
PROJECT 1.3 
 

Due date November 5, 2012 
 

Description of the project  
1. You must implement the following MatLab notebook in sage and ipython notebook interfaces 

(You should download and install ipython notebook in your computer) 

2. Before each cell in sage notebook you should insert the comments that have been provided in 

MatLab notebook including pictures that are not part of the MatLab output. 

3. Try to find a way to insert text above each cell in ipython notebook and let me know.  

4. Notice that the Matlab codes in this notebook are executable directly from the word doc! 
 

 

Non-linear optimization 
 

 

 

Q: What is non-linear optimization? 

A: That means to find a minimum/maximum of a non-linear function. 

 

This optimization can be constrained (if there is some limit to the values of variables) and unconstrained. 

 

Here, we will consider un-constrained optimization. 

 

A 3-Dimensional graph of function f shows that f has two local maxima at (-1, -1, 2) and (1, 1, 2) and a 

saddle point at (0, 0, 0).  

 

 



 

 
A differentiable function () has a saddle point at a critical point () if in every open disk 

centered at () there are domain points () where () () and domain points () 
where () (). The corresponding point (()) on the surface = () is called a 

saddle point of the surface. 

 

 
 

% Create a grid of x and y data 

y = -10:0.5:10; 

x = -10:0.5:10; 

[X, Y] = meshgrid(x, y); 

  

% Create the function values for Z = f(X,Y) 

Z=(X.^2-Y.^2); 

% Create a surface contour plor using the surfc function 

figure; 

surfc(X, Y, Z); 

  

% Adjust the view angle 

view(-38, 18); 

  

% Add title and axis labels 

title('Saddle point'); 

xlabel('x'); 

ylabel('y'); 

zlabel('z');   

 



 
 

Non-linear unconstrained optimization problem is: 

 

Maximize (or minimize) f(x1,x2…,xn) where  f is non-linear function. 

 

 

 

Consider the problem: 

 

 
1

,max
22 




yx

yx
yxf  

 

Q: How would we solve this problem analytically? 

A: We would need calculus of multiple variables. 

 

Remember from simple calculus of the necessary condition for extremal values 
 

 In case of single value function the extremal points of a function f(x) can be found among these points 

where the first derivative: 

 
dx

df
xf '  is equal to zero. 

In case of multivalued functions the partial derivatives of f are zero at the extremal points! 

 

What will we do here? We will compute so-called “partial” derivatives. 



 

Q: What is partial derivative? 

A: If a function depends on multiple variables, we will observe only one variable, and differetiate by it. The 

other variables will be considered as constants. 

 

 

 

 

 

 

 

 

Example 1 

 

  yxyxf  2,  

partial derivative with respect to x is: 
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constant) 

 

partial derivative with respect to y is: 
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MatLab Code 
syms x y dx dy z gradient   %define variables as symbolic 

z=x^2+y      %define function to be maximized 

dx=diff(z,x)                %partial derivatives 

dy=diff(z,y)  

 

   

 
z =x^2 + y 

dx =2*x 

dy =1   

 

Example 2: 

 

    yexyxf  sin,  

partial derivative with respect to x is: 
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partial derivative with respect to y is: 
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MatLab Code 
syms x y dx dy z gradient   %define variables as symbolic 

z=sin(x)+exp(y)      %define function to be maximized 

dx=diff(z,x)                %partial derivatives 

dy=diff(z,y)  

   

 
z =exp(y) + sin(x) 

dx =cos(x) 



dy =exp(y)   

 

   

 

 

Example 3 
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syms x y dx dy z gradient   %define variables as symbolic 

z=exp(x)*log(y)      %define function to be maximized 

dx=diff(z,x)                %partial derivatives 

dy=diff(z,y)   

 
z =exp(x)*log(y) 

dx =exp(x)*log(y) 

dy =exp(x)/y   

 

   

 

 

Example 4: 
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syms x y dx dy z gradient   %define variables as symbolic 

z=(x-y)/(x^2+y^2+1)      %define function to be maximized 

dx=diff(z,x)                %partial derivatives 

dy=diff(z,y)   

 
z =(x - y)/(x^2 + y^2 + 1) 

dx =1/(x^2 + y^2 + 1) - (2*x*(x - y))/(x^2 + y^2 + 1)^2 

dy =- 1/(x^2 + y^2 + 1) - (2*y*(x - y))/(x^2 + y^2 + 1)^2   

 
 

 

 

 

 

Determine points where the partial derivatives of function  
1

,
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yx

yx
yxf  are zero. 

syms x y dx dy z u v gradient   %define variables as symbolic 

z=(x-y)/(x^2+y^2+1)      %define function to be maximized 



dx=diff(z,x)                %partial derivatives 

dy=diff(z,y)   

S=solve('1/(x^2 + y^2 + 1) - (2*x*(x - y))/(x^2 + y^2 + 1)^2=0',... 

'- 1/(x^2 + y^2 + 1) - (2*y*(x - y))/(x^2 + y^2 + 1)^2=0') 

S.x 

S.y 

f=@(x,y)(x-y)/(x^2+y^2+1) 

f(S.x(1,1),S.y(1,1)) 

f(S.x(2,1),S.y(2,1))   

 
z = 

(x - y)/(x^2 + y^2 + 1) 

dx = 

1/(x^2 + y^2 + 1) - (2*x*(x - y))/(x^2 + y^2 + 1)^2 

dy = 

- 1/(x^2 + y^2 + 1) - (2*y*(x - y))/(x^2 + y^2 + 1)^2 

S =  

    x: [4x1 sym] 

    y: [4x1 sym] 

ans = 

    0.70710678118654752440084436210485 

   -0.70710678118654752440084436210485 

 -0.70710678118654752440084436210485*i 

  0.70710678118654752440084436210485*i 

ans = 

   -0.70710678118654752440084436210485 

    0.70710678118654752440084436210485 

 -0.70710678118654752440084436210485*i 

  0.70710678118654752440084436210485*i 

f =  

    @(x,y)(x-y)/(x^2+y^2+1) 

ans = 

0.70710678118654752440084436210485 

ans = 

-0.70710678118654752440084436210485   

 

  

 

Sage cells 
var('x,y')

f(x,y)=(x-y)/(x**2+y**2+1)

f

dx=derivative(f,x)

dx

 

        
(x, y) |--> -2*(x - y)*x/(x^2 + y^2 + 1)^2 + 1/(x^2 + y^2 

+ 1) 

dy=derivative(f,y)

dy

 

        
(x, y) |--> -2*(x - y)*y/(x^2 + y^2 + 1)^2 - 1/(x^2 + y^2 

+ 1) 

solve([dx==0,dy==0],x,y)

 



        

[[x == -1/2*sqrt(2), y == 1/2*sqrt(2)], [x == 

1/2*sqrt(2), y == 

-1/2*sqrt(2)], [x == -1/2*I*sqrt(2), y == -

1/2*I*sqrt(2)], [x == 

1/2*I*sqrt(2), y == 1/2*I*sqrt(2)]] 

 

  
  
  
  
 

 

        
x == -1/2*sqrt(2) 

y == 1/2*sqrt(2) 

 

        
x == 1/2*sqrt(2) 

y == -1/2*sqrt(2) 

 
        (x - y)/(x^2 + y^2 + 1) == -1/2*sqrt(2) 

 
        (x - y)/(x^2 + y^2 + 1) == 1/2*sqrt(2) 
 

  
 

 

 

Q: Where the max and min of the function occurs? 

A: Check the analytic and numerical roots of the above equations and the graph below 

 
% Create a grid of x and y data 

y = -10:0.5:10; 

x = -10:0.5:10; 

[X, Y] = meshgrid(x, y); 

  

% Create the function values for Z = f(X,Y) 

Z=(X-Y); 

Z=Z./(X.^2+Y.^2+1); 

% Create a surface contour plor using the surfc function 

figure; 

surfc(X, Y, Z); 

  

% Adjust the view angle 

view(-38, 18); 

  

% Add title and axis labels 

title('3D and contour Plot of the given function in the xy coordinate 

plane'); 



xlabel('x'); 

ylabel('y'); 

zlabel('z'); 

   

 

 
 

 

 

 

 

 

 

How we can find extremum (minimum, maximum…) numerically? 

 

Idea: Apply “hill climbing” strategy. 

 

Hill climbing 
 

Assume that we want to maximize objective function. The idea is to set initial point and 

to find the direction in which the objective function grows the fastest. Then, to move in 

that direction for some (small) step and to repeat this procedure until the value of the 

function does not change significantly. 

 

Contour plot of our function 

(each contour corresponds to a constant value of the function) 



 
We can observe: No two contour lines are intersecting and the denser contour lines, the 

faster function grows. 

 

Next, we observe the behavior of the gradient i.e of the vector of the partial derivatives of 

f.  
 

 
%%Visualizing Gradients of Functions of Two Variables 

%The gradient of a function of several variables is the vector-valued  

%function whose components are the partial derivatives of the function.   

syms x y z 

f=(x-y)/(x^2+y^2+1) 

gradf=jacobian(f,[x,y]) 

%Plot gradients 

[xx, yy] = meshgrid(-3:.1:3,-3:.1:3); 

ffun = @(x,y) eval(vectorize(f)); 

fxfun = @(x,y) eval(vectorize(gradf(1))); 

fyfun = @(x,y) eval(vectorize(gradf(2))); 

figure(1); 

contour(xx, yy, ffun(xx,yy), 30) 

hold on 

[xx, yy] = meshgrid(-3:.25:3,-3:.25:3); 

quiver(xx, yy, fxfun(xx,yy), fyfun(xx,yy), 0.6) 

axis equal tight, hold off 

   

 
f =(x - y)/(x^2 + y^2 + 1) 



gradf =[ 1/(x^2 + y^2 + 1) - (2*x*(x - y))/(x^2 + y^2 + 1)^2, - 1/(x^2 + 

y^2 + 1) - (2*y*(x - y))/(x^2 + y^2 + 1)^2] 
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In each point, we can observe the direction in which the function grows fastest. The directions of vectors 

correspond to the fastest ascent and the intensities of the vector correspond to the slope. In the above 

contour plot, we can see that the vectors of maximal ascent are orthogonal to contour lines and that the 

function grows fastest  around x=0, y=0.  



 
Direction of the gradient vertical to countour lines 

 

 
%%Behavior Near Critical Points 

%A plot such as this one can be interpreted to give information 

regarding 

%critical points of the function. Critical points are points where the 

%gradient vector vanishes. A critical point is called on-degenerate if 

%behavior of the function near the critical point is controlled by the 

%second derivatives (so that the 'second derivative test' applies). For 

%functions of two variables, there are three kinds of non-degenerate 

critical points.  

%You can recognize them from the following three kinds of pictures:  

%local minimum 

figure(1); 

f1 = x^2 + y^2; gradf1 = jacobian(f1,[x,y]); 

f1fun = @(x,y) eval(vectorize(f1)); 

f1xfun = @(x,y) eval(vectorize(gradf1(1))); 

f1yfun = @(x,y) eval(vectorize(gradf1(2))); 

[xx, yy] = meshgrid(-1:.1:1,-1:.1:1); 

contour(xx, yy, f1fun(xx, yy), 10) 

hold on 

quiver(xx, yy, f1xfun(xx, yy), f1yfun(xx, yy), 0.5) 

title('local minimum'), axis equal tight, hold off 

set(gca, 'YTick', -1:.5:1) 

%local maximum 

figure(2) 

contour(xx, yy, -f1fun(xx, yy), 10) 

hold on 

quiver(xx, yy, -f1xfun(xx, yy), -f1yfun(xx, yy), 0.5) 

title('local maximum'), axis equal tight, hold off 

set(gca, 'YTick', -1:.5:1) 

%saddle points 

figure(3) 

f2 = x^2 - y^2; gradf2 = jacobian(f2,[x,y]); 

f2fun = @(x,y) eval(vectorize(f2)); 



f2xfun = @(x,y) eval(vectorize(gradf2(1))); 

f2yfun = @(x,y) eval(vectorize(gradf2(2))); 

contour(xx, yy, f2fun(xx, yy), 10) 

hold on 

quiver(xx, yy, f2xfun(xx, yy), f2yfun(xx, yy), 0.5) 

title('saddle point'), axis equal tight, hold off 

set(gca, 'YTick', -1:.5:1)   
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If we follow the rule that in each point we travel in the direction of maximal ascent (or steepest descent for 

finding the minimum), we will have a “trajectory” towards the solution as the following method, called 

gradient, and its MatLab implementation indicates. This rule for steepest descent is described by the 

following pseudocall 

 

Gradient Algorithm or First Derivative Methods 

 

01. choose  in the domain of  and tolerance ε>0

2. set 0

3. loop compute ( )

            if  stop

            compute ascent (descent) direction ( ) (- ( ))

            compute step s

k k

k

k k k

x f

k

g f x

g

d f x f x





 



  

1

ize 

            update 

            1 and return to loop

k k kx x d

k k







  

 

 

 

 

 
In the following implementation of gradient method we keep μk fix. 

 
%   Gradient method 

syms x y dx dy z gradient   %define variables as symbolic 

f=(x-y)/(x^2+y^2+1) % function to find maximun 

gradf=jacobian(f,[x,y])% gradient vector of f 

  

% search space 

a=-3; 

b=3; 

c=-3; 

d=3; 

%Plot gradients 

[xx, yy] = meshgrid(a:.1:b,c:.1:d); 



ffun = @(x,y) eval(vectorize(f)); 

fxfun = @(x,y) eval(vectorize(gradf(1))); 

fyfun = @(x,y) eval(vectorize(gradf(2))); 

  

% application of gradient method 

N_iter=15;                  %number of iterations 

mu=2;                       %algorithms coefficient 

  

x0=0;                       %starting point 

y0=1.5; 

%Algorithm 

solution=[x0 y0]; 

clear sol_arh 

sol_arh(1,:)=solution;      %we archive solutions... 

for i=1:N_iter 

    x=solution(1); 

    y=solution(2); 

    solution=solution+mu*eval(gradf);        %New value of decision 

variables in the direction of gradient 

    grad_arh(i+1,:)=eval(gradf);             %we archive current values 

of gradient  

    norm_arh(i+1)=norm( grad_arh(i+1,:));       %and its norm 

    sol_arh(i+1,:)=solution;                     

end 

  

figure(1) 

%Plot contours of the function and gradient vectors on 2D pl 

[x,y] = meshgrid(a:.2:b, c:.2:d); %Generate function values on 

rectangular grid for  

z=(x-y)./(x.^2+y.^2+1); %NOTE: THIS is numer, not a symbolic value 

  

contour(x, y, ffun(x, y), 30)  %Plot contours of the function on 2D pl 

hold on 

quiver(x, y, fxfun(x, y), fyfun(x, y), 'r')%plot gradient vectors on 

contour plot 

% Add title and axis labels 

title('Contour plot the obective function f, its gradient, and the 

sequence of appr solution'); 

xlabel('x'); 

ylabel('y'); 

zlabel('z'); 

xx=sol_arh(:,1);yy=sol_arh(:,2);zz=(xx-

yy)./(xx.^2+yy.^2+1);plot(xx,yy,'*-g') %compute function values for 

solutions found in the 

                                                                            

%iterations and plot them on 2d plot 

figure(2)                  

mesh(x,y,z)         %plots function in 3D 

colormap gray 

hold on;plot3(xx,yy,zz,'.-') %plot values for solutions from the 

iterations on 3D plot 

% Add title and axis labels 

title('Plot the obective function f in 3D and the sequence of appr 

solution'); 

xlabel('x'); 

ylabel('y'); 

zlabel('z'); 



  

figure(3) 

error=log(abs(zz-sqrt(0.5))); %this is log of absolute error (absolute 

difference between achieved value of objective 

                              %function in the iterations and the 

optimal value which is (we should know that!) sqrt(0.5) 

  

  

plot(error(1:length(error)-1),error(2:length(error)))   %The slope of 

this plot is the order of convergence!!! 

% Add title and axis labels 

title('Plots the log of error for the appr solution knowing that true 

solution is sqrt(0.5)'); 

xlabel('x'); 

ylabel('y'); 

zlabel('z'); 

   

 
f = 

(x - y)/(x^2 + y^2 + 1) 

gradf = 

[ 1/(x^2 + y^2 + 1) - (2*x*(x - y))/(x^2 + y^2 + 1)^2, - 1/(x^2 + y^2 + 

1) - (2*y*(x - y))/(x^2 + y^2 + 1)^2] 

Contour plot the obective function f, its gradient, and the sequence of appr solution
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In order to find the optimal value of μκ we apply one dimensional optimization methods. 

The most common ones are the golden search and quadratic inteprolation. Their basic 

ideas are described in the following figures. The algorithm for golden search is given in 

Houstis ebook.  
 

 

 
 

 

 

1. Second derivative: Newton's method.  

 



 

 

Example implementation of Newton's method for single function with two variables. Notice that 

it requires as input the second derivative (Hessian). 

syms x  y 

f=(x-2)^4+(x-2*y)^2 

df=jacobian(f,[x,y]) 

ddf=jacobian(df,[x,y]) 

evalf=@(x,y) eval(f); 

evaldf=@(x,y) eval(df); 

evalddf=@(x,y)eval(ddf); 

% this is the pure form of newton's method 

t=[0;0]; 

max_iter=20; 

tol=0.0001 

k = 0; 

delf = evaldf(t(1),t(2)); 

alpha = 1; 

while norm(delf)>tol & k <= max_iter 

    H = evalddf(t(1),t(2)); 

    d = -H\delf'; 

    k = k+1; 

    t = t + alpha*d; 

    delf = evaldf(t(1),t(2)); 

end 

minimumf=t 

gradientf=delf   

 

f = 

(x - 2*y)^2 + (x - 2)^4 

df = 

[ 2*x - 4*y + 4*(x - 2)^3, 8*y - 4*x] 

ddf = 



[ 12*(x - 2)^2 + 2, -4] 

[               -4,  8] 

tol = 

  1.0000e-004 

minimumf = 

    1.9769 

    0.9884 

gradientf = 

  1.0e-004 * 

   -0.4945         0   

 

2. First derivative: quasi-Newton's methods.  

The derivative-based methods are not really new - they solve a nonlinear equation f(x)=0. The most 

important one is the Newton's method. The Newton's method has very attractive convergence properties but 

can be very expensive due to computations of the second derivative. Therefore, there is a whole family of 

"first derivative methods", some trying to approximate the second derivative (quasi-Newton) and others, 

less ambitious, looking for the zero without any information about the second derivative at all. It is a 

natural idea to try to combine those two strategies in a kind of hybrid methods.  

 

 

 
     myfun=inline('c*x(1)^2 + 2*x(1)*x(2) + x(2)^2','x','c') 

     c = 3;  % define parameter first 

     x = fminunc(@(x)myfun(x,c),[1;1])   

 
myfun = 

     Inline function: 

     myfun(x,c) = c*x(1)^2 + 2*x(1)*x(2) + x(2)^2 

Warning: Gradient must be provided for trust-region algorithm; 



  using line-search algorithm instead. 

> In fminunc at 347 

 

Local minimum found. 

 

Optimization completed because the size of the gradient is less than 

the default value of the function tolerance. 

 

 

 

x = 

  1.0e-006 * 

    0.2541 

   -0.2029   

In case the gradient of the function is known then the method is much faster. The following code can NOT 

be executed from the note book because the functions have to be defined inline. Inline functions jn MatLab 

do not produce multivalue output. 

 
function [f,gradf]=objfun(x) 
f=(x(1)^2+x(2)^2)^2-x(1)^2-x(2)+x(3)^2;  
gradf=[4*x(1)*(x(1)^2+x(2)^2)-2*x(1);4*x(2)*(x(1)^2+x(2)^2)-1;2*x(3)]; 

options=optimset('GradObj','on');  
x0=[1;1;1];[x,fval]=fminunc('objfun',x0,options) 

 
Output  
 

Local minimum possible. 

 

fminunc stopped because the final change in function value relative to  

its initial value is less than the default value of the function 

tolerance. 

 

<stopping criteria details> 

 

 

x = 

 

    0.5005 

    0.4998 

    0.0000 

 

 

fval = 

 

   -0.5000  

  

 

 

 

 

3. Non-derivative methods: golden section search, parabolic interpolation.  

MatLab function fminsearch implements an non derivative method. It’s usage is demostrated in 

the following code 

 



fbanana = @(x)100*(x(2)-x(1)^2)^2+(1-x(1))^2; 

banana = @(x,y)100*(y-x.^2).^2+(1-x).^2; 

ezsurf(banana, [-3 3]); view(155, 20); hold on; 

xmin = fminsearch(fbanana, [-1.2 1]) 

hold off   

 
xmin = 

    1.0000    1.0000 
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Multiobjective unconstrained optimization 

 

 



 
gamultiobj can be used to solve multiobjective optimization problem in several variables. Here we 

want to minimize two objectives, each having one decision variable. 

   min F(x) = [objective1(x); objective2(x)] 

    x 

   where, objective1(x) = (x+2)^2 - 10, and 

          objective2(x) = (x-2)^2 + 20 

% Plot two objective functions on the same axis 

x = -10:0.5:10; 

f1 = (x+2).^2 - 10; 

f2 = (x-2).^2 + 20; 

plot(x,f1); 

hold on; 

plot(x,f2,'r'); 

grid on; 

title('Plot of objectives ''(x+2)^2 - 10'' and ''(x-2)^2 + 20''');   
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FitnessFunction = @(x) [(x+2)^2 - 10; (x-2)^2 + 20]; 

numberOfVariables = 1; [x,fval] = 

gamultiobj(FitnessFunction,numberOfVariables)   

 
Optimization terminated: maximum number of generations exceeded. 

x = 

   -2.0000 

    2.0000 

    2.0000 

   -2.0000 

   -0.4915 

    1.3024 

fval = 

  -10.0000   36.0000 

    6.0000   20.0000 

    6.0000   20.0000 

  -10.0000   36.0000 

   -7.7244   26.2076 

    0.9058   20.4866   

 



 


