Lecture Outline

m Unimodal functions
m Golden section search
m Fibonacci search
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Unimodal functions

A function f : R — R is unimodal on [a, b] if

m it has a unique minimizer c over [a, b];

m f is strictly decreasing on [a, | and strictly increasing

on [c, b].

The line search methods are designed to find the minimizer

of a unimodal function over a closed interval.
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Unimodal functions
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A unimodal function
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Line search methods

Reduce the search space by locating a smaller interval
containing the minimizer: Evaluate f at two points

ai, bl S ((10, b())

ar — ag = by — by = p(by — ao)
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Golden section search

mIf f(a;) < f(b1), then the minimizer is in the interval
[ao, bi].
m If f(a;) > f(b1) then the minimizer is in [ay, b)

4

The range of uncertainty will be reduced by the factor
of (1 — p), and we can continue the search using the
same method over a smaller interval.
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}Golden section search

Finding p in golden section search

i d=(1-p)l [
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Golden section search

—— (1-p) —l J

P

4
1—0p P

The ratio of the shorter segment to the longer equals to the
ratio of the longer to the sum of the two.

In Ancient Greece, this division was referred to as the
Golden Section
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Golden section search

We can now compute p by solving the quadratic equation
PP —3p+1=0.

We are looking for p < 1/2, so the solution is

p= 3 2\/5 ~ 0.382.

The uncertainty interval is reduced by the fraction of
1 — p ~ 0.618 at each step. So, the reduction factor after N
steps is

(1—p)" ~0.618".
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Fibonacci search

m Instead of using the same value of p at each step, we
can vary it, using a different value p;, for each step k.

m Again, we select p;, € [0, 1/2] in the way that only one
new function evaluation is required at each step.

m Using reasonings similar to those for the choice of p in

golden section search, we obtain the following
relations for the values of py:

Pk+1:1——lfkpk, k=1,...,n—1.
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Fibonacci search

m In order to minimize the interval of uncertainty after
N steps, we consider the following minimization

problem:
minimize (1 —p1)(1 —p2)--- (1 — pn)
subject to pkH:l—lf’;k, k=1...,N—-1

0<ppe <3 k=1,...,N.

= The Fibonacci sequence { F., k > 0} is defined by
Fy = Fy = 1 and the recursive relation
Fry1 = Fy + Fy1.
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Fibonacci search

Theorem 1. The optimal solution to the above problem is
given by

Fy_
pp=1— 2R k1., N,
N—k+2

where Fj, is the k™ element of the Fibonacci sequence.
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Fibonacci search

m We can recursively express all variables
pr, k=1,..., N in the objective function through
one of the variables, say py.

m If we denote the resulting univariate function by
v ( P N) , then
1 —pn

TN N>
Fn — Fy_opn

fr(pn) =

We will prove this using induction by V.
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Fibonacci search

m For N = 2, we have p; = ;:22, o)
1— PQ) 1—p2 1—po
=(1- 1—po) = = .
folpn) < 2—po (1=p2) 2—py  Fy—Fypo
m Assuming that the statement is correct for some
N=K-1l,ie.,
1—pg_
fr(pr-1) = FEL

Fr_1— Fr_3pr—1’
we need to show that it is also correct for N = K.
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Fibonacci search

We have pr_ 1 = ;—:/%, S0

fxlpx) = frka (; — Zi) (1 = px)
-

1-p (1
Fr1 = Fgs3—¢

1—pK
2Fg 1 — Fg3— (Fx—1 — Fr_3)pK
I Sl S 0
Fx — Fx_opk
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— PK)

Fibonacci search

Next, we will show that fy(py) is a strictly decreasing
function on [0, 3]. We can do so by showing that the
derivative f}(pn) < 0,Vpy € [0, 1].

Indeed,

/ _ _—Fn+Fno —Fy_1 1
fN(pN> - (FN_FNisz)Z - (FN—FNfgpN)Z < 0, VpN S 5.

Therefore,

1-1/2 1
min = 1/2) = = —
pNE[O,l/Q] fN(pN) fN( / ) FN _ FN—2/2 FN+1

the reduction factor after N steps of the Fibonacci search
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Fibonacci search

Returning to the original problem, we have
1
py = 1/2=1-—;
Fy
l-py _H_, P

PN-1 =

R Y
Fn_j
Prt1 = 1— 7 ;
N—k+1
P L=pryn  Fyk 1 Fy ki1
2—pry1 Fnoige Fn 4o’
: Fy
= 1— O
P Fyi1
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