2 
and 5.3, and related software is available. The most efficient and robust algorithms for 
nonlinear problems with many decision variables have proved to be those based on the 
generalized reduced gradient (GRG) method and on sequential quadratic programming 
(SQP). A few sources of optimization software are given in the Appendix.  
 The computer program, that the user has to develop for the solution of the 
optimization problem, consists of the following parts.  

Main program: It reads the values of the parameters, the initial values of the independent 
variables (starting point) and the lower and upper bounds on the constraint functions. Then, 
it calls the optimization algorithm.  

Simulation package (in the simplest case, a double precision function): For every set of 
values of the independent variables, it evaluates the dependent variables and the objective 
function. It is called by the optimization algorithm.  

Constraints subroutine: It determines the values of the inequality constraint functions. It is 
called by the optimization algorithm. The equality constraint functions could be included in 
this subroutine, but it has been found more convenient and efficient to include these in the 
simulation package.  

Optimization algorithm: Starting from the given initial point, it searches for the optimum. 
It prints intermediate and final results, messages regarding convergence, number of function 
evaluation, etc. 
 
 Nonlinear programming algorithms such as GRG and SQP cannot automatically 
locate the global optimum, if the objective function is multimodal. There are two 
approaches to search for the global optimum: (a) The user may solve the problem repeatedly 
starting from different points in the domain where x is defined. Of course, there is no 
guarantee that the global optimum is reached. (b) A coarse search of the domain is first 
conducted by, e.g., a genetic algorithm. Then, the points with the most promising values of 
the objective function are used as starting points with a nonlinear programming algorithm in 
order to determine the optimum point accurately. The second approach has a high 
probability for locating the global optimum.  
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5.6 Multilevel Optimization 
 
 The synthesis-design-operation optimization of complex systems under time-varying 
operating conditions involves a large number of variables and constraints. The optimization 
problem may become intractable even by the most capable software and hardware available. 
Multilevel optimization may help in these cases.  
 In multilevel optimization, the problem is reformulated as a set of subproblems and a 
coordination problem, which preserves the coupling among the subproblems. Multilevel 
optimization can be combined with decomposition either of the system into subsystems or 
of the whole period of operation into a series of time intervals or both.  
 As an example, let the synthesis-design-operation optimization of an energy system 
be considered. The overall objective function can be written (constraints are not written 
here, for brevity) as 
 
  

,
min f ( , )
x z

x z  (5.34) 

 
where 
 x set of independent variables for operation, 
 z set of independent variables for synthesis and design (it specifies existence of 

components and the design characteristics of components and of the system as a 
whole). 

 
It is also considered that the period of operation consists of K time intervals independent of 
each other, the set x can be partitioned into K disjoint sets, Eq. (5.32), and an objective 
function can be defined for each time interval 
 
  

k
k kmin ( )φ

x
x  (5.35) 

 
The overall objective function f depends on k 'sφ , without necessarily being a simple 
summation of these. Then, the optimization problem is reformulated as a two-level 
problem, as follows.  
 
 
First-level problem 

For a fixed set z*, 
 Find  *

kx   that minimizes  k k( , *)φ x z ,  k = 1, 2, �, K. 
 
 
Second-level problem 
It is stated as follows: 
 Find a new z* which minimizes f ( *, )x z  where x* is the optimal solution of the first-

level problem.  The procedure is repeated until convergence is achieved. The iterative 
steps are the following (letter A or B indicates the first or second level, respectively). 

 
B1. Select an initial set of values zº for z.  
 A. Solve the K first-level optimization problems. For the first problem (k=1): 
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A1. Select an initial set of values o
1x  for x1. 

A2. Call the first-level optimization algorithm to solve the problem stated by 
Eq. (5.35) for k=1. The solution gives the optimum set *

1x . 
 Repeat steps A1 and A2 for k = 2, 3, �, K. Thus, the optimum vector x* is obtained.  
 
B2. Use the results of level A to evaluate the overall objective f, and check for 

convergence (i.e., whether the optimality criteria are satisfied). If convergence has not 
been reached, select a new set of z and go to step A1.  

 
Steps B1 and B2 are in fact performed by the second-level optimization algorithm.  
 
In practice, it has been often successful to use a genetic algorithm for level B and a 
nonlinear programming algorithm (e.g., GRG) for level A optimization.  
 
 
5.7 Modular Simulation and Optimization 
 
 Decomposition as described in Subsection 5.5 may often be impractical in complex 
systems, primarily due to the fact that the sets xk are not disjoint. The modular approach 
helps a lot in these cases.  
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of parameters
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Fig. 5.8.  Structure of the computer program for modular simulation and optimization. 
1-4: Simulation and local optimization modules. 

 
 
 The system is considered as composed of modules. A module may consist of more 
than one component, if it facilitates the solution. A simulation model is developed for each 
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module, which determines the dependent variables of the module as functions of the 
independent variables and the input dependent variables, i.e.,  
 
  r r ri r r ri( , ), ( , )= =y Y x y w W x y   
 
where 
 xr set of independent variables of module r (the sets xr need not be disjoint), 
 yri set of input dependent variables (coming from other modules), 
 yr set of output dependent variables of module r, i.e., of dependent variables which 

are used also by the simulation models of other modules or by the optimization 
algorithm, 

 wrset of dependent variables appearing in the simulation model of module r only.  
 
 The structure of the computer program and the optimization procedure are explained 
by means of Fig. 5.8, as follows. The parts of the computer program described above are 
included in the optimizer (Fig. 5.8). In addition, the program contains the simulation 
subroutines. For every set of values x, given by the optimization algorithm, the simulation 
subroutines are called one after the other in such a way that iterations among modules are 
avoided or reduced to the minimum possible. The output dependent variables yr are 
communicated to the simulation subroutines and the optimizer through common blocks. 
After a complete run of the simulation subroutines, the objective function is evaluated. The 
optimization algorithm updates the independent variables and the procedure is repeated 
until the convergence criteria are satisfied. If decomposition is applicable, then local 
optimization can be performed in one or more modules. 
 
 
5.8 Parallel Processing 
 
 Optimization problems with many independent variables and detailed simulation 
models may take days to be solved by a computer, which is discouraging to the designer or 
operator of an energy system. These problems can be solved more efficiently (at a fraction 
of the initial time) by using parallel computers, i.e., multiple processing units combined in 
an organized way such that multiple independent computations for the same problem can be 
performed concurrently.  
 The modular approach and the decomposition are particularly suited for parallel 
processing: the simulation and/or optimization of modules or subsystems can be performed 
on parallel processors, while the coordinating optimization problem (optimizer in Fig. 5.8) 
can be solved by the main processor. Parallel processing can be used also with multilevel 
optimization. For the structure presented in Subsection 5.6, level A optimization 
subproblems can be solved on parallel processors, while level B optimization is performed 
on the main processor.  
 
 
 
6. SPECIAL METHODS FOR OPTIMIZATION OF ENERGY 

SYSTEMS 
 
 The direct application of a mathematical programming method for the optimization of 
a complex energy system may often be inefficient or incapable of solving the problem. In 
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order to overcome this difficulty, special methods have been (and continue being) 
developed. They proceed first with a proper analysis of the system (thermodynamic, 
economic, environmental, etc.) the results of which are used to direct the solution towards 
the optimum point. Along the way, a pure mathematical optimization method (algorithm) 
may be applied, if necessary, as described in Section 5. Representative special methods are 
described in brief in the following.  
 
 
6.1 Methods for Optimization of Heat Exchanger Networks 
 
The design of heat exchanger networks (HEN) is the most advanced area in synthesis 
optimization. This is due to the importance of minimizing energy costs and improving the 
energy recovery in chemical processes. The HEN synthesis problem can be stated as 
follows: 
 

A set of hot process streams (HP) to be cooled, and a set of cold process 
streams (CP) to be heated are given. Each hot and cold process stream has a 
specified heat capacity flowrate while their inlet and outlet temperature can be 
specified exactly or given as inequalities. A set of hot utilities (HU) and a set of 
cold utilities (CU) along with their corresponding temperatures are also 
provided.  
Determine the heat exchanger network with the least total annualized cost.  

 
The solution of the optimization problem provides the 

• hot and cold utilities required, 
• stream matches and the number of heat exchangers, 
• heat load of each heat exchanger, 
• network configuration with flowrates and temperatures of all streams, and 
• areas of heat exchangers. 
 
Several methods have been developed since the 1960s for solving this problem. They can 
be classified in four main classes. 
 
 a. Heuristic methods 
 They attempt to synthesize very quickly one network using various heuristics (rules of 
thumb), which are the result of experience and of knowledge of various processes. The 
networks they lead to cannot be guaranteed to be the best, but experience has shown that 
they are close to optimum.  
 
 b. Search methods 
 When the number of hot and cold streams is increased, heuristic methods may not be 
very successful. A different approach is followed. First, a systematic way is developed for 
generating all possible heat-exchange networks for the given hot and cold streams. Then, a 
strategy is developed that evaluates a few networks to establish the direction for locating the 
optimum one. The tree-branching method, evolutionary synthesis, and the forward-
branching and bounding are among the methods in this class.  
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 However, the number of matches between the hot and cold streams grows so rapidly 
with the number of streams, that it is practically impossible to identify all possible matches, 
when a large number of streams is involved. Therefore, more efficient methods are needed. 
 
 c. Pinch method 
 The key concept of this method is the pinch point, i.e., the point (temperature) at 
which the temperature versus heat flowrate composite curve of the hot streams most closely 
approaches the temperature versus heat flowrate composite curve of the cold streams. If 
heat exchange takes place between streams above or below the pinch, but not along the 
pinch, then the requirements for hot and cold utilities are minimum. Thus, the best possible 
energy performance (target of minimum utility needs) is first predicted, before design. Next, 
a design, which satisfies this energy target is synthesized. Finally, the network is evolved 
towards minimum total cost. The method has been applied in hundreds of process industries 
resulting in energy savings typically in the range of 20-50%. It is described in detail in the 
publications by Linnhoff and his coworkers (representative publications are given in the 
bibliography). An instructive presentation with application examples appears also in the 
book by Bejan et al. (1996). The method has been further developed for optimization of 
utility systems, combined heat and power plants and heat pumps.  
 
 d. Mathematical programming methods 
 It can be argued that the decomposition of the HEN optimization problem into 
subtasks (minimization of utility needs, minimization of total cost) and the sequential 
solution (first, identification of the minimum utility design and, next, minimization of cost) 
may not lead to the real optimum (minimum cost) design.  
 In order to avoid these limitations, researchers in the late 1980s and early 1990s 
focused on simultaneous optimization approaches that attempt to treat the HEN synthesis 
problem as a single-task problem. Recent advances in theoretical and algorithmic aspects of 
optimization provide the tools needed for such a purpose. A superstructure is usually 
considered, and the optimal design is reached by applying a mixed integer nonlinear 
programming (MINLP) algorithm. This approach is presented in the book by Floudas 
(1995). Attempts have also been made to apply simulated annealing instead of MINLP 
algorithms.  
 
 e. Artificial Intelligence methods 
 It is a combination of the Heuristic, Pinch and Search methods. First, a suitable 
solution tree is developed, consisting not of all heat-exchange networks that can be 
constructed with the given streams mathematically, but only of those that abide by a set of 
physical and engineering rules. This tree by itself would already be strongly pruned. During 
its construction, though, AI methods are employed to further prune it by imposing formal 
constraints corresponding to "good" design practices, to the dictates of the Pinch method, 
and to proper Second Law considerations (basically, minimization of exergy losses). Cost 
considerations may be also included. The resulting set of solutions is an extremely slim tree, 
often consisting of only very few configurations among which the designer has then the 
choice. These methods have been proven to consistently give at least the same results of the 
other methods, with a much lesser computational effort on the part of the user. They are, 
though, as all Expert Systems, only as good as the Knowledge that has been formalized in 
their Knowledge Base [Sciubba and Melli 1998, Maiorano et al. 2002]. 
 



________________________________________________________________________________ 
OPTI_ENERGY: Methods of Energy Systems Optimization 29 

 
6.2 The First Thermoeconomic Optimization Method 
 
 Thermoeconomics appeared in the 1960s as a technique, which combines 
thermodynamic and economic analysis for the evaluation, improvement and optimization of 
thermal systems [Tribus and Evans 1962, Evans et al. 1966]. Economic considerations 
require a proper balance between an appropriate thermodynamic measure and capital 
expenditure, in order to achieve a minimum product cost. Introducing dissipation (exergy 
destruction) as a unified extensive measure, thermoeconomics considers the complex 
system as made up of a number of dissipative zones, for each of which the relative 
economic value of dissipation is estimated. A local balance between capital expenditure and 
dissipation is then made in each zone.  
 Two basic concepts are introduced: the concept of exergy and the concept of internal 
economy. Exergy provides a common basis for evaluation and comparison of processes, and 
a consistent way of evaluating dissipations. On the other hand, a structure of internal unit 
costs representing a fictitious internal economy is introduced to provide convenience in 
evaluating the overall relative economic values of local dissipations.  
 The balance between thermodynamic measures and capital expenditures is an 
economic feature, which applies to the complex plant as a whole and to each of its 
components individually. This feature makes it feasible to attain, in most cases, physical 
decomposition on the basis of a unified thermodynamic measure without violating the 
mathematical disciplines of optimization.  
 The method is presented in [El�Sayed and Aplenc 1970, El-Sayed and Evans 1970, 
El-Sayed and Tribus 1981]. 
 
 
6.3 The Functional Approach 
 
 The functional approach is an offspring of the thermoeconomic method described in 
the preceding subsection. It appeared initially under the name Thermoeconomic Functional 
Analysis (TFA), while further developments bear the names Intelligent Functional 
Approach (IFA) and Engineering Functional Analysis (EFA) [Frangopoulos 1983, 1987, 
1990, von Spakovsky and Evans 1993, Evans and von Spakovsky 1993]. The general 
formulation of the method as well as the special forms of decomposition are described in 
brief in the following. Further developments of decomposition can be found in [Munoz and 
von Spakovsky 2001]. 
 
 
 6.3.1 Concepts and definitions 
 A thermal power plant or a chemical plant can be considered as a �system�, i.e. �a set 
of interrelated units, of which no unit is unrelated to any other unit,� where �unit� is �a 
piece or complex of apparatus serving to perform one particular function� (in this case, 
apparatus is the system itself). A system can be viewed also as a �time-varying 
configuration of men, hardware, and operating procedures grouped together for the purpose 
of accomplishing a useful function(s)�. 
 The word �function� here has the following meaning: �Function, referable to anything 
living, material or constructed, implies a definite end or purpose that the one in question 
serves or a particular kind of work it is intended to perform�. Thus, �Functional Analysis� 
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does not imply that particular branch of mathematics, but it is the formal, documented 
determination of the functions of the system as a whole and of each unit individually. 
 It is appropriate here to distinguish between a unit and a component. For example, a 
cooling tower or a cooling water circulating pump are components in themselves. However, 
they may not be considered as separate units but, combined with the condenser, they may 
form only one unit with one function. The number of units in a plant is not unique; it 
depends on the available information and the requested results. The designer will stay at a 
resolution level, which is satisfactory for his objectives. He/she may go to a resolution level 
higher (more units), or lower (fewer units), if this serves better his/her objectives.  
 
 
 6.3.2 The Functional diagram of a system 
 The picture of a system in this analysis will be composed primarily of the units 
represented by small geometrical figures, and lines connecting the units, which represent 
the relations between units or between the system and the environment. Since the relations 
are established by distribution of the unit functions, (i.e. �services� or �products�), this 
picture will be called the �Functional Diagram� of the system. Which direction a function 
(�service�) goes will be indicated by arrows on the lines. 
 In the functional diagram, each unit is shown as in Fig. 6.1.  
 

r

r''ry ⋅

r'ry ⋅ r'''ry ⋅

ry
 

 
Fig. 6.1.  Unit. 

 
 
where 
 r the rth unit of the system ( r 1, 2, ..., σ= ), 
 ry  the product, i.e. the appropriate quantitative description of the function of 

unit r, 
 r'ry ⋅ , r''ry ⋅ ,� functions used by unit r, which come from other units of the system or the 

environment; in particular, the environment is represented by r = 0. 

It should be emphasized that a r'ry ⋅  (a line with an arrow pointing towards a unit) does not 
necessarily represent a stream (of mass, energy, etc.) entering the unit.  For example, 
exhaust gases of a boiler form a stream exiting the boiler, but the service of getting rid of 
exhaust gases is provided to the boiler by another unit. Similarly, if the boiler is to be 
penalized for environmental pollution, then the corresponding expenditure will depend on 
an appropriate measure of pollution, rk0y ⋅ , which is depicted as an arrow pointing toward 
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the unit (the subscript 0k·r denotes the kth function provided by the environment to the unit 
r). 
 There are cases where the functions of two or more units merge, and other cases 
where the function of a unit is distributed to more than one unit. They are represented by 
�junctions� and �branching points�, respectively (Figs. 6.2 and 6.3). 
 

 

...

r

r'ry ⋅ r''ry ⋅

ry

 

ry

r r 'y ⋅ r r ''y ⋅ ...
 

 Figure 6.2.  Junction. Figure 6.3.  Branching point. 
 
 A junction or a branching point is considered a fictitious unit, except if it corresponds 
to a real component of the plant. The following relationships are applicable. 
 

For a junction :  r
R

0'r
rr' yy =∑

=
⋅  ,      r σ+1, σ+2, ..., R=   (6.1) 

 
where R is the number of units and junctions. 
 

For a branching point :  ry = ∑
=

⋅
R

0'r
'rry , r = 1, 2,�, R (6.2) 

 
Using the rules established above, the functional diagram of a system can be drawn. The 
procedure will be demonstrated in another section by an example. 

 The functional analysis consists of two main actions: 
1. Identification of the functions of the system as a whole and of each unit individually. 
2. Drawing the functional diagram of the system. 
Additional actions are required when optimization is required, as it will be explained below. 
 
 
 6.3.3 Thermoeconomic Functional Analysis 
 The assessment of the performance of an energy system has to be based on a 
consistent consideration of benefits and hazards associated with the construction and 
operation of the system. For this purpose, the benefits and hazards have to be properly 
quantified and assigned economic values. Even though this may be an arduous task, it is 
considered here that it is completed to the maximum possible. An economic function, 
which fulfills these requirements, is the total cost for construction and operation of the 
system (life cycle cost), with benefits (e.g. revenue from products) taken into consideration 
as negative costs: 
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  ∑∑∑∑ ⋅⋅ Γ−Γ+=

r
0r

r k
rk0

r
rZF    (6.3) 

 
 On the right hand side of Eq. (6.3), the first term represents the capital cost of the 
system including fixed charges, maintenance, decommissioning, etc. The second term 
represents costs of resources and services supplied to the system by the environment, as 
well as penalties imposed on the system for hazards it causes to the environment (e.g. 
pollution). The third term represents revenue from products or services the system provides 
to the environment. 
 The terms in Eq. (6.3) are derived by an integration over time. If a steady-state 
operation can be assumed, at least in certain time intervals, cost rates can be used 
 
  ∑∑∑∑ ⋅⋅ Γ−Γ+=

r
0r

r k
rk0

r
rZF $$$$     (6.4) 

 
which very often facilitate the analysis. 
 It is important to point out that all the terms in Eqs. (6.3) and (6.4) can be evaluated 
either in monetary units or in physical units (e.g., energy, exergy). The latter case is known 
as the �physical economics� approach.  
 In the functional analysis, all costs are expressed as mathematical functions of certain 
decision variables characterizing the construction and operation of the units, and of the 
quantities purchased or sold: 
 
 rrrrr Z)y,(ZZ ≡= x$   (6.5a) 
 
 0k r 0k r 0k r 0k r(y )⋅ ⋅ ⋅ ⋅Γ = Γ ≡ Γ$  (6.5b) 
 
 0r0r0r0r )y( ⋅⋅⋅⋅ Γ≡Γ=Γ$  (6.5c) 
 
 F),(FF == yx$  (6.5d) 
 
Both sides of Eqs. (6.5) are expressions for cost rate, but the left hand side (e.g. rZ$ ) 
symbolizes the cost rate quantity itself, while the right hand side (e.g. rZ  ) symbolizes the 
mathematical functional operation, which generates its numerical value. Then, Eq. (6.4) can 
be written: 
 
  )y()y()y,(Z),(F 0r

r
0rrk0

r k
rk0

r
rr ⋅⋅⋅⋅ ∑∑∑∑ Γ−Γ+= xyx  (6.6) 

 
By the technical analysis of the system, mathematical functions are derived, which give the 
input to a unit as a function of the unique product (function) of the unit and its decision 
variables: 
 
 'rr'r'r'rr'rr Y)y,(Yy ⋅⋅⋅ ≡= x ,          r′ = 1, 2, �, R          r = 0, 1, 2,..., R (6.7) 
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Interconnections between units or between a unit and the environment are revealed also by 
equations of  the form 
 

  ∑
=

⋅=
R

0'r
'rrr yy ,             r = 1, 2, �, R (6.8) 

 
If any product of the system is quantitatively fixed, then for this product it is  
 
  r 0 r 0�y y⋅ ⋅=  (6.9) 
 
where r 0�y ⋅  is the fixed (known) quantity of the particular product (e.g. electric power W$ , 
thermal power Q$ , etc.). 
 Equations (6.3)-(6.9) are the fundamental equations, which are used either for 
analysis based on average unit costs of the products-functions or for optimization, in which 
case marginal costs are derived. For analysis, it is useful to write a cost balance for each 
unit, assuming a break-even operation, i.e., no profit-no loss: 
 

  rrr'r
R

0'r
'rrr ycycZC =+≡ ⋅

=
∑ ,     r = 1, 2, �, R (6.10) 

 
The system of Eqs. (6.10) can be solved for the average unit product costs rc . In writing 
Eq. (6.10), it is taken into consideration that a branching point does not cause any change in 
the unit cost of the function (product) it distributes. Also, it is clarified that a junction does 
not have capital cost, i.e., 0Zr = ,   r σ+1, σ+2, ..., R= . 
 
 
 6.3.4 Functional Optimization 

 Minimization of the total cost, as it is given by Eqs. (6.3), (6.4) or (6.6), is selected as 
the optimization objective. Let us continue with Eq. (6.6), which is written as an objective 
function: 
 
   )y()y()y,(ZFmin 0r

r
0rrk0

r k
rk0

r
rr ⋅⋅⋅⋅ ∑∑∑∑ Γ−Γ+= x  (6.11) 

 
Equations (6.7) and (6.8) are the equality constraints. The method of Lagrange multipliers is 
used for the solution of the optimization problem, for reasons that will become clear in the 
following. The Lagrangian is written: 
 
 )yy()yY(ZL r

'r
'rr

r
r'rr'rr

'r r
'rr

r
0r

r k
rk0

r
r −λ+−λ+Γ−Γ+= ∑∑∑∑∑∑∑∑ ⋅⋅⋅⋅⋅⋅  (6.12) 

 
The first order necessary conditions for an extremum are: 
 
  L( , ,λ) 0∇ =x x y  (6.13a) 
  L( , ,λ) 0∇ =y x y  (6.13b) 
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  λL( , ,λ) 0∇ =x y  (6.13c) 
 
In particular, the conditions 
 

  0
y

L

'rr
=

∂
∂

⋅
 

 
which are part of Eqs. (6.13b), applied on Eq. (6.12) give 
 
  r'rr λ=λ ⋅  (6.14) 
 
i.e. the Lagrange multiplier 'rr ⋅λ  associated with an input 'rry ⋅  is equal to the Lagrange 
multiplier rλ  associated with that output ry , which supplies the 'rry ⋅ . Then, the 
Lagrangian can be written in the convenient form 
 
  )y()y()y(L 0r0r

r
0rrk0rk0

r k
rk0rr

r
r ⋅⋅⋅⋅⋅⋅ λ−Γ−λ−Γ+λ−Γ= ∑∑∑∑  (6.15) 

 
where 

 r'r
R

0'r
r'rrr YZ ⋅

=
⋅∑λ+=Γ ,    r = 1, 2,�, R (6.16) 

 
The conditions (6.13) applied on Eq. (6.15) give the equations 
 
 0

r
r =Γ∇ ∑x  (6.17a) 

 
r

r
r y∂

Γ∂
=λ  (6.17b) 

 
rk0

rk0
rk0 y ⋅

⋅
⋅ ∂

Γ∂
=λ  (6.17c) 

 
0r

0r
0r y ⋅

⋅
⋅ ∂

Γ∂
=λ  (6.17d) 

 
The solution of the system of Eqs. (6.17) gives the optimum values of the unknown x, y, λ. 
It is noted that, if a product is not quantitatively fixed (predetermined), the solution of the 
problem gives also the optimum production rate. For a quantitatively fixed product, there is 
no need to know the function )y( 0r0r ⋅⋅Γ , and the corresponding term does not appear in 
Eq. (6.15). 
 Equations (6.16) and (6.17) lead to an interpretation of the Lagrange multipliers as 
economic indicators: each λ  can be viewed as the marginal price (cost or revenue) of the 
corresponding function (product) y. Consequently, the Lagrange multipliers reveal one 
more aspect of the internal economy of the system. This is one of the main reasons for 
selecting the method of Lagrange multipliers in order to solve the optimization problem. 
One more reason is that the method leads readily to decomposition, which facilitates the 
solution of large optimization problems. 



________________________________________________________________________________ 
OPTI_ENERGY: Methods of Energy Systems Optimization 35 

 
 6.3.5 Complete functional decomposition 
 The conditions for decomposition have been stated in Subsection 5.4. It is noted that 
the objective function and the constraints in the functional approach, Eqs. (6.11), (6.7) and 
(6.8), are of separable form. In the general formulation of the functional optimization, the 
sets of decision variables xr are not required to be disjoint. If this requirement is satisfied, 
then decomposition is applicable and the subsystems correspond to the units and junctions 
of the system, i.e., 
 
  q = R (6.18) 
 
Such a case is called complete functional decomposition. The sub-problem of each unit r is 
described by the system of equations 
 
 

r r 0∇ Γ =x  (6.19a) 
 
 r r ' r ' r ' r r 'Y ( , y ) y 0⋅ ⋅− =x  (6.19b) 
 

 
r

r
r y∂

Γ∂
=λ  (6.19c) 

 
Equations (6.19) show that, under conditions of decomposition, each unit may be 
considered as optimized for its own objective function: 
 

  
r

R
r r r ' r r ' r

r ' 0
min Z Y⋅ ⋅

=
Γ = + λ∑

x
 (6.20a) 

 
subject to the constraints  
 
  r ' r r ' r r ry Y ( , y )⋅ ⋅= x  (6.20b) 
 
Each r ' r⋅λ  is the marginal cost of the corresponding r ' ry ⋅ . Hence, the objective (6.20a) may 
be interpreted as the minimization of the total cost of owning and operating the unit r, 
although for such an interpretation to be precise, each r ' r⋅λ  should be a unit cost 
independent of the magnitude of r ' ry ⋅ , which is valid in case of cost functions linear with 
respect to r ' ry ⋅ .  
 The solution of the system of Eqs. (6.19) gives the optimum values of the independent 
variables and the Lagrange multipliers.  
 
 
 6.3.6 Partial functional decomposition 

 If the sets rx  are not disjoint, but it is possible to formulate larger sets νx , 
(ν 1, 2, ..., q R)= < , which are disjoint, then decomposition is applicable again, although of 
a lower level. Such a case is called partial functional decomposition. All the decision 
variables that belong to a set rx , must belong to the same set νx . This requirement places a 
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restriction (and at the same time suggests) how the R units and junctions of the system can 
be grouped into q subsystems. The optimum values of the decision variables of each 
subsystem must satisfy the equation  
 
 

ν ν 0∇ Γ =x  (6.21) 
 
where  
 
 ν r

r
Γ = Γ∑  (6.22) 

 
The summation in Eq. (6.22) is considered over those units and junctions, which belong to 
the subsystem ν . Equations (6.19b) and (6.19c) are valid. The solution of the system of 
Eqs. (6.21), (6.19b,c) gives the optimum values of the independent variables and the 
Lagrange multipliers. 
 
 
6.4 Artificial Intelligence Techniques 
 
 In the optimization methods mentioned in the preceding sections, the problem is well 
defined with respect to both the data and the goals (objectives), and the solution is obtained 
by deterministic as well as heuristic methods and algorithms. This approach produces 
satisfactory results in many cases, and it has been and still is of invaluable practical 
usefulness. However, real-world problems are often not �textbook� problems: though the 
goals may be well defined, data are often incomplete and expressed in qualitative instead of 
quantitative form; furthermore, the constraints are weak or even vague. Nevertheless, these 
cases must be handled by the engineers. To help the engineer in this task, new procedures 
have been developed under the general denomination of �expert systems� or �artificial 
intelligence�. The field is developing rapidly. Related information can be found in [Sciubba 
and Melli, 1998]. 
 
 
 
7. INTRODUCTION OF ENVIRONMENTAL AND 

SUSTAINABILITY CONSIDERATIONS IN ΤΗΕ 
OPTIMIZATION OF ENERGY SYSTEMS 

  
7.1 Principal Concerns 
 
 During the 1970s and 1980s, one of the main concerns about the design and operation 
of energy systems has been the depletion of energy (exergy) resources. Thermoeconomics, 
exergoeconomics, and other similar terms were used to imply the combined thermodynamic 
and economic analysis of energy systems, which helps in increasing the efficiency of a plant 
without jeopardizing its economic viability. Of course, increasing the efficiency may result 
in a decrease of adverse environmental effects, but this was not the principal driving force 
behind the whole activity.  
 In the 1990s, the effort to improve efficiency and develop alternative energy 
technologies continued. However, since much of the blame for exploitation of (not only 
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energy) resources and degradation of the environment goes to the construction and 
operation of energy systems, the focus of research and development of these systems has 
turned to the protection of the environment. Methods of analysis and optimization have 
been further developed to take into consideration not only energy use (exergy consumption) 
and financial resources expended (economics), but also the scarcity of physical resources 
used as well as any pollution and degradation of the environment resulting from an energy 
system. Furthermore, these effects are accounted for the entire life cycle of the system, 
starting with initial conception and ending with decommissioning of the plant and recycling 
of materials. The term environomics appeared in the literature to express the fact that 
environmental consequences are taken quantitatively into consideration in the analysis 
[Frangopoulos 1991]. 
 In order to introduce sustainability into the analysis of energy systems, three aspects 
have to be considered:  

a. scarcity of natural resources,  
b. degradation of the natural environment, and 
c. social implications of the energy system, both positive (e.g. job creation, general 

welfare) and negative (effects on human health).  
 
 Two approaches have appeared, which attempt to take the aforementioned aspects 
quantitatively into consideration for the analysis and optimization of energy systems: (a) 
sustainability indicators, and (b) total cost function. Information about the first one can be 
found in [Afgan and Carvalho, 2000]. The second one is described in brief in the following. 
It is true that these methods are not fully developed yet, and the data required for a complete 
analysis are still not all available. Consequently, a considerable effort is required at an 
international level in order for sustainability considerations to be fully integrated in energy 
systems analysis and design. 
 
 
7.2 The New Objective 
 
 7.2.1 Total cost function 

 In this approach, a total cost function is defined, which includes the extraction of raw 
materials, the manufacture of equipment, the construction of the plant, operating expenses, 
cost of resources, environmental (including social) cost, and expenses for dismantling used-
up equipment and recycling of the material. An important term in this cost function is the 
internalized external environmental cost. Equation (6.11) is now written: 

 
  r 0k r e r 0

r r k e r
min F Z ⋅ ⋅= + Γ + Γ − Γ∑ ∑∑ ∑ ∑  (7.1) 

 
where eΓ  is the eth environmental and social cost due to construction and operation of the 
system. The first term on the right hand side of Eq. (7.1) includes, among other 
components, the cost of equipment installed in the plant for pollution abatement. 
 Another way of writing the total cost is: 
 
  Total cost =  Internal general cost 
   + Internal environmental cost 
   + External environmental cost (7.2) 
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Internal general cost is the cost of energy supply, excluding environmental protection or 
safety measures. Costs of an industrial activity related to environmental protection (e.g. 
costs of equipment to clean the exhaust gases before they are released into the atmosphere) 
are called internal environmental costs. Other environmental costs related to the activity are 
born by the society, rather than paid for, e.g., in electricity bills. The unpaid costs are called 
external environmental costs. It is worth noting that some of the people who bear these 
costs may not benefit from the particular industrial activity, e.g. in transboundary pollution. 
In writing Eq. (7.1) or (7.2) attempt is made to internalize the external environmental costs. 
 
 
 7.2.2 Cost of resources 
 Regarding the scarcity of resources, one might say that scarcity is taken into 
consideration by their price: more scarce resources should have a higher price. However, 
this price reflects short-term considerations only. A quantity of raw material extracted today 
has two consequences: (a) it will not be available for future generations, and (b) it will 
cause future generations to spend more energy for extracting the remaining quantities of the 
same material. Even though current market prices, whether artificial or real, reflect the costs 
of extraction and present or near-future term supply and demand, they do not, in general, 
account for long-term local or global scarcity or the ensuing difficulties and costs of 
extraction that such scarcity may cause. A method to correct (to a certain extent) this 
deficiency is to introduce properly defined scarcity factors into the analysis.  
 The general cost function of a resource, Eq. (6.5b), can take any form; an example 
might be the following: 
 
 0k r p0k r s0k r 0k r 0k rf f c y⋅ ⋅ ⋅ ⋅ ⋅Γ =  (7.3) 
 
where 
 0k rc ⋅  unit cost of resource 0k r⋅  (e.g. market price), 
 p0k rf ⋅  pollution penalty factor for resource 0k r⋅  (it accounts for extraction, 

processing and transportation of the resource; pollutants emitted while the 
resource is used, e.g. during combustion of a fuel, are treated in separate), 

 s0k rf ⋅  scarcity factor for resource 0k r⋅ ; it accounts for difficulties in extracting a 
particular resource and for the local and/or future scarcity of the resource. 

 
 
 7.2.3 Pollution measures and costs 
 Each pollutant emitted to the environment causes a cost to the society, which can be 
expressed as a general function: 
 
  e e e(p )Γ = Γ  (7.4) 
 
where pe is an appropriate measure of pollution. It is very difficult to derive analytic 
expressions for this function. At least a simple expression such as the following can be 
used: 
  e pe e ef c pΓ =  (7.5) 
where 
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 ce unit environmental and social cost due to the pollutant e, 
 fpe pollution penalty factor for the pollutant e.  
 
 The pollution measure, pe, can be expressed in various forms: it can be the quantity of 
the pollutant (e.g. kg of CO2), the exergy content of the pollutant, the entropy increase of 
the environment due to the pollutant, etc.  
 Regarding the environmental and social cost due to pollution, three approaches have 
been identified in the literature, which attempt to estimate it: 

(i) Indirect methods: they aim at measuring the value of goods not traded in formal 
markets, such as life, scenic and recreational goods, which are affected by the 
pollution. 

(ii) Direct methods (damage cost): they are used to measure goods for which economic 
costs can be readily assessed, such as the value of agricultural products, or the cost of 
repairing damaged goods.  

(iii) Proxy methods (avoidable cost): they are used to measure the costs of avoiding the 
initiating insult, rather than the cost of damage created by the insult.  

 
 Many studies have been and continue being performed in the attempt to estimate the 
environmental costs. Lack of sufficient data, limited epistemological position and other 
difficulties may cause an uncertainty in the numerical results obtained. However, an attempt 
to derive reasonable figures and take these into consideration in the analysis and 
optimization makes far more sense than to ignore external effects of energy systems. 
 More information about the pollution measures, unit environmental and social costs 
due to the pollution, pollution factors and scarcity factors can be found in the literature [EC 
1999, Gaivao and Jaumotte 1985, Hohmeyer 1988, Ottinger R. et al. 1990,  Frangopoulos 
1992, Frangopoulos and von Spakovsky 1993, Frangopoulos and Caralis 1997]. 
 
 
 
8. SENSITIVITY ANALYSIS 
 
8.1 Sensitivity Analysis with respect to the Parameters 
 
 It is also called simply sensitivity analysis or parametric analysis. 
 The optimization problem is initially solved for a certain set of values for the 
parameters. However, the values of many parameters (e.g. costs) are not known with 
absolute accuracy, but they are derived as a result of statistical estimates or predictions for 
the future. Therefore, it is necessary to perform a sensitivity analysis, i.e. to study the effect 
that a change in the values of important parameters may have on the optimal solution. This 
effect can be revealed by at least three methods, as explained below. 
 
 A. Preparation of graphs  
 The optimization problem is solved for several values of a single parameter, while the 
values of the other parameters are kept constant. Then, graphs are drawn, which show the 
optimal values of the independent variables and of the objective function as functions of the 
particular parameter. 
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 B. Evaluation of the uncertainty of the objective function 
 If  pj, j = 1, 2, �.  are the parameters of the optimization problem, one or more of the 
following quantities are evaluated. 
 
 Uncertainty of the objective function due to the uncertainty of a parameter: 
 

 j
j

FF p
p

∂∆ = ∆
∂

 (8.1) 

 
 Maximum uncertainty of the objective function due to the uncertainties of a set of 
parameters: 
 

 max j
j j

FF p
p

∂∆ = ∆
∂∑  (8.2) 

 
 The most probable uncertainty of the objective function due to the uncertainties of a 
set of parameters: 
 

 
2

prob j
j j

FF p
p

 ∂∆ = ∆ ∂  
∑  (8.3) 

 
 
 C. Evaluation of certain Lagrange multipliers 
 If the constraints of the optimization problem are written in the form 
 
 ( )j jh p=x  (8.4a) 

 ( )k kg p≤x  (8.4b) 
 
where pj, pk are parameters, then the Lagrangian is written 
 
 ( ) ( ) ( )j j j k k k

j k
L F λ p h µ p g = + − + −   ∑ ∑x x x  (8.5) 

 
It is 

 j k
j k

L Lλ , µ
p p

∂ ∂= =
∂ ∂

 (8.6) 

 
At the optimum point, for the pj�s and those of the pk�s for which Eq. (8.4b) is valid as 
equality, it is 
 

 
j j k k

L F L F,
p p p p

∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂

 (8.7) 
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Equations (8.6) and (8.7) result in 
 

 j k
j k

F Fλ , µ
p p

∂ ∂= =
∂ ∂

 (8.8) 

 
Consequently in this case, the uncertainty of the objective function is determined by means 
of the Lagrange multipliers. 
 
 If the sensitivity analysis reveals that the optimal solution is very sensitive with 
respect to a parameter, then one or more of the following actions may be necessary: 

• attempt for a more accurate estimation of the parameter (decrease of the uncertainty of 
the parameter), 

• modifications in the design of the system with the scope of reducing the uncertainty, 
• changes in decisions regarding the use of (physical and economic) resources for the 

construction and operation of the system. 
 
Since these actions may be of crucial importance for the implementation of a project, a 
careful sensitivity analysis may prove more useful than the solution of the optimization 
problem itself. 
 
 
8.2 Sensitivity Analysis of the Objective Function with respect to the 

Independent Variables 
 
 There are cases where the optimum value of an independent variable cannot be 
selected in practice. For example, pipes are available at standard sizes. If the diameter of a 
pipe is an independent variable and the available optimization algorithm treats it as a 
continuous variable (not a discrete one), then the optimum value of the diameter may not be 
one of the standard sizes. Consequently in practice the diameter will not be equal to the 
optimum one. In such cases, it is useful to study the effect of a deviation from the optimum 
value of an independent variable to the value of the objective function.  
 The sensitivity of the optimum solution with respect to the independent variable xi is 
revealed by the values of the following derivatives at the optimum point: 
 

 ( ) j

i i

xf
, j i

x x ∗∗

∂∂
≠

∂ ∂ xx

x
 

 
or with the differences 

 ( ) j

i i
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x
 

 
Note:  The term �sensitivity analysis� will imply the sensitivity analysis with respect to 

the parameters, except if it is specified differently. 
 
 Further details on sensitivity analysis are given in the literature [e.g.. Rao 1996, 
Papalambros and Wilde 2000].  
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9. NUMERICAL EXAMPLES 
 
 Three examples of system optimization are given in this section. Additional examples 
can be found in several publications [e.g. Benini et al. 2001, Frangopoulos 1990, 
Frangopoulos and Dimopoulos 2001, Manolas et al. 1997, Munoz and von Spakovsky 
2001, Maiorano et al. 2002]. 
 
 
9.1 Thermoeconomic Operation Optimization of a System1 
 
 Nomenclature for the particular example 

arC$  capital cost rate of the subsystem r 

mrC$  maintenance cost rate of the subsystem r 

mprC$  maintenance and personnel cost rate of the subsystem r 

prC$  personnel cost rate of the subsystem r 

cchf unit cost of chemicals for treating the total feed water 
ccw unit cost of cooling water 
cc1 unit cost of treated condensate 
cD unit cost of Diesel oil 
cel unit cost of electricity purchased from the utility grid 
cHG unit cost of high-pressure fuel gas 
cLF unit cost of fuel oil 
cLG unit cost of low-pressure fuel gas 
cmpr unit cost for maintenance and personnel of subsystem r 
cPR unit cost of propane 
cw1 unit cost of treated supplementary feed water 
f, F objective function 

Dm$  mass flow rate (consumption) of Diesel oil 

em$  mass flow rate of extracted steam from the steam turbine 

HGm$  mass flow rate (consumption) of high-pressure fuel gas 

LFm$  mass flow rate (consumption) of fuel oil 

LGm$  mass flow rate (consumption) of low-pressure fuel gas 

PRm$  mass flow rate (consumption) of propane 

sBm$  mass flow rate of steam produced by the fuel oil boilers 
pel unit price of electricity sold to the utility grid 
r the rth subsystem 
t time 

cwV$  volumetric flow rate of cooling water through the condenser 

c1V$  volumetric flow rate of treated condensate 

w1V$  volumetric flow rate of treated supplementary feed water (make-up) 
 
                                                           
1  Source: [Frangopoulos et al. 1996]. 
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w3V$  volumetric flow rate of the total feed water 

AW$  electric power for the auxiliary equipment of the system 

bW$  electric power purchased from the utility grid 

G1W$  electric power of gas-turbine generator No. 1 

G2W$  electric power of gas-turbine generator No. 2 

SGW$  electric power of steam-turbine generator 

sW$  electric power sold to the utility grid 
x set of independent variables 
 

 9.1.1 Description of the system 
 A combined cycle cogeneration system (Fig. 9.1.1) covers the needs of a refinery in 
electricity and steam at four grades (Table 9.1.1). Interconnection with the utility grid 
allows for purchasing extra electricity, if needed, and selling excess electricity, if it is 
available and economical.  
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Fig. 9.1.1.  Simplified diagram of the combined-cycle cogeneration system. 
 
 

Table 9.1.1. Steam grades used in the refinery. 
 

Grade Pressure Temperature 
designation kPa (absolute) °C 

S1 4240 410 
S2 1350 320 
S3 370 150 
S5 470 160 
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The system consists of the following main components (Fig. 9.1.1): 
• Two gas-turbine electricity generators (GT-1, GT-2). 
• Two exhaust-gas boilers (EGB-1, EGB-2) recovering heat from the gas turbine flue 

gases. 
• One steam-turbine electricity generator (S-501). 
• Four steam boilers. 
A brief description of these components follows. 
 
Gas-turbine electricity generators.  They have a nominal electricity production capacity of 
17 MW each. They can operate on Diesel oil, fuel gas, propane, or a combination of fuel 
gas and propane. Diesel oil is normally used for start-up only. 

Exhaust-gas boilers.  Each boiler has a nominal production capacity of 30 t/h of high 
pressure steam (S1) and 7 t/h of low pressure stream (S5). There is no supplementary firing.  

Steam-turbine electricity generator.  It uses high pressure steam (S1) and has a nominal 
capacity of 16 MW.  

Steam boilers.  They use fuel oil and produce high pressure steam (S1). There are two 
boilers with a nominal capacity of 30 t/h each, and two boilers with a nominal capacity of 
60 t/h each. Thus, the total steam capacity of the four boilers is 180 t/h.  

 The main components are served by auxiliary equipment such as a compressor to 
increase the pressure of low-pressure fuel gas from 370 kPa to 2300 kPa, a propane 
vaporizer, water demineralization units, condensate collection and treatment units, etc. 
 
 
 9.1.2 Primary energy sources 
 The energy sources considered as primary for the energy system are the following. 

Electricity supply from the utility grid.  Currently, the electricity production capacity of the 
energy system is higher than the needs of the refinery and gives the possibility of exporting 
electricity to the utility grid. In special circumstances the refinery may need to import 
electricity from the grid. Thus, the refinery is connected to the grid for safety and for the 
possibility of exporting electricity. 

Fuel gas (FG).  It is the largest primary energy source for the refinery. It is a by-product of 
the refinery process units: it consists of light hydrocarbons (methane to butane) and a small 
percentage of hydrogen (about 5% by volume). Fuel gas is used in fired heaters for process 
and in the two gas turbines. It cannot be stored. A small inventory (depending on pressure) 
in the accumulation vessels and piping distribution system does exist, but there is no 
storage of FG. Thus, the rate of consumption must be equal to the rate of production. Any 
unbalance is automatically directed to the flares, where it is burned. The amount of FG 
burned in the flares is a total loss for the refinery that must be avoided. FG is available at 
two pressure levels: high-pressure and low-pressure. 

Fuel oil (FO).  It is the second largest primary energy source for the refinery. It is 
commercial industrial grade fuel oil (900 kg/m3, 370 cSt at 50°C max) of special low sulfur 
content (0.7% by weight, maximum) because of strict environmental regulations in the area. 
Fuel oil is used in the fired heaters (if fuel gas is not sufficient) and in the four steam 
boilers.  
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Propane.  It is used only as a supplement of FG burned in the gas turbines, if such a need 
arise or if economics favor it. Propane is a sellable final product. Its use as a fuel in the 
refinery depends on propane storage availability and its selling price. Use of propane in the 
gas turbines results in diverting FG from the gas turbines to fired heaters, substituting FO. 
Thus, there is actually a trade-off between FO (which also a sellable product) and propane, 
and the use of one or the other depends on their selling price. The propane used as fuel in 
the refinery is pumped from liquid storage tanks to a vaporizer. Propane vapor is mixed 
with the fuel gas stream feeding the gas turbines, if needed.  
 
 
 9.1.3 Energy conversion 
 The various fuels are converted to heat, steam and electricity. Process heat needs are 
covered by fired heaters using FG and/or FO or by steam. Steam is produced by steam 
boilers, and by waste heat boilers in the process units as well as in the cogeneration system. 
In order to satisfy the variety of steam needs of the process units in the most economical 
way, the refinery uses four different grades of steam with properties as given in Table 9.1.1. 
If the quantity of steam directly produced at a certain grade is not sufficient, then it is 
supplemented by throttling and temperature reduction of a higher grade steam 
(desuperheating) which, of course, causes an exergy destruction and consequently must be 
avoided whenever possible.  
 
 
 9.1.4 The need for operation optimization 
 As described above, the energy needs of the refinery can be satisfied by several 
primary energy sources through various energy conversion systems. This flexibility presents 
an excellent opportunity for optimization of the energy supply-conversion-utilization 
system. Important considerations in this optimization are the following: 

• Electricity can be produced (within certain limits) either by the gas turbines or by the 
steam-turbine generator. The optimum load distribution is requested.  

• Gas-turbine generators produce electricity and steam simultaneously. Thus, increased 
gas turbine level of electricity production results in an increase of steam availability, 
reducing the required production of steam by the steam boilers. 

• Increasing the level of electricity production by the steam-turbine generator results in 
reduced steam availability, thus increasing the required production of steam boilers.  

• Electricity can be exported to the utility grid (depending on availability and prices). The 
quantity of the exported electricity affects the operation of the gas turbines, steam 
turbine and boilers.  

• Production and consumption of the various steam grades must be kept in balance to 
avoid degrading steam of higher levels to lower levels at a loss (i.e. without production 
of mechanical work).  

 
 The complicated structure of the system and the interdependency of its components 
make it impossible to determine the optimum mode of operation at various conditions by a 
heuristic approach or by past experience only. Therefore, it is necessary to develop an 
optimization procedure based on a careful analysis of the system, which will take into 
consideration the technical and economic parameters pertinent at a certain time period.  
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 9.1.5 The optimization objective 
 Minimization of the capital and operating cost at any instant of time is selected to be 
the optimization objective. It is written: 
 

a m p r LF LF HG HG LG LG PR PR
r

D D el b el s c1 c1 w1 w1 cw cw chf w3

min F (C C C ) c m c m c m c m

c m c W p W c V c V c V c V

= + + + + + +

+ + − + + + +

∑ $ $ $ $ $ $ $

$ $ $ $ $ $$
 (9.1.1) 

 
The symbols are explained in the nomenclature. It is assumed that the operation mode at a 
certain instant of time does not affect and it is not affected by the operation mode at another 
instant of time. 
 By thermodynamic analysis of the system, the interrelationships among operating 
variables (pressures, temperatures, flow rates, power consumed or produced, etc.) have been 
obtained in the form of a system of equations. The difference between the number of 
variables and the number of equations (degree of freedom) is four. Consequently, Four of 
the variables can be treated as independent decision variables of the optimization problem. 
The following variables are selected as independent: 
 
  SG, G1, G2, e(W W W m )=x $ $ $ $  (9.1.2) 
 
There are inequality constraints imposed on the independent variables: 
 

SG G1, G2 e0.5 W 16.5 MW, 6 W W 17 MW, 0 m 16.667 kg / s≤ ≤ ≤ ≤ ≤ ≤$ $ $ $  (9.1.3) 
 
The net electric power produced by the cogeneration system is: 
 
  SG G1 G2 AW W W W W= + + −$ $ $ $ $  (9.1.4) 
 
The total electric power supplied by the cogeneration system and the utility grid is: 
 
  t b sW W W W= + −$ $ $ $  (9.1.5) 
 
 The system analysis is supplemented by mathematical simulation of the main 
components and important auxiliary equipment. Performance specifications given by the 
manufacturer of each component or, in some cases, data collected by the refinery have been 
used to develop analytic correlations among important operating variables of components. 
Certain simplifying assumptions were inevitable whenever the available information was 
not sufficient.  
 
 
 9.1.6 Considerations on capital and operation expenses 
 The introduction of capital depreciation, maintenance and personnel costs in the 
objective function has an impact on the optimum point only if these costs can be expressed 
as functions of independent variables. Lack of sufficient data to develop the functions led, 
initially, to the decision to consider these expenses either constant (i.e. independent of the 
production level of a component) or sunk (zero). Such a simplification has the following 
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consequence: the system produces extra electricity, which is sold to the utility grid even at 
an extremely low unit price of electricity (value of pel). In order to avoid such a 
consequence, the following approach has been followed. Four main subsystems have been 
considered: fuel-oil boilers (r=1), steam-turbine generator (r=2), gas-turbine generator No. 1 
with exhaust boiler (r=3), and gas-turbine generator No. 2 with exhaust boiler (r=4). The 
capital cost of the fuel-oil boilers is considered zero again, because they are considered fully 
depreciated. For the remaining subsystems it is written: 
 
  a2 a2 SG, a3 a3 G1, a4 a4 G2C c W C c W C c W= = =$ $ $$ $ $  (9.1.6) 
 
Each car is a constant, which is estimated by taking into consideration the initial investment, 
the nominal capacity, as well as typical values for the life-time, the average availability and 
the load factor of the subsystem.  
 Maintenance and personnel costs are written as: 
 
  mpr m p r mpr rC (C C ) c Y= + =$ $ $ $  (9.1.7) 
 
where 
 
  1 sB 2 SG, 3 G1, 4 G2Y m , Y W Y W Y W= = = =$ $ $ $ $ $ $$  (9.1.8) 
 
A rough estimate of the value of the parameter cmpr is possible by means of available data.  
 
 This approach is still simplified, but it is more realistic than the initial one.  
 
 
 9.1.7 Description of the computer program 
 The optimization problem could be solved by the Functional Approach, which makes 
use of Lagrange multipliers. In the present work, the direct application of a mathematical 
programming algorithm has been used. The direct approach does not reveal the internal 
economy of the system, but it is less demanding from the point of view of system analysis. 
For the numerical solution, a computer program has been developed, which consists of the 
following parts.  

Main program.  It reads the values of the technical and economic parameters supplied by 
the user. It evaluates those variables that depend on the parameters but not on the 
independent variables. It calls the optimization algorithm and prints the results, i.e. the 
values of the independent variables and the objective function.  

Optimization algorithm GRG2.  It consists of a set of subroutines, which perform the 
optimization [Lasdon and Waren 1986]. It reads the initial set of values for the independent 
variables supplied by the user. It solves the optimization problem, i.e. it determines the 
optimum values of the independent variables. It prints the results (optimum point and 
messages regarding convergence). The algorithm is based on the generalized reduced 
gradient method and it is commercially available. 

Constraints subroutine GCOMP.  It is called by the optimization algorithm. It calls other 
subroutines or functions in order to determine the values of the inequality constraint 
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functions and of the objective function for any given set of values of the independent 
variables.  

Objective function FZ.  It is a double precision function, which evaluates the objective 
function for any given set of values of the independent variables. It is called by the 
subroutine GCOMP.  

Component simulation package.  It is a set of double precision functions, which are called 
in order to determine the values of the operating variables of the main components. The 
functions constitute the mathematical simulation of the main components and important 
auxiliary equipment of the system.   

File DSTEAM.  It consists of a set of double precision functions, which evaluate 
thermodynamic properties of water and steam.  
 
 
 9.1.8 Numerical results 
 
 Results for typical load conditions 

 The usual practice in the refinery had been to distribute the electric load among the 
three main sources of electricity in proportion to their nominal capacity. For example, a 
typical condition is as follows: 
 
  SG G1 G2 eW 11 MW, W 12 MW, W 12 MW, m 45 t / h= = = =$ $ $ $  
 
with no electricity sold to the grid ( sW 0=$ ). By applying the optimization procedure 
described in the preceding sections, it is revealed that the optimum mode of operation is: 
 
  SG G1 G2 eW 5.58 MW, W 17 MW, W 17 MW, m 50.36 t / h= = = =$ $ $ $  
 
with an amount of electricity sold to the grid. The value of the objective function (total cost) 
at the optimum mode is by 13.75% lower than the value at the mode of usual practice. 
 Application of the optimization procedure leads to increased load of the gas-turbine 
generators, because they, together with the exhaust gas boilers, constitute cogeneration 
systems of high efficiency. Also, the mass flow rate of the extracted steam is increased for a 
similar reason: higher mass flow rate of extracted steam gives higher total efficiency of the 
steam-turbine generator as a system producing both electricity and heat (cogeneration).  
 
 Examples of Sensitivity Analysis 

 A sensitivity analysis has been performed with respect to important parameters. For 
example, the effect of the unit cost of electricity and fuel oil on the optimum values of the 
independent variables is shown in Figs. 9.1.2 and 9.1.3. It is noted that the nominal values 
of these parameters (i.e. the values that give the results presented in the preceding 
paragraph) are the following: 

cel = 0.035 Euro/kWh,                      cLF = 0.069 Euro/kg 
 
The effect of the unit cost of electricity  purchased from the utility grid, cel, has been 
studied. For unit price of electricity sold to the utility grid, pel, equal to zero, this effect is 
depicted in Fig. 9.1.2, which reveals a critical value of cel equal to approximately 0.01 
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Euro/kWh. Unit costs lower than the critical value drive the optimum operation point to the 
lower limit set on the gas- and steam-turbine power output, Eq. (9.1.3). For unit costs 
higher than the critical one and pel equal to zero, the system produces enough electricity to 
cover the needs only. For pel equal to its nominal value, the system produces extra 
electricity to cover the needs and sell to the grid. Consequently in this case, cel does not 
have any effect on the optimum point, since there is no purchase of electricity from the grid.  
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Fig. 9.1.2. Effect of unit cost of electricity purchased from the grid 
on the optimum operating point. 
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Fig. 9.1.3. Effect of unit cost of fuel oil on the optimum operating point. 
 
 
 Even though not shown here in order to save space, the sensitivity analysis reveals a 
critical value for pel too. For values of pel lower than the critical one, the system produces 
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electricity equal to or less than the load (depending on the value of cel). For values higher 
than the critical one, there is excess electricity sold to the grid.  
 An increase of fuel-oil unit cost does not affect the electricity produced by the gas 
turbines, but it has a decreasing effect on the steam-turbine power output (Fig. 9.1.3).  Up to 
the value of 0.147 Euro/kg examined here, the load of the refinery is fully covered, but the 
excess electricity sold to the grid decreases continuously.  
 A note of caution: all costs are referring to the year 1990. In today�s prices, the 
absolute values are expected to be higher, but this does not create any difficulty since the 
user can update the cost parameters.  
 The system operator can perform a sensitivity analysis with respect to any parameter 
that may be considered crucial. Very often, the sensitivity analysis is so revealing, that it 
may be more important than the solution of the optimization problem for a particular set of 
parameters.  
 
 
 9.1.9 Conclusions on the example 
 It has been demonstrated that the application of an optimization procedure to a 
complex system like the one studied here is very beneficial: if the common practice is 
replaced by the optimization procedure for setting the operation point of the system, a very 
significant reduction in operating expenses can be achieved with no need of additional 
investment. Every time the technical or economic conditions change, the user may update 
the values of the pertinent parameters and run the program again, in order to obtain the new 
optimum point very quickly.  
 Of course, the simplifying assumptions leave much room for further development and 
improvement of the procedure and the software. Also, in a further development, the limits 
of the system under optimization may be extended to include the refinery processes.  
 In this particular example, off-line optimization has been applied, which is 
satisfactory when the plant operates at nearly constant conditions for relatively long periods 
of time. For frequent changes of conditions (e.g. load), however, on-line optimization is 
necessary. For this purpose, crucial operating parameters are monitored, data reconciliation 
is performed, their values are fed into the optimization software, the results of which are 
sent to the control system of the plant in order for the optimal operating point to be set. On-
line optimization requires fast simulation and optimization software. Application of neural 
networks, in particular for simulation, seems to be promising in this respect.  
 
 
 
9.2. Thermoeconomic Design Optimization of a System 
 
 9.2.1 Description of the system and main assumptions 
 As an application example of design optimization, a cogeneration system will be 
used, which operates on natural gas and produces electricity and heat in the form of 
saturated steam [Frangopoulos 1994]. The system consists of a gas-turbine unit with 
regenerative air preheater, and a heat recovery steam generator (HRSG). Specifications of 
the system and the environment are given in Table 9.2.1  
  In order not to obscure the presentation, only major components are considered (Fig. 
9.2.1) and certain simplifying assumptions are made: 

(i) The air and combustion gases behave as ideal gases with constant specific heats.  
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(ii) For combustion calculations, the fuel is considered as methane (CH4). 
(iii) All components, except the combustion chamber, are adiabatic. 
(iv) Pressure and temperature losses in the ducts connecting the components are 

neglected. However, a pressure drop due to friction is taken into consideration in the 
air preheater (both streams), combustion chamber and the HRSG. 

(v) Mechanical losses in the compressor and turbine are negligible.  
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Fig. 9.2.1.  Flow diagram of the gas-turbine cogeneration system. 
 
 
 9.2.2 Preliminary calculations 
 Using the data in Table 9.2.1 and tables with properties of water and steam, the 
following quantities are determined (numerical subscripts correspond to the points on the 
diagram of Fig. 9.2.1). 
 
Steam temperature: T9 = Tsat(20 bar) = 212.37°C 
Preheated water temperature: 8p 9 8pT T T 197.37 C= − ∆ = °  
 
 



________________________________________________________________________________ 
OPTI_ENERGY: Methods of Energy Systems Optimization 52 

Table 9.2.1.  Thermodynamic parameters for the system of Fig. 9.2.1. 
 

 
Net shaft power: W 30 MW=$  
Steam flow rate: sm 14 kg / s=$  (Fig. 9.2.1: 8 9 sm m m= =$ $ $ ) 
Steam condition: p9 = 20 bar, saturated 
Feedwater conditions: p8 = 20 bar T8 = 25°C 
Temperature difference: 8p 9 8pT T T 15K∆ ≡ − =  
Reference environment: p0 = 1.013 bar T0 = 25°C 
 
Other pressures and temperatures: p1 = 1.013 bar T1 = 25°C 
  p7 = 1.013 bar T7min = 100°C 
 
Fuel properties (CH4) 
 Molar mass: Mf = 16.043 kg/kmol 
 Lower heating value: Hu = 50000 kJ/kg 
 Specific chemical exergy: CH

fε = 51850kJ / kg  
 Conditions at the combustor inlet: T10 = 25°C 

 
Properties of air and exhaust gas for compression and expansion calculations 
(ideal gas model): 
 cpa = 1.004 kJ/kg·K aγ 1.40=  Ra = 0.287 kJ/kg·K 
 cpg = 1.170 kJ/kg·K gγ 1.33=  Rg = 0.290 kJ/kg·K 
 
Efficiency of the combustor : Bη 0.98=  (i.e. thermal losses 2%) 
Overall heat transfer coefficient in the air preheater: U = 0.018 kW/m2 K 
 
Exit/inlet pressure ratios in components due to friction 
 Air preheater � air side: rAa = 0.95 
 Air preheater � exhaust gas side: rAg = 0.97 
 Combustor and HRSG: rB = rR = 0.95 
 

 
Useful heat rate (product of the system): 
 

 s s 9 8
kg kJQ m (h h ) 14 (2797.2 106.6) 37668kW
s kg

= − = − =$ $  (9.2.1) 

 
Useful heat rate of the economizer: 
 

 EC s 8p 8
kg kJQ m (h h ) 14 (840.8 106.6) 10279 kW
s kg

= − = − =$ $  (9.2.2) 

 
Useful heat rate of the evaporator: 
 
 EV s ECQ Q Q 27389 kW= − =$ $ $  (9.2.3) 
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 9.2.3 Thermodynamic model of the system 
 Based on the aforementioned assumptions and preliminary calculations, a set of 
thermodynamic equations can be written, which constitutes the thermodynamic model of 
the system. For convenience, the equations are collected in Appendix A.  
 In the 21 equations of Appendix A, there are 47 quantities (pressures, temperatures, 
mass flow rates, heat transfer area, etc.). Of those, 21 are parameters, the values of which 
either are given in Table 9.2.1 or have been determined in the preceding section. The 
solution of the system of 21 equations can give the values of 21 more quantities. 
Consequently, there remain 5 quantities to be determined, namely:  C C T 3 4r , η , η , T , T  
If the values of these 5 quantities are given, then Eqs. (A.1)-(A.17) can be applied one after 
the other to obtain the values of all the variables (see also note at the end of Appendix A), 
in addition to the parameters specified in Table 9.2.1 and § 9.2.2. 
 
 
 9.2.4 Economic model of the system 
 Analytic equations are available, which give the installed capital cost of each 
component of the system as a function of design characteristics. They are given in 
Appendix A: Eqs. (A.22)-(A.26). The annualized capital cost of each component, which 
includes depreciation and maintenance, is calculated by: 
 
  r rZ FCR C= ⋅φ⋅$  (9.2.4) 
where 
 Cr installed capital cost of component r, 
 FCR annual fixed charge rate, 
 φ maintenance factor. 

The total annual cost for the system is given by: 
 

  
5

r f f u
r 1

Z Z c m H t
=

= +∑$ $ $  (9.2.5) 

where 
 cf cost of fuel per unit of energy, 
 t time period of operation during a year. 

The values of parameters appearing in the cost model are given in Appendix A, Table A.1. 
 
 
 9.2.5 Thermoeconomic functional analysis of the system 
 Either energy or exergy can be the cost carrier, and the economic analysis can be 
either monetary or physical. Here, exergy with monetary economics will be applied. There 
are various methods to define the cost carriers. The functional approach will be used here 
(Subsection 6.3).  
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Fig. 9.2.2.  Functional diagram of the system. 

 
 
 The function of the compressor is to increase the exergy of air from state 1 to state 2: 
 

  T T 2
1 a 2 1 a 2 1 a 0

1

py = m (ε -ε ) m ε ε R T ln
p

 
= − + 

 
$ $  (9.2.6) 

where 

  T T 2
2 1 pa 2 1 0

1

Tε ε c T T T ln
T

 
− = − − 

 
 (9.2.7) 

 
To perform its function, the compressor uses shaft power, which comes from the turbine 
(unit 4): 
 
   41 C a pa 2 1y W m c (T T )⋅ = = −$ $  (9.2.8) 
 
The mechanical exergy (due to pressure difference from the environment) is distributed to 
and consumed by all the other units according to the pressure drop in each unit: 
 

  52
1.2 a a 0

3 6

ppy = m R T ln ln
p p

 
+ 

 
$  (9.2.9) 
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  3
1.3 a a 0

4

py = m R T ln
p

$  (9.2.10) 

 

  4
1.4 a a 0

5

py = m R T ln
p

$  (9.2.11) 

 

  6
1.5 a a 0

7

py = m R T ln
p

$  (9.2.12) 

 
The thermal exergy (due to temperature increase in the compressor) is combined with the 
thermal exergy coming from the air preheater and the combustor in the junction (unit 6, 
which is conceptual, i.e. it does not correspond to a real component of the plant): 
 
  ( )T T

1.6 a 2 1y = m ε ε−$  (9.2.13) 

 
The air preheater (unit 2) increases the thermal exergy of air: 
 
  ( )T T

2 a 3 2y = m ε ε−$  (9.2.14) 

 
by using thermal exergy from exhaust gases: 
 
  ( )T T

6.2 g 5 6y = m ε ε−$  (9.2.15) 

 
The product of the air preheater is given to the junction: 
 
  ( )T T

2.6 g 3 2y = m ε ε−$  (9.2.16) 

    
The combustor (unit 3) increases the thermal exergy of the fluid from state 3 to state 4: 
 
  T T

3 g 4 a 3y = m ε m ε−$ $  (9.2.17) 
by consuming fuel: 
  0.3 f uy = m H$  (9.2.18) 
 
In Eq. (9.2.18) fuel energy appears instead of exergy. There is nothing wrong with this 
choice, provided that cost of fuel per unit of energy is used. The function of the combustor 
is given to the junction: 
  T T

3.6 g 4 a 3y = m ε m ε−$ $  (9.2.19) 
 
The turbine (unit 4) produces shaft power: 
 
  4 T g pg 4 5y W m c (T T )= = −$ $  (9.2.20) 
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by using mechanical exergy y1.4 from the compressor, Eq. (9.2.11), and thermal exergy from 
the junction: 
 
  ( )T T

6.4 g 4 5y = m ε ε−$  (9.2.21) 

 
The function of the turbine is distributed to the compressor, y4.1, Eq. (9.2.8), and to the 
environment as net power output: 
 
  4.0y W= $  (9.2.22) 
 
The heat recovery steam generator increases the exergy of water at state 8 to steam at state 
9: 
  5 s 9 8y = m (ε -ε )$  (9.2.23) 
 
by using thermal exergy received from the junction: 
 
  ( )T T

6.5 g 6 7y = m ε ε−$  (9.2.24) 

 
The function of the boiler is one of the system products: 
 
  Q

5 5.0 sy y ≡ $= E  (9.2.25) 
 
The function of the junction (unit 6) is to increase the thermal exergy of the working fluid 
from state 1 to the state of maximum temperature in the cycle, i.e. state 4. However only 
part of this increase is used, namely ( )T T

4 7ε ε− , while the rest is rejected to the environment 

where it is destroyed. Since the functions are cost carriers, as it will be explained in the 
following, they must be defined so that there is no cost rejection to the environment (cost is 
transferred to the environment but through the useful products). For this reason, the 
function of the junction is defined as: 
 
  ( )T T

6 6.2 6.4 6.5 g 4 7y = y y y = m ε ε+ + −$  (9.2.26) 

 
Equations (9.2.6) � (9.2.26) define all the functions appearing in the functional diagram of 
Fig. 9.2.2.  
 It is useful to note that there is considerable flexibility in defining the functions and 
constructing the functional diagram of a system, provided certain fundamental rules are 
obeyed. The designer can use his own judgment and can introduce considerations pertinent 
to the particular applications.  
 The function distribution network, Fig. 9.2.2, distributes also the costs to the units and 
to the final products of the system. A cost balance is written for each unit considering a 
break-even operation: 
 

  
5

r r ' r '.r r r
r ' 1

Z c y c y
=

+ =∑$  (9.2.27) 
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The system of Eqs. (9.2.27) can be solved for the unit product costs, cr. Equation (9.2.27) 
can be used not only with monetary costs but also with costs measured in terms of energy, 
exergy, etc. (physical economic approach).  
 
 
 9.2.6 Statement of the optimization problem 
 Minimization of the total cost rate of the system is selected as the optimization 
objective function: 
 

  
5

r f f u
r 1

minF Z c m H
=

= +∑
x

$ $  (9.2.28) 

 
where  C C T 3 4= (r , η , η , T , T )x  
 
The reason why there are five independent variables has been explained in § 9.2.3. Any set 
of five variables can be selected as independent. The one selected here facilitates the 
calculations: the system of Eqs. (A.1) � (A.21) is diagonal, consequently it is solved one 
equation after the other with no iterations.  
 In addition to the equality constraints given in Appendix A, the following inequality 
constraints are imposed: 
 

 3 2 5 3 6 2 7

4 3 6 9 7p 9

T T 0, T T 0, T T 0, T 100 C
T T 0, T T 0, T T 0

− ≥ − ≥ − ≥ ≥ °
− ≥ − ≥ − ≥

 (9.2.29) 

 
 For the Functional Approach, in particular, the equations of Section 3 are applied with 
 
  σ 5 and R 6= =  (9.2.30) 
 
The system has two fixed products, and Eq. (6.9) is written explicitly here: 
 
 3 0 3 0�y y W⋅ ⋅= = $  Q

5.0 5.0 s�y y = $= E  (9.2.31) 
 
Equations (6.7) give each input to a unit as a function of the independent variables and the 
�product� of the unit (xr, yr). Equations (9.2.6) � (9.2.26) are used to derive the analytic 
expressions for the functions r r 'Y ⋅ . Also, the capital cost rates are expressed as functions of 
(xr, yr): 
  ( )r r r rZ Z , y= x$  (9.2.32) 
 
Examples of analytic expressions for r r 'Y ⋅  and rZ$  are given in Appendix A: Eqs. (A.27) � 
(A.31). 
 The basic procedure to solve the optimization problem by the Functional Approach 
consists of the following steps: 

1. Select an initial set of values for x. 
2. Determine the values of y by the system of Eqs. (6.7) and (6.8). 
3. Evaluate the Lagrange multipliers by Eqs. (6.14) and (6.17b, c, d). 
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4. Check Eqs. (6.17a). If they are satisfied to an acceptable degree of approximation, 
then stop. Otherwise, select a new set of values for x and repeat steps 2-4. 

 
 Numerical methods can be used for the solution of the usually nonlinear system of 
Eqs. (6.17a). If analytic derivatives can be formulated and infeasible points can be avoided, 
the procedure can be applied successfully. Otherwise, minimization of the Lagrangian, Eq. 
(6.15), with respect to x by means of a nonlinear programming algorithm can be more 
efficient. The second procedure has been followed with this problem. 
 
 
 9.2.7 Application of the modular approach 
 Although the system studied here is not very complex and detailed design 
characteristics of components are not required, the modular approach will be applied for 
demonstrative purposes. The components of the system of Fig. 9.2.1 correspond to the 
following modules of Fig. 5.8: (1) compressor, (2) combustor and turbine, (3) air preheater, 
(4) steam generator. The combustor and the turbine are considered as one module, because 
in this way iterations between components are avoided completely.  
 The variables, the parameters and the simulation model of each module are given in 
Appendix A. Whenever possible (as in this example), the equations of each module are 
written in diagonal form, in order to avoid internal iterations. It is reminded that the values 
of parameters, p, are selected by the designer and remain constant during the optimization 
procedure.  
 
 
 9.2.8 Numerical results 
 The optimization problem has been solved by three methods: (i) direct application of 
the GRG2 algorithm [Lasdon and Waren 1986], (ii) Thermoeconomic Functional Approach 
(TFA), and (iii) modular simulation and optimization. The results for the nominal set of 
parameter values (Tables 9.2.1 and A.1) are presented in Table 9.2.2. In addition, Tables 
9.2.3 and 9.2.4 give the values of the functions, Lagrange multipliers and unit product costs 
at the optimum point, which are obtained by TFA. All three methods reach practically the 
same optimum point. The differences in the values of the independent variables are 
negligible (0.02 � 0.08%); they are due to numerical approximations and to the fact that the 
objective function is not very sensitive to the independent variables in the vicinity of the 
optimum point.  
 

Table 9.2.2.  Optimization results for the nominal set of parameter values. 
 

Method 
Variable Direct use 

of GRG2 TFA Modular 

rC 8.59730 8.59770 8.59050 
Cη  0.84641 0.84650 0.84653 

Tη  0.87886 0.87871 0.87878 
T3 (K) 912.77 913.14 912.93 
T4 (K) 1491.40 1491.97 1491.50 
F  ($/year) 1.0426·107 1.0426·107 1.0426·107 
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Table 9.2.3.  TFA: values of functions at the optimum point (in kW). 
 

y1 = 27476 y1.2 = 695 y3.6 = 56292 
y2 = 18894 y1.3 = 437 y4.1 = 29846 
y3 = 56292 y1.4 = 16731 y6.2 = 20407 
y4 = 59846 y1.5 = 437 y6.4 = 45237 
y5 = 12745 y1.6 = 9176 y6.5 = 17028 
y6 = 82672 y2.6 = 18894  

 
 

Table 9.2.4.  TFA: values of Lagrange multipliers and unit product costs 
at the optimum point (in $/106 kJ). 

 
1λ  = 8.7621 c1 = 8.8211 

2λ  = 7.7861 c2 = 7.9552 

3λ  = 5.8668 c3 = 5.8672 

4λ  = 7.7614 c4 = 7.8158 

5λ  = 3.7305 c5 = 10.007 

6λ  = 6.7467 c6 = 6.7922 
 
 
 9.2.9 Sensitivity analysis 
 In order to study the effect of certain parameters on the optimal solution, a sensitivity 
analysis is performed. The effect of any parameter in Tables 9.2.1 and A.1 can be studied. 
In general, economic parameters are more uncertain and therefore it is necessary to 
investigate their effect. As an example, the effect of fuel and capital expenses on the 
optimum design and on the value of the objective function is presented in Figs. (9.2.3), 
(9.2.4) and Table 9.2.5. In addition, the uncertainties defined in Subsection 8.1(B) can be 
evaluated. 
 It is interesting to note that, according to the results in Table 9.2.5, the change of 
optimum values of the independent variables due to an increase of the capital cost by 100% 
is of the same order of magnitude as the change due to an increase of the fuel price by 
100%, but of the opposite sign. If both fuel price and capital cost increase simultaneously 
by the same factor, then the optimum design point remains the same, because multiplication 
of the objective function by the same factor does not change the optimal solution. 
 In addition to the sensitivity of the solution to parameter values, the sensitivity of the 
objective function to the independent variables in the vicinity of the optimum point is of 
interest also. It shows how much the objective function will deteriorate, if, for any reason, 
the design point does not coincide with the optimum one. According to Table 9.2.6, a 
departure from the optimum along the Tη  axis has the highest effect on the objective 
function, while a departure along rC has the lowest one.  
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Table 9.2.5.  Sensitivity of the optimal solution to the fuel price and capital cost. 
 

Fuel price Capital cost Variation 
of variable + 100% + 100% 

* *
C Cr / r∆  (%) + 13.76 � 13.75 
* *
C Cη / η∆  (%) + 1.03 � 0.88 
* *
T Tη / η∆  (%) + 0.80 � 0.84 
* *
3 3T / T∆  (%) � 2.39 + 2.53 
* *
4 4T / T∆  (%) + 0.66 � 0.60 
* *F / F∆  (%) + 89.00 + 9.21 

 
 

Table 9.2.6.  Sensitivity of the objective function to the independent variables: 

( )* *F F / F− ,  %. 

( )* *
i i ix x / x− ,    (%) 

Variable xi 
� 10 � 5 + 5 

rC 0.834 0.269 ** 
Cη  9.448 3.520 ** 

Tη  19.854 7.711 ** 
T3 8.508 3.885 ** 
T4 ** ** 14.05 

**   Infeasible points 
 
 
 9.2.10 General comments derived from the example 
 The application of three methods for the optimization of thermal systems has been 
demonstrated through this example. All three approaches have been successful in the 
particular application. 
 The direct use of an optimization algorithm is the simplest way, because it requires 
the least effort in system analysis, but it gives no information about the internal economy of 
the system (physical and economic relationships among the components). Scaling of the 
variables and of the objective function is usually required in order to achieve convergence 
to the optimum point. On the other hand, no method of nonlinear optimization can 
guarantee convergence to the global optimum. For this reason, there is need to start the 
search from different initial points. If the same final point is reached, then we are more or 
less confident that this is the true optimum. 
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Fig. 9.2.3.  Effect of fuel price and capital cost on the optimum values of C C Tr ,η and η . 
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Fig. 9.2.4.  Effect of fuel price and capital cost on the optimum values of 43T , T , and F . 
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9.3 Environomic Optimization of a System 
 
 9.3.1 Description of the system and main assumptions 
 A gas-turbine system operating on fuel oil will be used as an application example here 
[Frangopoulos 1992]. The system consists of a simple gas turbine unit equipped with a flue 
gas desulfurization unit (FGD) for SO2 abatement (Fig. 9.3.1). It is considered that the plant 
operates at steady state and the electric power output, eW$ , is given. The operation of the 
FGD unit requires electricity, water and limestone ( el wW , V$ $  and lsm$  in Fig. 9.3.1).  
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Fig. 9.3.1.  Gas-turbine system with flue gas desulfurization unit. 
 

  
 The size and the capital cost of the desulfurization unit depend largely on the exhaust 
gas flow rate. Therefore, it is less expensive to desulfurize a partial flow at the maximum 
possible degree, S,maxδ , than the total flow at a lower degree. This is why a by-pass of the 
FGD unit is shown in Fig. 9.3.1. If Sδ is the desirable degree of SO2 abatement, then the 
mass and volume flow rates through the FGD unit are determined by the ratios: 
 

  d d S

g g S,max

m V δ= =
m V δ

$$
$$

 (9.3.1) 

 
where 

  Si S
S

Si

m mδ
m

−=
$ $
$

 (9.3.2) 
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 d dm , V$$  mass, volume flow rate of exhaust gases through the FGD unit (points 5 and 

7 in Fig. 9.3.1), 
 g gm , V$$  total mass, volume flow rate of exhaust gases (points 3, 4 and 8 in Fig. 

9.3.1), 
 Sim$  initial mass flow rate of SO2, 
 Sm$  final mass flow rate of SO2 (after abatement). 
 
For the particular system and fuel it is: 
 
  Si fm 2sm=$ $  (9.3.3) 
 
where 
 s mass fraction of sulfur in the fuel, 
 fm$  mass flow rate of fuel. 
 
 
 
 9.3.2 Statement of the optimization problems 
 The system of Fig. 9.3.1, but without the HRSG, is optimized first with three different 
objectives, for comparison: two thermodynamic and one thermoeconomic. Next, the 
complete system (with the FGD unit) is optimized with an environomic objective. The two 
thermodynamic objectives are the maximization of the cycle efficiency: 
 

  
th

1
C T 3 B C Ce

f u C 3 C

η η τ 1 (ρ ρ ) (ρ 1)Wmax η
m H η (τ 1) (ρ 1)

− − − − = =
− − −x

$
$

 (9.3.4) 

 
and the maximization of the net power density, defined as: 
 

  
th

1e C
T 3 B C

a p 1 C

W ρ 1max w η τ 1 (ρ ρ )
m c T η

− − = = − − x

$
$

 (9.3.5) 

 
where 

  
γ 1
γρ r
−

=  (9.3.6) 
 
 C Tη , η  isentropic efficiency of compressor, turbine, 
 3τ  temperature ratio:  3 3 1τ T T= , 
 C B Tr , r , r  compressor, combustor, turbine pressure ratio, 
 γ  specific heat ratio:  p υγ = c c . 
 
 Both η  and w increase continuously with C 3 Bη , τ , r  and Tη . Consequently, the 
thermodynamic optimum value for each one of these variables is equal to 1, which is 
impractical, therefore realistic values will be assigned to these variables after the 
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thermoeconomic or environomic problem is solved. The only independent variable left for 
the thermodynamic optimization problems is the compressor pressure ratio: 
 
  th Cr=x  (9.3.7) 
 
As thermoeconomic objective, the minimization of the annual cost of owning and operating 
the system is selected: 
 
  

te
te C B T f1min Z Z Z Z C= + + +

x
 (9.3.8) 

 
where ZC, ZB and ZT are the annualized capital costs of compressor, combustor and turbine, 
respectively, and Cf1 is the annual cost of fuel.  
 The analysis of the system shows that there are five degrees of freedom. The 
following five variables are selected as independent: 
 
  te C C B 3 T= (r , η , r , τ , η )x  (9.3.9) 
 
The environomic objective is selected similar to the thermoeconomic one, but it includes 
additional terms: 
 
  

env
env te FGD el1 w1 ls1 S1min Z Z Z C C C C= + + + + +

x
 (9.3.10) 

 
where 
 ZFGD annualized capital cost of the FGD unit, 
 Cel, Cw, Cls   cost of electricity, water and limestone consumed by the FGD unit, 
 CS1 annual penalty imposed on the system for SO2 emitted to the environment. 

Csi is a special case of CS, which corresponds to no abatement ( Sδ 0= ).  
 
 The capital costs of the compressor, combustor and turbine are given by the Eqs. 
(A.22), (A.24) and (A.25), respectively. The capital cost of the FGD unit is estimated by the 
equation: 
 
  FGD 1 S Si 2 d 3C = c δ m c V c+ +$$  (9.3.11) 
 
where c1, c2 and c3 are constant cost coefficients. The annualized capital costs are calculated 
by Eq. (9.2.4). The remaining terms in Eqs. (9.3.8) and (9.3.10) are calculated by the 
equations 
 
 f1 f fC c m=  el1 el el dC c k V=  (9.3.12) 
 
 w1 w w dC c k V=  ls1 ls ls S SiC c k δ m=  (9.3.13) 
 
where 
 mf annual fuel consumption, 
 cf, cel, cw, cls  unit cost of fuel, electricity, water and limestone, respectively, 
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 kel, kw, kls  specific consumption of electricity, water and limestone, respectively, by 
the FGD unit. 

 
The first year penalty for emitted SO2 is considered a linear function of the emitted 
quantity: 
 S1 S S SiC c (1 δ )m= −  (9.3.14) 
 
where cS is the unit penalty on SO2 emissions.  
 The degree of SO2 abatement is included in the independent variables: 
 
  env C C B 3 T S= (r , η , r , τ , η , δ )x  (9.3.15) 
 
 The level of analysis (thermodynamic model) of the system is similar to the one of the 
preceding example (Appendix A). Details are not written here. 
 
 
 9.3.3 Numerical results and comments 
 The four optimization problems have been solved for the parameter values given in 
Table 9.3.1 and the results are presented in Table 9.3.2. As mentioned above, 
thermodynamic optimization requires C 3 Bη , τ , r  and Tη  to take the maximum possible 
value, ideally to be equal to 1. Since this is impossible, these variables are set equal to their 
optimum values of (i) the thermoeconomic optimization, and (ii) the environomic 
optimization problem. Thus, two different optimum values of rC are obtained for each one 
of the two thermodynamic optimization problems, as shown in Table 9.3.2.  
 The environomic optimum values of all the independent variables are higher than the 
thermoeconomic optimum values. The thermoeconomic and environomic optima of rC are 
in between the values corresponding to the maximum efficiency and the maximum net 
power density. The cycle efficiency, as a dependent variable, obtains a higher value with the 
environomic optimization than with the thermoeconomic optimization.  
 A more detailed presentation of this example appears in [Frangopoulos 1992]. Other 
examples of optimization with environmental considerations appear in [Frangopoulos and 
Boulmetis 1992, von Spakovsky and Frangopoulos 1994, and Agazzani et al. 1998]. 
 
 

Table 9.3.1.  Parameter values for optimization of the system. 
 

     e eW 100 MW=$  c1 = 15⋅106 $/(kg/s) 
      Hu = 42500 kJ/kg c2 = 56000 $/(m3/s) 
      T1 = 293 K c3 = 9⋅106 $ 
       s = 0.025 kg S/kg fuel cel = 0.06 $/kWh 

S,maxδ  = 0.95 cw = 0.47 $/m3 
      cf = 4⋅10-6 $/kJ cls = 0.0257 $/kg 
      cS = 1.70 $/kg SO2     kel = 0.0031 kWh/m3 
   FCR = 0.13 kw = 0.369⋅10-4 m3/m3 
       φ = 1.04 kls = 1.56 kg/kg 
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Table 9.3.2.  Optimization results. 
 

O b j e c t i v e 
Variable max η  max w  temin Z  envmin Z  
rC 25.83 28.1 10.39 10.82 15.22 16.14 

Cη  * # * # 0.8460 0.8555 
rB * # * # 0.9820 0.9839 
T3  (K) * # * # 1467.4 1478.6 

Tη  * # * # 0.8947 0.8993 

Sδ  __ __ __ __ __ 0.9500 
η  0.4056 0.4202 0.3636 0.3750 0.3900 0.4034 

* Equal to the thermoeconomic optimum value. 
# Equal to the environomic optimum value. 

 
 
Note: 
The last two application examples have to do with similar systems. However, differences in 
the size of systems and the time basis of economic analysis make the numerical results not 
to be comparable with each other. 
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APPENDIX A 
 

Thermodynamic Model of the System of Subsection 9.2 
 

 

 
ak

C
2 1

C

r 1T T 1
η

 −= + 
 

 (A.1) 2 C 1P r P=  (A.2) 

 
 3 Aa 2P r P=  (A.3) 4 B 3P r P=  (A.4) 
 
 6 7 RP P / r=  (A.5) 5 6 AgP P / r=  (A.6) 
 

 T 4 5r P /P=  (A.7) ( )gk
5 4 T TT T 1 η 1 r− = − −   (A.8) 

 

 pg 4 0 pa 3 0

u B pg 4 0

c (T T ) c (T T )
f

H η c (T T )
− − −

=
− −

 (A.9) pa 3 2
6 5

pg

c (T T )
T T

(1 f )c
−

= −
+

 (A.10) 

 

 a
pg 4 5 pa 2 1

Wm
(1 f )c (T T ) c (T T )

=
+ − − −

$
$ (A.11) f am f m=$ $  (A.12) 

 
  

 g f am m m= +$ $ $  (A.13) s
7 6

g pg

QT T
m c

= −
$
$

 (A.14) 

 

 EV
7p 6

g pg

QT T
m c

= −
$
$

 (A.15) C a pa 2 1W m c (T T )= −$ $  (A.16) 

 

 T g pg 4 5W m c (T T )= −$ $  (A.17) 6 2 5 3
A

6 2

5 3

(T T ) (T T )T T Tln
T T

− − −∆ = −
−

 (A.18) 

 

 g pg 5 6
A

A

m c (T T )
A

U T
−

=
∆

$
 (A.19) 7p 8p 7 8

EC
7p 8p

7 8

(T T ) (T T )
T T T

ln
T T

− − −
∆ = −

−

 (A.20) 

 

 6 9 7p 9
EV

6 9

7p 9

(T T ) (T T )
T T Tln

T T

− − −
∆ = −

−

 (A.21)   

 
Symbols not explained in the text: 

 AA heat transfer area of the air preheater, 
 f fuel to air mass ratio, 
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  γ 1k
γ
−=  where pc

γ
cυ

=  

 
 

Economic Model of the System 
 
Installed capital cost functions of components: 
 

 11 a
1 C C

12 C

c mC r ln r
c η

=
−
$

 (A.22) 

 
 0.6

2 21 AC c A=  (A.23) 
   

 [ ]31 g
3 33 4 34

32 B

c m
C 1 exp(c T c )

c r
= + −

−
$

 (A.24) 

  

 [ ]41 g
4 T 43 4 44

42 T

c m
C ln r 1 exp(c T c )

c η
= + −

−
$

 (A.25) 

 

 
0.8 0.8

1.2EC EV
5 51 52 s 53 g

EC EV

Q QC c c m c m
T T

     = + + +   ∆ ∆     

$ $
$ $  (A.26) 

 
 

Table A.1.  Nominal values of cost parameters (year of reference: 1992). 
 
 
 t = 8000 h/year 
 cf = 4·10-6 $/kJ 
 FCR = 0.182 (year)-1 
 φ = 1.06 
 c11 = 39.5 $/(kg/s) 
 c12 = 0.9 
 

 
 c21 = 2290.0 $/m1.2 
 c31 = 25.6 $/(kg/s) 
 c32 = 0.995 
 c33 = 0.018 K-1 
 c34 = 26.4 
 c41 = 266.3 $/(kg/s) 
 

 
 c42 = 0.92 
 c43 = 0.036 K-1 
 c44 = 54.4 
 c51 = 3650 $/(kW/K)0.8 
 c52 =  11820 $/(kg/s) 
 c53 =  658 $/(kg/s)1.2 
 

 
 

Examples of r r ' r ' r 'Y ( , y )⋅ x  and r r rZ ( , y )x . 
 

 pa 2 1
4 1 1

2 1

c (T T )
y y

ε ε⋅
−

=
−

, (A.27) u
0.3 3T T

4 4

f Hy = y
(1 f )ε ε+ −

 (A.28) 

  

 
( )

a 0 T
1.4 3

pg 4 5

R T ln(1/ r )y = y
(1 f )c T T+ −

, (A.29) ( )( )
11 C C

1 1
12 C 2 1

a r ln rZ y
c η ε ε

=
− −

 (A.30) 
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where  ri ria FCR c= ⋅φ⋅  (A.31) 
   
 

Modular Formulation of the Problem 
 
Module 1: Compressor 
 Parameters and variables: 
  ( )1 1 1 aP , T , k=p , ( )1 C Cr , η=x , ( )1i = ∅y , ( )1 2 2P , T=y , ( )1 = ∅w  

 Simulation model: Eqs. (A.1), (A.2). 
 
Module 2: Combustor and turbine 
 Parameters and variables: 
  ( )2 0 1 7 pa pg g u B Aa Ag B RT , T , P , c , c , k , H , η , r , r , r , r=p  

 ( )2 T 3 4η , T , T=x , ( )2i 2P=y  ( )2 a f g 5m , m , m , T=y $ $ $  ( )2 4 5 TP , P , r , f=w  

 Simulation model: 4 Aa B 2P r r P=  7
5

Ag R

PP
r r

=  

  Eqs. (A.7) � (A.9) and (A.11) � (A.13). 

 
Module 3: Air preheater 
 Parameters and variables: 
  ( )3 pa pgc , c , U=p ,  ( )3 3T=x  

 ( )3i 2 5 gT , T , f , m=y $ ,  ( )3 6 AT , A=y , ( )3 AT= ∆w  

 Simulation model: Eqs. (A.10), (A.18) (A.19). 
 
Module 4: Heat recovery steam generator 
 Parameters and variables: 
  ( )4 8p 9 R ec ev pgT , T , Q , Q , Q , c=p $ $ $ ,  ( )4 = ∅x  

 ( )4i 6 gT , m=y $ , ( )4 7 7p ec evT , T , T , T= ∆ ∆y , ( )4 = ∅w  

 Simulation model: Eqs. (A.14), (A.15) (A.20), (A.21). 
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APPENDIX B 

 
Sources of Optimization Software 

 
Software packages 
 The continuously increasing interest in applying optimization not only in research but 
also in practical problems gave the impetus for development of appropriate software, which 
is commercially available or, in certain cases, is given free of charge. A very good reference 
is the guide by Moré and Wright (1993), which is available also on-line in the NEOS Server 
listed below. For convenience, a list of software packages is given here; it is not 
comprehensive and no attempt is made to make recommendations. Related information is 
given also in the books by Papalambros and Wilde (2000), Floudas (1995), Reklaitis et al. 
1983. 
 
Various software packages, such as Excel, Lotus and QuatroPro use the GRG algorithm for 

solution of optimization problems. The particular version of the GRG algorithm is 
provided by Frontline Systems (www.frontsys.com) 

 
DOT (Design Optimization Tool) 
 Provided by:  Vanderplaats R&D (www.vrand.com). 
 It contains general purpose nonlinear programming codes designed to interface with 

simulation analysis programs. 
 
EASY-OPT 
 Provided by:  K. Schittkowski 
  (www.uni-bayreuth.de/departments/math/~kschittkowsky/easy_opt) 
 It can solve general nonlinear programming, least squares, min-max, and multicriteria 

optimization problems interactively under the Microsoft Windows platform.   
 
Harwell Subroutine Library 
 Provided by:  www.dci.clrc.ac.uk 
 It is a suite of ANSI Fortran 77 subroutines and Fortran 90 modules for scientific 

computation, including modules for optimization.  
 
IMSL (International Mathematical and Statistical Libraries) 
 Provided by:  Visual Numerics (www.vni.com) 
 It was initially created in the late 1960s for use in business, engineering and sciences. 

It has been fully modernized and contains many algorithms including Schittkowski�s 
SQP.  

 
iSIGHT  
 Provided by:  Engineous Software (www.engineous.com) 
 It is an optimization package based on a graphics environment with its early 

motivation coming from artificial intelligence techniques.  
  
MATLAB Optimization Toolbox 
 Provided by:  Mathworks (www.mathworks.com) 
 It includes unconstrained and SQP algorithms. 
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Mathematica 
 Provided by:  Wolfram Research (www.wolfram.com) 
 It includes unconstrained and SQP algorithms. 
 
NEOS (Network-Enabled Optimization System Server 
 Provided by:  Optimization Technology Center of Argonne National Laboratory 
 (www.mcs.anl.gov/otc) 
 It can be used for solving optimization problems remotely over the Internet. 
 
SNOPT  
 Provided by:  Systems Optimization Laboratory of Stanford University 
 (www.stanford.edu/group/SOL/) 
 It is, perhaps, the most widely used and robust SQP code. 
 
Internet sites 
 A search with keywords over the Internet is perhaps the best way to obtain updated 
information on software and algorithms. As a starting point, a few addresses are given 
below with a note of caution, since Internet addresses change frequently. 
 
www.aemdesign.com/ 
 It provides information about the FSQP method. 
 
www.aero.ufl.edu/~issmo 
 The International Society for Structural and Multidisciplinary Optimization. 
 It provides links to research and events related to optimization.  
 
www.me.washington.edu/~asmeda 
 ASME Design Automation Committee. 
 It provides links to research and events related to design optimization.  
 
http://ode.engin.umich.edu/links.html 
 Optimal Design Laboratory, University of Michigan. 
 It maintains a list of Internet sites of special interest for design optimization. 
 
www-unix.mcs.anl.gov/~leyffer/solvers.html 
 It provides information about optimization algorithms for nonlinear and mixed 

integer-nonlinear optimization problems based on the �filter SQP� method.   
 
www-unix.mcs.anl.gov/~leyffer/ 
 It provides information and results of comparison of various optimization algorithms. 
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