Wireless Networking: Issues and Trends

Raj Jain

Washington University in Saint Louis Saint Louis, MO 63131 Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse574-06/

Washington University in St. Louis

CSE574s

©2006 Rai Jain

- 1. Top 10 Recent Networking Developments
- 2. Wireless: History
- 3. Life Cycles of Technologies
- 4. Wireless Industry Trends
- 5. Wireless Research Trends

Washington University in St. Louis

CSE574s

White House Astrologer

All I want you to tell me is what will be the hot networking technology in the year 2007

Washington University in St. Louis

CSE574s 2-3 ©2006 Rai Jain

,

Top 10 Recent Networking Developments

- Large investments in Security: Message Aware Networking
 ⇒ All messages scanned by security gateways
- 2. Wireless (WiFi) is spreading (Intel Centrino)
- 3. More Cell phones than POTS.
 Smart Cell phones w PDA, email, video, images ⇒ Mobility
- 4. Broadband Access is growing faster than cell phones
- 5. Ethernet extending from Enterprise to Access to Metro ...
- 6. Wiring more expensive than equipment \Rightarrow Wireless Access
- 7. Voice over Internet Protocol (VOIP) is in the Mainstream VOIP over Broadband/Wi-Fi/Cellular
- 8. Multi-service IP: Voice, Video, and Data
- 9. Terabyte/Petabyte storage (Not VoD)⇒ High-Speed Networking
- 10. Gaming: Internet and wireless based

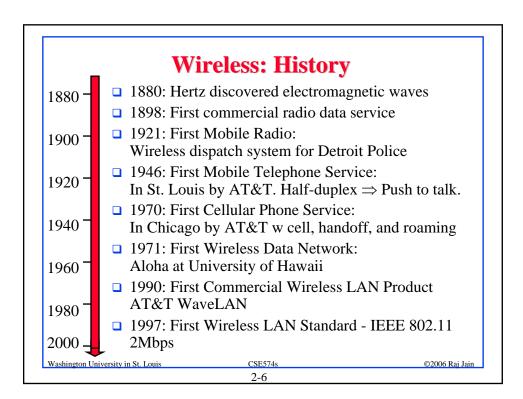
Washington University in St. Louis

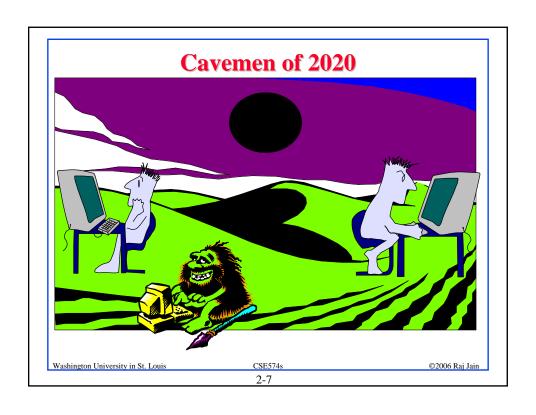
CSE574s

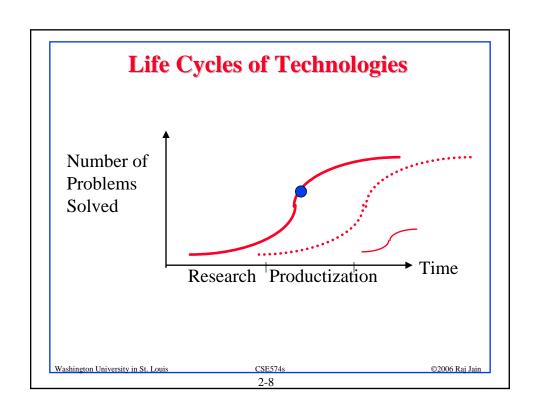
©2006 Raj Jain

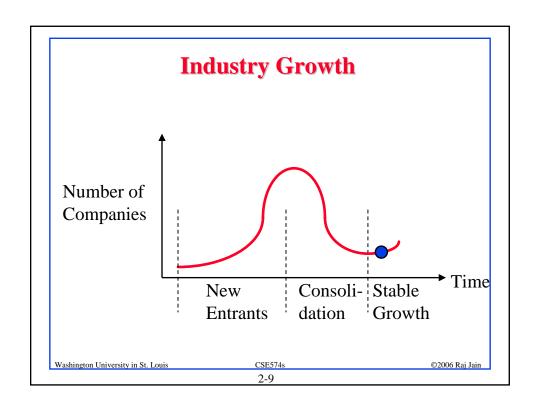
2-4

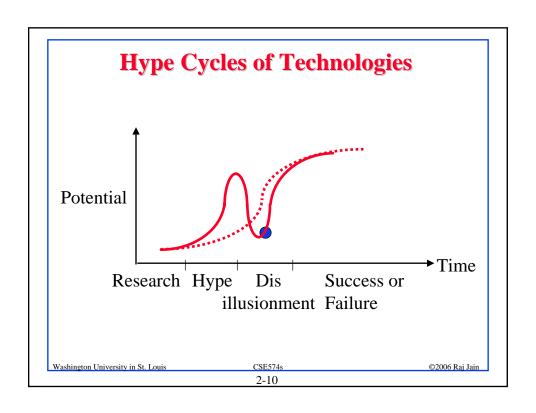
2002-2005: Mega-to-Giga Transition

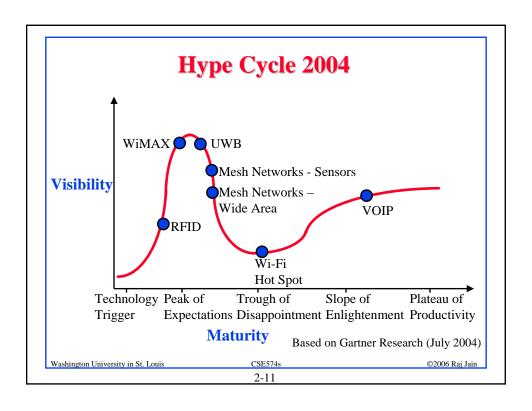

- □ Memory in Laptops: Megabytes to Gigabytes
- □ Cordless Phones: 900 Mega Hertz to 2.4/5.8 GHz
- □ Processors: MIPS (Mega Instructions per second) to GFIPS (Giga Flops)
- □ Digital Cameras: 100-500 Mega Pixels to Giga Pixels
- □ Office Networks: 10/100 Mega bps to 1-10 Giga bps
- Worldwide Wireless Network Users: Millions to Billions

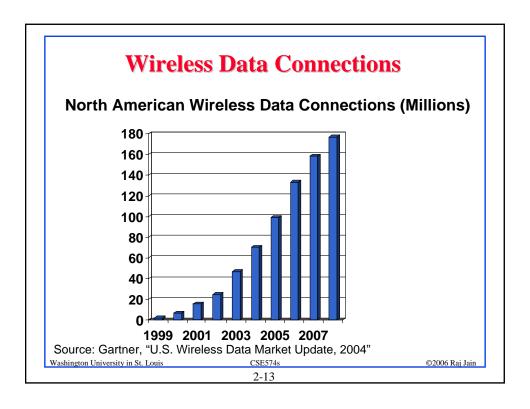

Washington University in St. Louis


CSE574s


©2006 Rai Jain


2-5



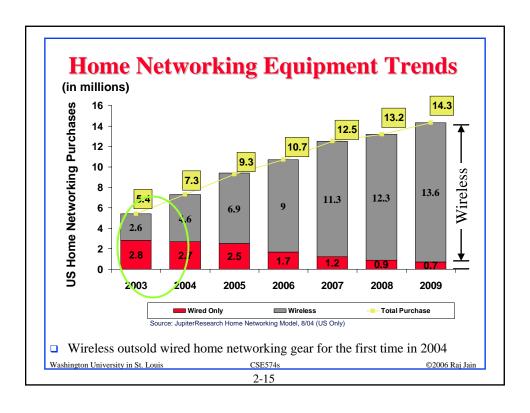

Telecom Revenue

	Revenue in Billions						
	2003	2004	2005	2006	2007	2008	Annual
							Growth
Video	0.2	0.3	.05	1.0	1.6	2.5	65.7%
Consumer Broadband	2.8	3.5	4.0	4.2	4.6	4.8	11.4%
Consumer long distance	20.7	18.2	16.0	13.6	11.3	9.2	-15.0%
Business local	26.3	26.7	26.4	26.1	25.8	25.5	-0.6%
Business long distance	26.1	24.5	23.0	21.3	19.7	18.2	-7.0%
Business data	44.8	45.6	46.6	47.1	46.8	45.4	0.3%
Consumer local	46.9	42.2	39.0	36.2	34.0	32.3	-7.25%
Wireless	91.5	108.7	119.2	132.8	144.5	153.6	10.9%
Total	260.7	271.5	277.0	285.0	291.3	294.9	2.5%

- □ Long distance is disappearing.
- □ Most of the revenues are going to be from wireless.
- □ Source: Instat/MDR (Business Week, Feb 28, 2005)

Washington University in St. Louis

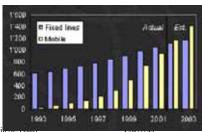
SE574s



Wireless Industry Trends

- Wireless industry is stronger than wireline.Particularly strong growth in developing countries.
- □ 48% of global telco revenues coming from wireless
- □ 26% of wireless revenues coming from data (vs voice)
- □ Past: Voice, email, SMS, Ring tones
- □ Present: Push, Gaming, Pictures, Instant Messaging
- □ Future: Music, Video, Location, Remote monitoring, m-commerce
- Long Term: Video telephony, remote enterprise applications, remote management, Multiparty collaboration

Washington University in St. Louis


CSE574s

Mobility

- 1.35 Billion mobile subscribers vs 1.2 Billion Fixed line subscribers at the end of 2003 [ITU]
- □ Number of wired phones in USA is declining for the first time since the Great Depression.
- □ 20% of world population is mobile. Need internet access. 70% of internet users in Japan have mobile access
- □ Vehicular mobility up to 250 Km/h (IEEE 802.20)

2-17

Wireless Technologies to Watch 2006

- ☐ Ultra-wide band has arrived (Many companies showing products)
- MIMO: Pre-N routers
- Multimedia over Wireless: Media center extenders
- □ Video over Cell phones
- □ Wireless storage for home 4x250GB
- Wireless USB
- □ RFID

Washington University in St. Louis

CSE574s

©2006 Raj Jain

Wireless Research Trends

- □ NSF funded \$40M for networking research over the past three years
- □ Three areas:
 - > Software programmable networks
 - > Sensor Networks
 - > All other type of networking
 - > Two Thirds of networking funding on wireless
- Defense Networks are mostly wireless

Washington University in St. Louis

CSE574s

©2006 Raj Jain

2-19

Top 10 Downloads from Computer Communications

- Christos Xenakis and Lazaros Merakos Security in third Generation Mobile Networks Computer Communications, 27 (2004) 638-650
- Marko Hannikainen, Timo D. Hamalainen, Markku Niemi and Jukka Saarinen Trends in personal wireless data communications Computer Communications, 25 (2002) 84-99
- David Remondo and Ignas G. Niemegeers,
 Ad hoc networking in future wireless communications
 Computer Communications, 26 (2003) 36-40
- S. DasBit and S. Mitra,
 - Challenges of computing in mobile cellular environment--a survey, Computer Communications, 26 (2003) 2090-2105
- Theuns Verwoerd and Ray Hunt
- Intrusion detection techniques and approaches Computer Communications, 25 (2002) 1356-1365
- M. Makki, Niki Pissinou and Philippe Daroux
- - Mobile and wireless Internet access Computer Communications, 26 (2003) 734-746
- Costas Lambrinoudakis, Stefanos Gritzalis, Fredj Dridi and Gunther Pernul Security requirements for e-government services: a methodological approach for developing a common PKI-based security policy Computer Communications, 26 (2003) 1873-1883
- Kwok-Yan Lam, Siu-Leung Chung, Ming Gu and Jia-Guang Sun Lightweight security for mobile commerce transactions Computer Communications, 26 (2003) 2052-2060
 Antonio Grilo, Mario M. Macedo and Mario S. Nunes
- - IP QoS support in IEEE 802.11b WLANs Computer Communications, 26 (2003) 1918-1930
- Walter Hirt
 - Ultra-wideband radio technology: overview and future research Computer Communications, 26 (2003) 46-52

Washington University in St. Louis

CSE5749

Wireless Issues

- □ Security (IEEE 802.11i)
- □ Higher Data Rates:
 - > Ultra-wide band (vs Bluetooth)
 - > Wireless USB
 - > Multiple In Multiple Out (MIMO) antennas: IEEE 802.11n
- Longer distance (WiMAX, >1Mbps to 50 km) IEEE 802.22 Regional Area Networks
- \square Seamless Networking \Rightarrow Handoff (IEEE 802.21)
- □ Mobility (IEEE 802.20)
- Multimedia over Wireless: Media center extenders, VOIP/Video over cell phones
- □ Channel congestion in license-exempt band

Washington University in St. Louis

CSE574s

©2006 Rai Jai

2-21

Research Areas

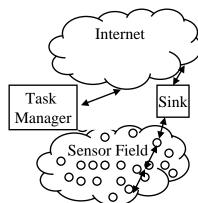
- 1. Disruption Tolerant Networking:
 - Frequent Disconnection due to mobility, power outage, DTN nodes have limited storage
- **2. Overlay Networking**: Virtual Networks, P2P, Application level optimization
- 3. Sensor Networks: Large scale, Energy efficient
- **4. Distributed Computing Networks** (Grids): Grid Storage
- 5. Security

Washington University in St. Louis

CSE574s

Disruption Tolerant Networking

- ☐ Frequent Disconnection due to mobility, power outage (Military Ad hoc networks)
- Regular or unpredictable disconnections (LEO satellites)
- □ Very high delay networks (Inter-planetary networks)
- □ Aka Delay Tolerant/Difficult/challenged/disconnected/ Intermittent networks
- □ DTN routers need storage but not unlimited
- End-to-end retransmissions not desirable
- Congestion management in DTNs
- Path selection and scheduling in DTNs
- □ Ref: DTN IRTF


Washington University in St. Louis

CSE574s

©2006 Rai Jai

Sensor Networks

- □ A large number of **low-cost**, **low-power**, **multifunctional**, and small sensor nodes consisting of sensing, data processing, and communicating components
- □ Key Issues:
 - 1. Scalability
 - 2. Power consumption
 - 3. Fault tolerance
 - 4. Network topology
 - 5. Transmission media
 - 6. Cost
 - 7. Operating environment
 - 8. Hardware constraints

Washington University in St. Louis

CSE574s

Summary

- 1. Wireless is the major source of carrier revenue ⇒ Significant growth in Wireless networking
- Internet has flattened the world⇒ More mobility and need to be connected
- 3. NSF, DARPA, and other research agencies see more research opportunities in wireless than in other areas of networking
- 4. Internet is 40 years old, mobile networking is just beginning ⇒ Great job and research opportunities.

Washington University in St. Louis

CSE574s

@2006 Poi Join

gron om versity in bu Boars

2-25

HTML - An Intro

<HTML>

<HEAD>

. . .

</HEAD>

<BODY>

. . .

</BODY>

</HTML>

Washington University in St. Louis

CSE574s

HTML Intro (2)

- <HTML>
- <HEAD>
- <TITLE>CSE574S: Advanced Topics in Networking </TITLE>
- <META NAME="AUTHOR" CONTENT="Raj Jain">
- <META NAME="Classification" CONTENT="Technical">
- <META NAME="Keywords" CONTENT="Quality of Service,
 Voice over IP">
- <META NAME="Description" CONTENT="Lectures and reports on recent advances in networking ">
- </HEAD>
- <BODY>
- <H1>CSE574S: Advanced Topics in Networking </H1>
- <H2>Issue 1: High Speed</H2>

Washington University in St. Louis

CSE574

©2006 Raj Jain

2-27

HTML Intro (3)

- <H3>1.1 Local Area Networks</H3>
- $\langle UI \rangle$
- Item 1
-
- Google
- Section 2
- <H2>Section 2</H2>
-
- </Body>
- </HTML>

Washington University in St. Louis

CSE574s

Project Homework 2

- □ Prepare your personal web page. Must include your photograph
- ☐ Use meta-HTML commands in the header to indicate title, keywords, description, etc
- Must use at least all the commands listed in "HTML Intro" slides. Use others as appropriate.
- ☐ Use only a text editor
- □ Submit a link to the page via email to CSE574@cec.wustl.edu with a subject field of: CSE 574S Homework 2
- □ Validate your page on:
 - > W3C Markup Validation Service, http://validator.w3.org/
 - > HTML code check by Net Mechanic, http://www.netmechanic.com/toolbox/html-code.htm
 - > CSE HTML Validator , http://www.htmlvalidator.com/

Washington University in St. Louis CSE574s ©: 2-29