
Yair Moshe

Department of Electrical Engineering, Technion – IIT

Signal and Image Processing Laboratory

April, 2012

Advanced MATLAB®

Graphics and GUI

2

Outline

• Graphics

• Animation

• Image and Video

• Handle Graphics Objects

• Creating GUI using GUIDE

3

2-D Plotting

x=0:.1:2*pi;

y=sin(x);

plot(x,y)

grid on

hold on

plot(x, exp(-x), 'r:*')
hold off

axis([0 2*pi 0 1])

title('2-D Plot')

xlabel('Time')

ylabel('F(t)')

text(pi/3, sin(pi/3), '<--sin(\pi/3) ')

legend('Sine Wave',
 'Decaying Exponential')

4

Line Specification

Specifier Line Color Specifier Marker

r red . point

g green o circle

b blue x cross

c cyan + plus

m magenta * asterix

y yellow s square

k black d diamond

w white v triangle down

Specifier Line Style ^ triangle up

- solid < triangle left

-- dashed > triangle right

: dotted p pentagram

:. dash-dot h hexagram

5

The Figure Window

The figure window contains useful actions in its menu

and toolbars:

• Zooming in and out

• Panning

• Rotating 3-D axes (and other camera actions)

• Copying & pasting

• Plot Edit Mode

• Plot tools (interactive plotting)
– Figure Palette

– Plot Browser

– Property Inspector

• Data Cursor Mode

• Data brushing and linking

6

The Figure Window

• Generate M-Code to reproduce the figure

• Saving & exporting

– Figures can be saved in a binary .fig file format

– Figures can be exported to many standard graphics file formats

etc., EPS (recommended),TIFF, JPEG, GIF, PNG, BMP, EMF

• Printing

7

Subplots & Scales for Axes

subplot(2,2,1)

x=0:.1:2*pi;

plot(x, exp(-x))

subplot(2,2,2)

semilogy(x, exp(-x))

subplot(2,2,3)

t = 0:900;

z1 = 1000*exp(-0.005*t);

z2 = sin(0.005*t);

plotyy(t,z1,t,z2,'semilogy','plot');

subplot(2,2,4)

plot(peaks)

8

Data Brushing and Linking

• Data Brushing

– Manually select observations on an interactive data display

– Can select, remove, and replace individual data values

• Data Linking

– Linked plots visibly respond to changes in the current workspace

variables they display and vice versa

• Each one of these tools is useful by itself but when

used together they are very powerful

9

Data Statistics & Curve Fitting

• Data Statistics Tool

– Calculates basic statistics about the central tendency and

variability of data plotted in a graph

– Plots any of the statistics the a graph

• Basic Fitting Interface

– Fits data using a spline interpolant, a shape-preserving

interpolant, or a polynomial up to degree 10

– Plots multiple fits simultaneously for a given data set

– Examines the numerical results of a fit

– Annotates the plot with the numerical fit results and the norm of

residuals

10

3-D Plotting

z = 0:0.1:10*pi;

x = exp(-z/20).*cos(z);

y = exp(-z/20).*sin(z);

plot3(x,y,z,'LineWidth',2)

grid on

xlabel('x')

ylabel('y')

zlabel('z')

11

Specialized Plotting Routines

12

3-D Meshes and Surfaces

13

3-D Meshes and Surfaces

14

3-D Meshes and Surfaces

15

Outline

• Graphics

• Animation

• Image and Video

• Handle Graphics Objects

• Creating GUI using GUIDE

16

Animation

MATLAB provides two ways of generating moving,

animated graphics:

1. On the fly - Continually erase and then redraw the

objects on the screen, making incremental

changes with each redraw

2. Frame by frame capture and playback - Save a

number of different pictures and then play them

back as a movie

17

On the Fly Animation, 1st example

% initialize surface object

x = -pi:0.1:pi;

xsize = size(x,2);

f = zeros(xsize);

for y = 1:xsize

 f(:,y) = cos(y/xsize*pi) + sin(x);

end

% draw surface first time

hSurface = surface(f, 'LineStyle', 'none');

view(3); % set the default 3D view

18

On the Fly Animation, 1st example

% function drawing loop

for j=0:0.01:10

 % update surface function

 for y = 1:xsize

 f(:,y) = cos(y/xsize*pi+j) + sin(x+j);

 end

 % update surface ZData

 set(hSurface, 'ZData', f);

 drawnow;

end

19

On the Fly Animation, 2nd example

t = 0:pi/20:2*pi;

y = exp(sin(t));

h = plot(t,y,'YDataSource','y');

for k = 1:.1:10

 y = exp(sin(t.*k));

 refreshdata(h,'caller') % Evaluate y in the function workspace

 drawnow; pause(.1)

end

20

Frame by Frame Animation

[x,y] = meshgrid([-10:0.5:10]);

for j = 1:15

 z = besselj(0, (j-1)*0.2 + sqrt(x.^2 +y.^2));

 surf(x,y,z)

 axis([-10 10 -10 10 -.5 1])

 M(j) = getframe;

end

frame_order = [1:15 14:-1:1];

number_repeats = 5;

movie(M, [number_repeats frame_order]);

Example of frame by frame movie creation and playing:

21

Outline

• Graphics

• Animation

• Image and Video

• Handle Graphics Objects

• Creating GUI using GUIDE

22

Images

[x,map]=...

 imread('peppers.png');

image(x)

colormap(map)

• Image I/O

– imread, imwrite, iminfo

• Image display

– image – Display

– imagesc – Scale and display

23

Images

• Image display

– imshow – Display

– subimage – Display multiple images in a single figure even if

they have different colormaps

• Image exploration

– imtool – Provides tools for pixel information, pixel region,

distance, image information, adjust contrast, crop image, and

display range

24

Video

• Media Player (from Simulink)

– mplay - View video from MATLAB workspace, multimedia file, or

Simulink model

• AVI

– aviread, avifile, addframe, close, aviinfo – Allows frame-by-

frame manipulation of AVI files, old an not recommended

25

Video

• Video reader & writer

– VideoReader, VideoWriter - Read and write video data from a

file

– Replaces counterpart AVI functions

– VideoReader replaces mmreader

– VideoWriter supports 'Motion JPEG AVI‘, ‘Motion JPEG 2000’,

'Uncompressed AVI‘, ‘MPEG-4’ (H.264)

26

Video I/O example

% Open input and output files

inFile = VideoReader('xylophone.mpg');

outFile = VideoWriter('out.avi', 'Motion JPEG AVI');

open(outFile);

% Read one frame at a time

for k = 1 : inFile.NumberOfFrames

 curFrame = read(inFile, k);

 outFrame = curFrame * 2;

 writeVideo(outFile, outFrame); % Write to output file

 % Show input and output

 …

end

close (outFile);

27

Computer Vision System Toolbox

hvfr = vision.VideoFileReader('viplanedeparture.avi');

hp = vision.VideoPlayer;

while ~isDone(hvfr)

 videoFrame = step(hvfr);

 step(hp, videoFrame);

end

release(hp);

release(hvfr);

Example of reading and playing a video:

28

Outline

• Graphics

• Animation

• Image and Video

• Handle Graphics Objects

• Creating GUI using GUIDE

29

Handle Graphics Objects

• Handle Graphics is an object-oriented structure for

creating, manipulating and displaying graphics

• Graphics objects are the basic drawing elements

used in MATLAB

• Every graphics object has:

– A unique identifier, called a handle

– A set of characteristics, called properties

30

Graphics Objects Hierarchy

Objects are organized into a hierarchy:

31

Core Graphics Objects

Axes (2-D) Patch

Surface

Axes (3-D)

Image

Figure Line Text

32

Composite Graphics Objects

• Composite Objects are core objects that have been
grouped together to provide a more convenient
interface

• Plot objects
– areaseries, barseries, contourgroup, errorbarseries, lineseries,

quivergroup, scattergroup, stairseries, stemseries, surfaceplot

• Group objects
– hggroup – Enables to control visibility or selectability of a group

of objects

– hgtransform – Enables to transform (etc., rotate, translate, scale)
a group of objects

• Annotation objects
– Created in a hidden axes that extends the full size of the figure

– Enables to specify the locations anywhere in the figure using
normalized coordinates

33

Obtaining an Object’s Handle

• Upon creation, for example:

– h = plot(x_data, y_data, …)

• Using utility functions:

– 0 - root object handle (the screen)

– gcf – returns the handle of the current figure

– gca - returns the handle of the current axis in the current figure

– gco - returns the handle of the current object in the current figure

– gcbo - returns the handle of the object whose callback is

currently executing

– gcbf - returns the handle of the figure that contains the object

whose callback is currently executing

– findobj(handles,’PropertyName’,PropertyValue) – return objects

with specific properties

34

Setting and Getting Properties

• Return a list of all object properties and their current values:
– get(handle)

• Return current value of an object property:
– get(handle, ‘PropertyName’)

– Example: get(gcf, 'Color')

• Return a list of all user-settable object properties and their
current values:
– set(handle)

• Return a list of all possible values for an object property:
– set(handle,’PropertyName’)

– Example: set(gca, 'XDir')

• Set an object property to a new value:
– set(handle, ‘PropertyName’, ‘NewPropertyValue’)

– Example: set(gca, 'XDir', 'Reverse')

• All the above can also be done (but not at runtime) using the
Property Editor

35

Example – Specifying Figure Position

space = 5;

top_space = 80;

scn_size = get(0,'ScreenSize');

pos1 = [space, 2/3*scn_size(4) + space,...

 scn_size(3)/2 - 2*space, scn_size(4)/3 - (top_space + space)];

pos2 = [pos1(1) + scn_size(3)/2, pos1(2),...

 pos1(3), pos1(4)];

h1 = figure(1);

peaks;

h2 = figure(2);

membrane;

set(h1, 'Position', pos1)

set(h2, 'Position', pos2)

36

Example – Background Image

% Create background axes and move them to the background

hback = axes('units','normalized','position',[0 0 1 1]);

uistack(hback,'bottom');

% Load background image and display it

[back map]=imread('sipl.gif');

image(back)

colormap(map)

% Turn the handlevisibility off so that we don't inadvertently plot into

% the axes again. Also, make the axes invisible

set(hback,'handlevisibility','off','visible','off')

% Now we can use the figure as required

axes('position',[0.1,0.1,0.85,0.35])

plot(rand(10))

37

Outline

• Graphics

• Animation

• Image and Video

• Handle Graphics Objects

• Creating GUI using GUIDE

38

What is GUIDE?

• GUIDE is MATLAB’s Graphical User Interface (GUI)

Development Environment

• GUIDE stores GUIs in two files:

– .fig file - Contains a complete description of the GUI figure layout

and the GUI components

• Changes to this file are made in the Layout Editor

– .m file - Contains the code that controls the GUI

• Initialization code and callbacks

• You can program the behavior of the GUI in this file using the M-file

Editor

39

Creating a GUI

Typical stages of creating a GUI are:

1. Designing the GUI

2. Laying out the GUI

– Using the Layout Editor

3. Programming the GUI

– Writing callbacks in the M-file Editor

4. Saving and Running the GUI

It is also possible to create a GUI programmatically

40

The Layout Editor

Component

Palette

Align

Objects

M-file

Editor

Run GUI

Object Browser

Property

Inspector

Layout Area

Resize

Box

Menu

Editor

Tab Order

Editor

Toolbar

Editor

41

Hands-On GUIDE Example

42

Callbacks

• A callback is a function that executes when a

specific event occurs on a graphics object

– Also called event handler in some programming languages

• A property of a graphics object

– All objects: ButtonDownFnc, CreateFnc, DeleteFnc

– User interface controls: Callback, KeyPressFcn,

– Figure: CloseRequestFcn, KeyPressFcn, KeyReleaseFcn,

ResizeFcn, WindowButtonDownFcn, WindowButtonMotionFcn,

WindowButtonUpFcn, WindowKeyPressFcn,

WindowKeyReleaseFcn, WindowScrollWheelFcn

– …

• Stored in the GUI’s M-file

43

Writing Callbacks

A callback is usually made of the following stages:

1. Getting the handle of the object initiating the action
(the object provides event / information / values)

2. Getting the handles of the objects being affected
(the object whose properties are to be changed)

3. Getting necessary information / values

4. Doing some calculations and processing

5. Setting relevant object properties to effect action

6. Save any changes that have been made to the
handles structure by using

 guidata(hObject, handles)
– hObject is the handle to the component object that executes

the callback

44

Writing Callbacks

% --- Executes on button press in plot_button.

function plot_button_Callback(hObject, eventdata, handles)

% hObject handle to plot_button (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get user input from GUI

f1 = str2double(get(handles.f1_input,'String'));

f2 = str2double(get(handles.f2_input,'String'));

t = eval(get(handles.t_input,'String'));

% Calculate data

…

% Create frequency plot

axes(handles.frequency_axes) % Select the proper axes

plot(f,m(1:257))

xlabel('Frequency');

set(handles.frequency_axes,'XMinorTick','on')

grid on

…

Callback from example:

45

Managing Data

• Most GUIs generate or use data specific to the

application

• GUI components often need to communicate data to

one another

• Several basic mechanism serve this need:

– UserData property

– Application data (getappdata, setappdata, isappdata, rmappdata)

– Using the handles structure (guidata)

– Nested functions

• It is also possible to make several different GUIs work

together

– Communicate by setting each other’s properties or by returning

outputs

46

Image Processing Modular Tools

• Many of the interactive tools of the Image Processing

Toolbox are modular and can be combined into your

custom GUI

– For image processing applications

– imcontrast, imcolormaptool, imcrop, imdisplayrange, imdistline,

imageinfo, immagbox, imoverview, impixelinfo, impixelregion,

impixelregionpanel, imsave, imscrollpane

47

More Information

• MATLAB user manuals – Graphics, 3-D Visualization,
Creating Graphical User Interfaces, Image
Processing Toolbox, Image Acquisition Toolbox,
Video and Image Processing Blockset, …

• Marchand P., Holland T. O., Graphics and GUIs with
MATLAB, 3ed, 2003, CRC Press

• Smith T. S., MATLAB Advanced GUI Development,
2006, Dog Ear Publishing

Documents from Mathworks can be found at:
http://www.mathworks.com/help/index.html

Most of this info can also be found in MATLAB Help

http://www.mathworks.com/help/index.html
http://www.mathworks.com/help/index.html

48

