
Graphical User Interfaces

1 Object-Oriented Design of GUIs
a GUI to evaluate expressions
making colors with scale widgets

2 Visualizing polyfit
adding data points with mouse clicks
applying inheritance to visualize polyfit

MCS 507 Lecture 12
Mathematical, Statistical and Scientific Software

Jan Verschelde, 24 September 2012

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 1 / 35

Graphical User Interfaces

1 Object-Oriented Design of GUIs
a GUI to evaluate expressions
making colors with scale widgets

2 Visualizing polyfit
adding data points with mouse clicks
applying inheritance to visualize polyfit

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 2 / 35

evaluating expressions

The GUI shown above uses the following widgets:

2 label widgets to document entry widgets,

2 entry widgets to enter inputs & 1 to display results,

1 button to perform the evaluation.

Object-oriented design of the GUI:

__init__ defines the layout of the GUI,

actions of the GUI are implemented by the methods.

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 3 / 35

structure of guieval.py
from Tkinter import *
from math import *

class EvalFun():
"""
GUI to evaluate user given expressions.
"""
def __init__(self,wdw):

"Determines the layout of the GUI."

def calc(self):
"Evaluates the function f at x."

def main():
top = Tk()
eva = EvalFun(top)
top.mainloop()

if __name__ == "__main__": main()

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 4 / 35

label, entry & grid manager

def __init__(self,wdw):
"Determines the layout of the GUI."
wdw.title("Evaluate Expressions")
self.L1 = Label(wdw,text="f(x) =")
self.L1.grid(row=0)
self.L2 = Label(wdw,text="x =")
self.L2.grid(row=0,column=2)
self.f = Entry(wdw)
self.f.grid(row=0,column=1)
self.e = Entry(wdw)
self.e.grid(row=0,column=3)
self.r = Entry(wdw)
self.r.grid(row=0,column=5)

The grid defines the placement of a widget in the window.
Rows and columns start at zero.

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 5 / 35

the button

def __init__(self,wdw):
...
self.b = Button(wdw,text="equals",

command=self.calc)
self.b.grid(row=0,column=4)

def calc(self):
"Evaluates the function f at x."
self.r.delete(0,END)
x = float(self.e.get())
y = eval(self.f.get())
self.r.insert(INSERT,y)

Note: calc is defined after the button layout.
What comes from an entry widget has type string.

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 6 / 35

Graphical User Interfaces

1 Object-Oriented Design of GUIs
a GUI to evaluate expressions
making colors with scale widgets

2 Visualizing polyfit
adding data points with mouse clicks
applying inheritance to visualize polyfit

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 7 / 35

mixing red, green, blue

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 8 / 35

code for one scale

The variable set by the scale is a double,
ranging from 0 to 1 with resolution 1.0/256.

After every change in the variable,
the method ShowColors is executed.

When the GUI starts up, the scale has value 0.5.

def __init__(self,wdw):
...
self.r = DoubleVar() # red intensity
self.sr = Scale(wdw,orient=’vertical’,

length=self.d,
from_=0.0,to=1.0, resolution = 1.0/256,
variable=self.r,command=self.ShowColors)

self.sr.set(0.5) # initial value of scale

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 9 / 35

showing colors

def ShowColors(self,v):
"""
Displays a rectangle, filled with rgb color.
"""
r = self.sr.get()
g = self.sg.get()
b = self.sb.get()
print ’r = %f, g = %f, r = %f’ % (r,g,b)
hr = ’%.2x’ % int(255*r)
hg = ’%.2x’ % int(255*g)
hb = ’%.2x’ % int(255*b)
color = ’#’ + hr + hg + hb
x = self.d/2+1; y = self.d/2+1; d = self.d/2-3
self.c.delete("box")
self.c.create_rectangle(x-d,y-d,x+d,y+d,width=1,

outline=’black’,fill=color,tags=’box’)

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 10 / 35

explaining ShowColors

Key aspects of the method ShowColors:

The argument v of ShowColors is the value of the scale, but we
need the values of all three intensities.

With self.sr.get()we get the red intensity.
Green and blue intensities are set by the scales with names sg
and sb respectively.

The print writes to the terminal.

hr = ’%.2x’ % int(255*r) converts the intensity as a float
in [0, 1] to a two-digit hexadecimal integer.

The large rectangle written to canvas has tag box and with this
name we can wipe out the previous color.

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 11 / 35

Graphical User Interfaces

1 Object-Oriented Design of GUIs
a GUI to evaluate expressions
making colors with scale widgets

2 Visualizing polyfit
adding data points with mouse clicks
applying inheritance to visualize polyfit

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 12 / 35

adding points

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 13 / 35

functionality of the GUI

Two main functions of the GUI:

add points by clicking mouse on canvas, and

delete points by clicking on displayed point.

Points on canvas are pixels, but picking out a pixel for deletion can be
very hard on user.

Points are disks of radius 10 on canvas.

On a canvas with dimensions 400 × 600, we imagine our canvas as
composed of 40 rows and 60 columns.

Pixels are mapped as (248, 141) → (25, 14).

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 14 / 35

optional output

Launching: $ python mouseptsadd.py output.

def main():
top = Tk()
r = 40; c = 60; o = False
import sys
if(len(sys.argv) > 1):

if sys.argv[1] == ’output’: o = True
show = AddPoints(top,r,c,o)
top.mainloop()

if __name__ == "__main__": main()

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 15 / 35

binding mouse events

from Tkinter import *

class AddPoints():
"""
Adding points on canvas with mouse clicks.
"""
def BindMouseEvents(self):

"""
Binds mouse events to the canvas,
called at the initialization of the GUI.
"""
self.c.bind("<Button-1>",self.ButtonPressed)
self.c.bind("<ButtonRelease-1>",

self.ButtonReleased)
self.c.bind("<Enter>",self.EnteredWindow)
self.c.bind("<Leave>",self.ExitedWindow)
self.c.bind("<B1-Motion>",self.MouseDragged)

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 16 / 35

the constructor

def __init__(self,wdw,r,c,output=False):
"""
The window has one column, two rows:
+ row 1: a canvas to draw points
+ row 2: a label to display coordinates

and messages to the user.
"""
wdw.title("adding points with mouse")
self.mag = 10 # magnification factor
self.rows = r # number of rows on canvas
self.cols = c # number of columns on canvas
self.c = Canvas(wdw,width=self.mag*self.cols,

height=self.mag*self.rows,bg=’white’)
self.c.grid(row=0,column=0)

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 17 / 35

__init__ continued

to display mouse position :
self.MousePosition = StringVar()
self.MousePosition.set\

("put mouse inside box to add points")
self.PositionLabel = Label(wdw,

textvariable = self.MousePosition)
self.PositionLabel.grid(row=1,column=0)
bind mouse events
self.BindMouseEvents()
self.points = []
self.output = output

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 18 / 35

mapping pixels

def MapPixel(self,p):
"""
Maps pixel p working mod self.mag.
If self.mag equals 10, then
MapPixel(248) returns 25,
MapPixel(141) returns 14.
"""
m = self.mag
(x,r) = divmod(p,m)
return (x+1 if r > m/2 else x)

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 19 / 35

showing points

def DrawCircle(self,i,j):
"""
Draws a blue circle on canvas with coordinates
given at (i,j) by mouse and adds or removes
coordinates to the list of points.
"""
if self.output: print ’getting i =’, i, ’j =’, j
(x,y) = (self.MapPixel(i),self.MapPixel(j))
i0 = x*self.mag-self.mag/2; i1 = i0 + self.mag
j0 = y*self.mag-self.mag/2; j1 = j0 + self.mag
name = ’(’+str(x)+’,’+str(y)+’)’
if not (x,y) in self.points:

self.c.create_oval(i0,j0,i1,j1,
fill="blue",tags=name)

self.points.append((x,y))
else:

self.c.delete(name)
self.points.remove((x,y))

if self.output: print ’list of points :’, self.points

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 20 / 35

dragging the mouse

The method MouseDragged is invoked when the mouse is dragged.
The pixel coordinates are passed and displayed in the label widget
associated to the mouse.

def MouseDragged(self,event):
"""
Displays coordinates of moving mouse.
"""
self.MousePosition.set("dragging at [" + \

str(event.x) + ", " + str(event.y) + "]" + \
" release to draw")

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 21 / 35

button pressed & released

def ButtonPressed(self,event):
"""
Displays coordinates of button pressed.
"""
self.MousePosition.set("currently at [" + \

str(event.x) + ", " + str(event.y) + "]" + \
" release to fill, or drag")

def ButtonReleased(self,event):
"""
Displays coordinates of button released.
"""
self.MousePosition.set("drawn at [" + \

str(event.x) + ", " + str(event.y) + "]" + \
" redo to clear")

self.DrawCircle(event.x,event.y)

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 22 / 35

enter & exit window

def EnteredWindow(self,event):
"""
Displays message that mouse entered window.
"""
self.MousePosition.set\

("press mouse to give coordinates")

def ExitedWindow(self,event):
"""
Displays message that mouse exited window.
"""
self.MousePosition.set\

("put mouse inside box to add points")

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 23 / 35

Graphical User Interfaces

1 Object-Oriented Design of GUIs
a GUI to evaluate expressions
making colors with scale widgets

2 Visualizing polyfit
adding data points with mouse clicks
applying inheritance to visualize polyfit

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 24 / 35

visualizing polyfit

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 25 / 35

applying inheritance

We do not want to copy all code from mouseptsadd.py.

from mouseptsadd import AddPoints

class FitPoints(AddPoints):
"""
Visualizing polyfit.
"""
def __init__(self,wdw,r,c,output=False):

Instantiating AddPoints copies the layout and functionality,
FitPoints inherits from AddPoints.

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 26 / 35

constructor in FitPoints

def __init__(self,wdw,r,c,output=False):
"""
We instantiate the AddPoints GUI
and add a scale for the degree of
the polynomial that fits the points.
"""
self.addpts = AddPoints(wdw,r,c,output)
wdw.title("visualizing polyfit")
define the scale next to the canvas
self.degree = IntVar()
self.fitdeg = Scale(wdw,orient=’vertical’,

length=r*self.addpts.mag,label=’degree’,
from_=0,to=5,resolution=1,
variable=self.degree,command=self.Fit)

self.fitdeg.grid(row=0,column=1)

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 27 / 35

functionality of FitPoints

Three actions:
1 Computing the polynomial fitting the data points,

with the degree entered by the scale.

2 Sampling the polynomial that fits the data
and displaying the graph of the polynomial.

3 Deleting the graph is needed
as the user changes the location of the data points.

Every pixed plotted of the polynomial is named fitd-xxx where d is
the degree and xxx the number of the sample.

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 28 / 35

plotting the polynomial

def ShowFit(self,p,d):
"""
Displays the fitting polynomial p
of degree d.
"""
ap = self.addpts
name = ’fit’ + str(d) + "-"
for i in xrange(0,ap.rows*ap.mag):

x = float(i)/ap.mag
y = np.polyval(p,x)
j = y*ap.mag
name = name + str(i)
ap.c.delete(name)
ap.c.create_oval(i-1,j-1,i+1,j+1,

fill="red",tags=name)

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 29 / 35

erasing a plot

def DeleteFit(self,d):
"""
Deletes the fitting polynomial p
of degree d.
"""
ap = self.addpts
name = ’fit’ + str(d) + "-"
for i in xrange(0,ap.rows*ap.mag):

name = name + str(i)
ap.c.delete(name)

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 30 / 35

computing the fit

def Fit(self,v):
"""
Calls polyfit and displays
the fitting polynomial.
"""
ap = self.addpts
d = self.degree.get()
L = ap.points
if ap.output:

print ’the points :’, L
print ’the degree :’, d

for i in xrange(len(L),5):
self.DeleteFit(i)

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 31 / 35

Fit continued

if(len(L) > d):
A = np.array([x for (x,y) in L])
B = np.array([y for (x,y) in L])
p = np.polyfit(A,B,d)
if ap.output:

print ’fitting polynomial = ’
print p

self.ShowFit(p,d)

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 32 / 35

Summary + Exercises

A manual of Tkinter is at
http://infohost.nmt.edu/tcc/help/pubs/tkinter.pdf

Exercises:
1 Add buttons random and clear to the GUI to add points with

mouse clicks. When pressed, the button random adds a random
point to the list and shows it, while the clear button clears the
canvas and clears the list of stored points.

2 To rgbgui.py, add an entry widget to display the code for the
color set by the scales.

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 33 / 35

more exercises

3 Write Python code to display:

You should not provide any functionality.
4 Add functionality to the calculator displayed in the previous

exercise.

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 34 / 35

one last exercise

5 Add a button and an entry widget to the guifit.py. Pressing the
button generates as many random points as the value of the entry
widget. Consider the fitting polynomial for increasing degrees, i.e.:
explore what happens if the degree of the scale is set higher.

The third homework is due on Friday 5 October:
solve exercises 2 and 3 of Lecture 8; exercises 3 and 5 of Lecture 9;
exercises 3 and 4 of Lecture 10; exercises 2 and 3 of Lecture 11; and
exercises 1 and 5 of Lecture 12.

Scientific Software (MCS 507) graphical user interfaces 24 Sep 2012 35 / 35

	Object-Oriented Design of GUIs
	a GUI to evaluate expressions
	making colors with scale widgets

	Visualizing polyfit
	adding data points with mouse clicks
	applying inheritance to visualize polyfit

