

MATLAB Parallel Computing Toolbox Benchmark for an
Embarrassingly Parallel Application

By Nils Oberg, Benjamin Ruddell, Marcelo H. García, and Praveen Kumar

Department of Civil and Environmental Engineering
University of Illinois
Urbana, IL

June 2008

Introduction

MATLAB is a scientific matrix manipulation program that provides an environment for
rapid application development (RAD), scientific computations, plotting, and a wide
variety of additional tasks. This environment is useful for such tasks as Particle Image
Velocimetry (PIV) image manipulation, Geographical Information Systems (GIS)
mapping, and statistics computations. MATLAB is extended by toolboxes, and includes
two useful toolboxes, the Parallel Computing Toolbox and the Parallel Computing
Server. These toolboxes provide a parallel computing environment for new and existing
MATLAB code, ranging from a full-blown Message-Passing Interface (MPI) to a simple
parallel for loop (parfor).

This technical note provides results of benchmarking an embarrassingly parallel1 code
written by Benjamin Ruddell. Three environments were used to test the code: 1) a
desktop computer with Intel Hyperthreading, 2) a desktop computer utilizing a quad-core
CPU, and 3) a 40 CPU-core cluster. The procedure used in benchmarking is provided in
addition to the benchmark analysis.

Code Analysis

As a part of his PhD thesis, Benjamin Ruddell wrote code to compute Shannon entropies
and the transfer entropy (information flow) between any number of observed timeseries
variables, taken in pairs. This code is inherently embarrassingly parallel. The core of the
code was rewritten in C++ and compiled into a MATLAB MEX-file using the MATLAB
mex command. This alone resulted in a significant (4x) increase in performance, even
over vectorized MATLAB code.

Procedure

The goal of benchmarking is to determine the performance of a code under controlled
conditions. Therefore the first step is to ensure that no programs are utilizing the CPU on
the benchmarked computer. Then the following pseudo-code may be used:

Set N = the set of node counts to benchmark with
Set L = the set of iteration counts to benchmark with

for every element of L -> Li, do

for I = 1 to L , do i

 compute entropy
end for

1 An embarrassingly parallel problem is one that requires little or no effort to segment the problem into a
large number of parallel tasks, and none of the segmented tasks are dependent on each other.

for every element of N Nj, do
 configure matlab worker pool for Nj nodes

 t1 = get time
 parfor I = 1 to Li, do
 compute entropy
 end parfor
 t2 = get time

 deallocate matlab worker pool

 display (Nj, Li, t2-t1)
 end for
end for

In order to achieve accurate results, several iterations of the above pseudo-code must be
performed, and the results averaged.

Results

Three separate experiments were performed to determine the performance of the
MATLAB Parallel Computing Toolbox and Server under varying conditions. All three
experiments used MATLAB version R2007b; however, the first and second experiments
additionally tested the performance of version R2008a. These two experiments were
used to compare the performance improvement in R2008a over the previous version.

Experiment 1

This experiment tested the performance of the Ruddell code on an Intel Pentium 4 3.0
Ghz processor with Hyperthreading enabled. RAM size was not relevant due to the size
of the problem. The results are provided in Tables 1 and 2.

 Number of workers R2008a Number of workers R2007b
Iterations 1 (for) 1 2 (parfor) 1 (for) 1 (parfor) 2 (parfor)

10,000 2.00 2.33 2.18 2.02 8.65 9.03
50,000 9.85 9.91 8.80 10.3 9.68 8.71

100,000 19.6 19.5 16.8 20.0 19.2 16.9
500,000 98.9 97.5 83.7 101 95.6 83.5

1,000,000 199 191 164 206 194 170
Table 1: Hyperthreading time duration for workers vs. iterations

 Number of workers R2008a Number of workers R2007b
Iterations 1 (for) 1 (parfor) 2 (parfor) 1 (for) 1 (parfor) 2 (parfor)

10,000 1.00 0.86 0.92 1.00 0.23 0.22
50,000 1.00 0.99 1.12 1.00 1.06 1.18

100,000 1.00 1.01 1.17 1.00 1.04 1.18
500,000 1.00 1.01 1.18 1.00 1.05 1.21

1,000,000 1.00 1.04 1.21 1.00 1.06 1.22
Table 2: Hyperthreading speedup for Tfor / Tparfor

Experiment 2

Experiment 2 tested the performance of the Ruddell code on an Intel Core 2 Quad 2.66
Ghz processor. RAM size was not relevant due to the size of the problem. The results
are provided in Tables 3 and 4.

 Number of workers R2008a Number of workers R2007b
Iterations 1 (for) 1 2 4 1 (for) 1 2 4

10,000 1.22 1.53 0.947 0.664 1.22 7.72 7.21 7.21
50,000 6.13 6.23 3.38 1.93 6.15 12.6 9.74 8.60

100,000 12.3 12.6 6.27 3.39 12.4 18.2 12.6 9.84
500,000 61.8 61.4 30.4 15.7 62.0 65.7 36.4 22.3

1,000,000 123 121 61.5 30.9 123 125 66.7 37.4
Table 3: Quad-core time duration for workers vs. iterations

 Number of workers R2008a Number of workers R2007b
Iterations 1 (for) 1 2 4 1 (for) 1 2 4

10,000 1.00 0.79 1.28 1.83 1.00 0.16 0.17 0.17
50,000 1.00 0.98 1.82 3.18 1.00 0.49 0.63 0.72

100,000 1.00 0.98 1.96 3.62 1.00 0.68 0.98 1.26
500,000 1.00 1.01 2.04 3.95 1.00 0.94 1.70 2.78

1,000,000 1.00 1.02 2.00 3.99 1.00 0.98 1.85 3.29
Table 4: Quad-core speedup for Tfor / Tparfor

Experiment 3

This experiment tested the performance of the Ruddell code, using MATLAB R2007b,
on a 40 CPU-core cluster. MATLAB was configured to use up to 32 workers. One
worker corresponded to one core. The cluster was comprised of 5 dual-CPU, quad-core
systems for a total of 8 cores per system; connectivity was via gigabit Ethernet. Results
are presented in Figure 1 and Tables 5 and 6.

Figure 1: Speedup curves for cores vs. iterations

 Number of cores
Iterations 1 2 4 8 16 32

10,000 1.99 1.02 0.603 0.419 0.320 0.416
50,000 9.24 4.46 2.27 1.15 0.696 0.500

100,000 18.3 8.72 4.34 2.22 1.24 0.765
500,000 90.4 41.4 21.3 10.6 5.37 2.86

1,000,000 176 82.8 42.1 21.0 10.6 5.46
Table 5: Cluster time duration for cores vs. iterations

 Number of cores
Iterations 1 2 4 8 16 32

10,000 1.00 1.94 3.30 4.74 6.21 4.78
50,000 1.00 2.07 4.08 8.01 13.3 18.5

100,000 1.00 2.10 4.21 8.24 14.8 23.9
500,000 1.00 2.18 4.25 8.54 16.8 31.7

1,000,000 1.00 2.13 4.18 8.40 16.6 32.3
Table 6: Cluster speedup for T1 / Tn

Observations and Conclusions

From the results above, it is clear that the parfor loop in MATLAB gives performance
improvements over a for loop for some cases in all three experiments. In order to achieve
a performance boost, a large number of iterations must be performed, the worker-to-core
ratio must not exceed 1, and the number of workers must be 2 or more.

This is evidenced in Experiment 1, where for low numbers of iterations the overhead that
parfor incurs decreases the parallel code performance below that of the serial code (for
loop). Experiment 1 also shows that modest performance gains can be achieved on a
Pentium 4 with Hyperthreading using 2 workers. In contrast, Experiment 2 shows that
using multiple cores result in near-linear performance improvements as the core count
increases for large numbers of iterations.

In Experiments 1 and 2, MATLAB version R2007b was compared to R2008a on identical
hardware. The results indicate that R2008a provides significant improvements over
R2007b for this particular problem.

In Experiment 3, nearly all iteration counts start out with super-linear increases in
performance. That is, as the core count increases, a larger than linear increase in
performance is achieved. For low iteration counts, however, performance decreases after
a certain point due to the parallelization overhead incurred. The best performing case
was for 1,000,000 iterations: it resulted in super-linear scaling up to 32 workers. It is
estimated that for even large numbers of iterations the performance gain will taper off
and eventually decrease as the worker count increases.

In conclusion, three principles govern the parallelization of this particular problem:

1. Use multiple workers
2. As the worker-count increases, the number of iterations must increase
3. Avoid small problems (low iteration counts)

It is important to note that these results are only reflective of an embarrassingly parallel
problem, and these performance gains may not be realized in other types of problems.

Code

function testSuite

% Number of iterations to test for
iters = [10000, 50000, 100000, 500000, 1000000];

% Hyperthreading test
nodes = [1, 2];

% Quad-core test
%nodes = [1, 2, 4];

% Cluster test
%nodes = [1, 2, 4, 8, 16, 32];

% Run multiple times to get an average
for (t = 1:5)

 for (i = 1: length(iters))

 % Test the for loop first
 fprintf(1, ' Testing for, %i iterations ... ', iters(i));
 t = testParallelRuddell(iters(i), 0);
 fprintf(1, ' %.4f seconds\n', t);

 % Now test parfor on each node count
 for (n = 1: length(nodes))
 % Open the worker pool for a local hyperthreading/
 % quad-core test.
 matlabpool('open', nodes(n));

 % Open the worker pool for the parallel configuration
 % named 'cluster'.
 %matlabpool('open', 'cluster', nodes(n));

 fprintf(1, 'Testing on %d nodes\n', nodes(n));
 fprintf(1, 'Testing parfor, %i iterations ... ', iters(i));
 [t,results] = testParallelRuddell(iters(i), 1);
 fprintf(1, ' %.4f seconds\n', t);

 matlabpool close;
 end
 end
end

end % end function

function [tm, results] = testParallelRuddell(nIterations, useParFor)

% Set up parameters and input values here
params = [];

% Start the timer
tic;

% useParFor allows us to use the same function for testing both parfor
and for
if (useParFor)
 parfor (i=1:nIterations)
 [temp_results] = ShannonEntropy(params);
 end
else
 for (i=1:nIterations)
 [temp_results] = ShannonEntropy(params);
 end
end

% End the timer
tm = toc;

results = [];

end % end function

	MATLAB Parallel Computing Toolbox Benchmark for an Embarrassingly Parallel Application
	 Introduction
	Code Analysis
	Procedure
	Results
	Experiment 1
	 Experiment 2
	Experiment 3

	Observations and Conclusions
	 Code

