Lecture Outline

- Unimodal functions
- Golden section search
- Fibonacci search

Unimodal functions

A function $f: \Re \rightarrow \Re$ is unimodal on $[a, b]$ if

- it has a unique minimizer c over $[a, b]$;
- f is strictly decreasing on $[a, c]$ and strictly increasing on $[c, b]$.

The line search methods are designed to find the minimizer of a unimodal function over a closed interval.

Unimodal functions

A unimodal function

Line search methods

Reduce the search space by locating a smaller interval containing the minimizer: Evaluate f at two points $a_{1}, b_{1} \in\left(a_{0}, b_{0}\right)$.

Golden section search

- If $f\left(a_{1}\right)<f\left(b_{1}\right)$, then the minimizer is in the interval $\left[a_{0}, b_{1}\right]$.
- If $f\left(a_{1}\right)>f\left(b_{1}\right)$ then the minimizer is in $\left[a_{1}, b_{0}\right]$
\Downarrow
The range of uncertainty will be reduced by the factor of $(1-\rho)$, and we can continue the search using the same method over a smaller interval.

Golden section search

Finding ρ in golden section search

$\left.\begin{array}{l}d=(1-\rho) l, \quad \Rightarrow \\ \text { length of }\left[a_{0}, a_{1}\right]=\left[a_{0}, b_{2}\right]: \\ \\ \rho l=(1-\rho) d\end{array}\right\} \frac{\rho}{1-\rho}=1-\rho$

Golden section search

$$
\frac{\rho}{1-\rho}=1-\rho
$$

The ratio of the shorter segment to the longer equals to the ratio of the longer to the sum of the two.
In Ancient Greece, this division was referred to as the Golden Section

Golden section search

We can now compute ρ by solving the quadratic equation

$$
\rho^{2}-3 \rho+1=0 .
$$

We are looking for $\rho<1 / 2$, so the solution is

$$
\rho=\frac{3-\sqrt{5}}{2} \approx 0.382 .
$$

The uncertainty interval is reduced by the fraction of $1-\rho \approx 0.618$ at each step. So, the reduction factor after N steps is

$$
(1-\rho)^{n} \approx 0.618^{N} .
$$

Fibonacci search

Fibonacci search

- Instead of using the same value of ρ at each step, we can vary it, using a different value ρ_{k} for each step k.
- Again, we select $\rho_{k} \in[0,1 / 2]$ in the way that only one new function evaluation is required at each step.
- Using reasonings similar to those for the choice of ρ in golden section search, we obtain the following relations for the values of ρ_{k} :

$$
\rho_{k+1}=1-\frac{\rho_{k}}{1-\rho_{k}}, \quad k=1, \ldots, n-1 .
$$

- In order to minimize the interval of uncertainty after N steps, we consider the following minimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \left(1-\rho_{1}\right)\left(1-\rho_{2}\right) \cdots\left(1-\rho_{N}\right) \\
\text { subject to } & \rho_{k+1}=1-\frac{\rho_{k}}{1-\rho_{k}}, k=1, \ldots, N-1 \\
& 0 \leq \rho_{k} \leq \frac{1}{2}, k=1, \ldots, N .
\end{array}
$$

- The Fibonacci sequence $\left\{F_{k}, k \geq 0\right\}$ is defined by $F_{0}=F_{1}=1$ and the recursive relation $F_{k+1}=F_{k}+F_{k-1}$.

Fibonacci search

Theorem 1. The optimal solution to the above problem is given by

$$
\rho_{k}=1-\frac{F_{N-k+1}}{F_{N-k+2}}, k=1, \ldots, N
$$

where F_{k} is the $k^{\text {th }}$ element of the Fibonacci sequence.

Fibonacci search

- We can recursively express all variables $\rho_{k}, k=1, \ldots, N$ in the objective function through one of the variables, say ρ_{N}.
- If we denote the resulting univariate function by $f_{N}\left(\rho_{N}\right)$, then

$$
f_{N}\left(\rho_{N}\right)=\frac{1-\rho_{N}}{F_{N}-F_{N-2} \rho_{N}}, N \geq 2 .
$$

We will prove this using induction by N.

Fibonacci search

- For $N=2$, we have $\rho_{1}=\frac{1-\rho_{2}}{2-\rho_{2}}$, so

$$
f_{2}\left(\rho_{2}\right)=\left(1-\frac{1-\rho_{2}}{2-\rho_{2}}\right)\left(1-\rho_{2}\right)=\frac{1-\rho_{2}}{2-\rho_{2}}=\frac{1-\rho_{2}}{F_{2}-F_{0} \rho_{2}} .
$$

- Assuming that the statement is correct for some $N=K-1$, i.e.,

$$
f_{K-1}\left(\rho_{K-1}\right)=\frac{1-\rho_{K-1}}{F_{K-1}-F_{K-3} \rho_{K-1}},
$$

we need to show that it is also correct for $N=K$.

Fibonacci search
We have $\rho_{K-1}=\frac{1-\rho_{K}}{2-\rho_{K}}$, so

$$
\begin{aligned}
f_{K}\left(\rho_{K}\right) & =f_{K-1}\left(\frac{1-\rho_{K}}{2-\rho_{K}}\right)\left(1-\rho_{K}\right) \\
& =\frac{1-\frac{1-\rho_{K}}{2-\rho_{K}}}{F_{K-1}-F_{K-3} \frac{1-\rho_{K}}{2-\rho_{K}}}\left(1-\rho_{K}\right) \\
& =\frac{1-\rho_{K}}{2 F_{K-1}-F_{K-3}-\left(F_{K-1}-F_{K-3}\right) \rho_{K}} \\
& =\frac{1-\rho_{K}}{F_{K}-F_{K-2} \rho_{K}} . \quad \square
\end{aligned}
$$

INEN 623: Nonlinear and Dynamic Programming Spring 2005 Lecture 6: Line Search Methods - p. $15 / 17$

Fibonacci search

Next, we will show that $f_{N}\left(\rho_{N}\right)$ is a strictly decreasing function on $\left[0, \frac{1}{2}\right]$. We can do so by showing that the derivative $f_{N}^{\prime}\left(\rho_{N}\right)<0, \forall \rho_{N} \in\left[0, \frac{1}{2}\right]$.
Indeed,
$f_{N}^{\prime}\left(\rho_{N}\right)=\frac{-F_{N}+F_{N-2}}{\left(F_{N}-F_{N-2} \rho_{N}\right)^{2}}=\frac{-F_{N-1}}{\left(F_{N}-F_{N-2} \rho_{N}\right)^{2}}<0, \forall \rho_{N} \leq \frac{1}{2}$.
Therefore,

$$
\min _{\rho_{N} \in[0,1 / 2]} f_{N}\left(\rho_{N}\right)=f_{N}(1 / 2)=\frac{1-1 / 2}{F_{N}-F_{N-2} / 2}=\frac{1}{F_{N+1}}-
$$

the reduction factor after N steps of the Fibonacci search

Fibonacci search

Returning to the original problem, we have

$$
\begin{aligned}
\rho_{N} & =1 / 2=1-\frac{F_{1}}{F_{2}} ; \\
\rho_{N-1} & =\frac{1-\rho_{N}}{2-\rho_{N}}=\frac{F_{1}}{F_{3}}=1-\frac{F_{2}}{F_{3}} ; \\
& \vdots \\
\rho_{k+1} & =1-\frac{F_{N-k}}{F_{N-k+1}} ; \\
\rho_{k} & =\frac{1-\rho_{k+1}}{2-\rho_{k+1}}=\frac{F_{N-k}}{F_{N-k+2}}=1-\frac{F_{N-k+1}}{F_{N-k+2}} ; \\
& \vdots \\
\rho_{1} & =1-\frac{F_{N}}{F_{N+1}}
\end{aligned}
$$

Gradient Methods
Minimize $f(x) \quad f(x) \in C^{1}\left(B^{h}\right)$

$$
x \in \mathbb{R}^{n}
$$

Gradients, level sets...
$f: \mathbb{R}^{h} \rightarrow \mathbb{R}$. The level set of f corresponding to the level c is given by $S=\left\{x \in \mathbb{R}^{h}: \quad f(x)=c\right\}$
A acre γ in set S is

$$
\gamma=\{x(t): t \in(a, b)\} \subset S,
$$

where $x(t)$ is a contimoons function.

Title: Feb 8-6:12 PM (1 of 5)

Let $g(t)=f(x(t)), t \in(a, b)$

$$
t_{0} \in(a, b) ; \quad x_{0}=x\left(t_{0}\right)
$$

Since $\{x(t): t \leq(a, b)\} \subset S$ and $f(x)=c$ for any $x \in S$, we have

$$
\begin{aligned}
& f(x(t))=c, \forall t \in(a, b) \\
& \frac{d f(x(t))}{d t}=0, \forall t \in(a, b)
\end{aligned}
$$

On the other hand, wing the chain rule

$$
\begin{aligned}
& 0=\frac{d f(x(t))}{d t}=\nabla f(x(t))^{\top} \cdot x^{\prime}(t) \\
& t=t_{0} i=\nabla f\left(x\left(t_{0}\right)\right)^{\top} \cdot x^{\prime}\left(t_{0}\right)=\nabla f\left(x_{0}\right)^{\top} x^{\prime}\left(t_{0}\right)=0 \\
& \Rightarrow \nabla f\left(x_{0}\right)^{\top} \text { and } x^{\prime}\left(t_{0}\right) \text { are orthogonal }
\end{aligned}
$$

The gradient of $f(x)$ at x_{0} is orthogonal to any curve passing throng x_{0} in the level set of $f^{(x)}$ corresponding to the level $f\left(x_{0}\right)$.

In gradient methods for minimization steps are taken in the direction opposite to the gradient.

1) x_{0}, the starting guess
2) $x_{k+1}=x_{k}+\alpha_{k} d_{k}, k \geqslant 0$
3) Stopping criteria:

$$
\begin{aligned}
& \left\|x_{k+1}-x_{k}\right\|<\varepsilon \\
& \text { or } \quad\left\|\nabla f\left(x_{k}\right)\right\|<8
\end{aligned}
$$

Gradient methods: $d_{k}=-\nabla f\left(x_{k}\right)$
α_{k} can be closed in several different ways

The Canduy-Schwartz inequality: $u, v \in \mathbb{R}^{n}$

$$
u^{\top} v \leq\|u\| \cdot\|v\| \|^{"}=" \text { iff } u=\lambda v \text {. }
$$

$\nabla f\left(x_{k}\right)^{\top} d$ - the rate of increase of f at x_{k} in the direction d.
$\nabla f\left(x_{k}\right)^{\top} d \leq\left\|\nabla f\left(x_{k}\right)\right\| \cdot\|d\|, \quad{ }^{n}={ }^{n} \Leftrightarrow d=\lambda \nabla f\left(x_{k}\right)$
\Rightarrow the largest rate of increase is achious when $d=\lambda \nabla f\left(x_{k}\right)$.
$-\nabla f\left(x_{k}\right), d: \quad-\nabla f\left(x_{k}\right)^{\top} d \leq\left\|\nabla f\left(x_{k}\right)\right\| \cdot\|d\|$
" $=$ " $\Leftrightarrow \quad \Leftrightarrow \quad \nabla f\left(k_{k}\right)^{\top} d \geqslant-\left\|\nabla f\left(x_{k}\right)\right\| \cdot\|D\|$
" $=$ " $\Leftrightarrow d=-\lambda \nabla f\left(x_{k}\right) \Rightarrow$ the highest rate of decrease

