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1 Linear Programming (LP)

LP problems originally appeared in Operations Research. The

form of an LP problem is as follows:

minimize cTx, (1)

subject to the constraints:

Ax = b or Ax ≥ b

x ≥ 0, (2)

with x = (x1, x2, . . . , xn) ∈ Rn, c = (c1, c2, . . . , cn) ∈
Rn, b = (b1, b2, . . . , bm) ∈ Rm.

Function cTx : Rn → R is called the objective function

and Ax ≤ b are called constraints. More specifically:

• ci is the cost per unit of variable xi.

• The total cost can be represented by

cTx = c1x1 + . . .+ cnxn.

• xi is the i-th variable i.

The constraints and the objective function are linear to vec-

tor of variables x. Matrix A ∈ Rmxn is a m × n matrix,
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b ∈ Rm, and

A =













a11 a12 . . . a1n

a21 a22 . . .
...

...
...

. . .

am1 am2 . . . amn













Therefore the problem can be written as:

minimize c1x1 + · · ·+ cnxn

s.t. a11x1 + · · ·+ a1nxn = b1

...

am1x1 + · · ·+ amnxn = bm

or

minimize c1x1 + · · ·+ cnxn,

aTi x = bi, (3)

where ai is the i-th row of matrix A, for i = 1, . . . ,m. We

will focus on formulating and solving LP problems.
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1.1 Example 1 : A company with 4 products

A company constructs four products : Π1,Π2,Π3,Π4.The re-

sources that are needed are: man-weeks, kg of material A and

quantity of material B (in packages).

Resources Π1 Π2 Π3 Π4 Resources

man-weeks 1 2 1 2 20
kg of material A 6 5 3 2 100

packages of material B 3 4 9 12 75

Each cell (i, j) in the table above contains the number of units

of resource i which are necessary to produce one unit of prod-

uct j. Thus, for example Π2,Π4 are the most demanding ones

in man-weeks. Also, 6 kilograms of material A are needed to

make one unit of Π1.

The last column of the table shown the availability of re-

sources. Availability shows the amounts of the resources that

the company can waste to produce the products. So availability

is going to be vector b with m = 3 elements and the table is

going to be matrix A of the Linear Program.

There is also a cost vector [6 4 7 5], where each cost co-

efficient ci expresses the benefit of the company for each unit

of product Πi, i = 1, 2, 3, 4 that is sold. Thus c1 = 6 is the

profit per unit of product Π1.

The company’s objective is to find the vector

x = (x1, x2, x3, x4) with xi the quantity of Πi that must be
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constructed so as to maximize the total benefit from all prod-

ucts. We assume that vector x ∈ Rn. Note that if x ∈ Zn

then the problem would be an integer programming problem

which are computational problems not solvable in polynomial

time.

The problem is stated as follows:

maximize cTx = 6x1 + 4x2 + 7x3 + 5x4 (4)

subject to the constraints :

x1 + 2x2 + x3 + 2x4 = 20 (5)

6x1 + 5x2 + 3x3 + 2x4 = 100 (6)

3x1 + 4x2 + 9x3 + 12x4 = 75 (7)

and x = (x1, x2, x3, x4) ≥ 0.

In the formulation, we assumed that all available resources

are used.

1.2 Example 2 : Diet Problem

There are n different kinds of food and m vitamins. Each unit

of food j costs cj , j = 1, . . . , n. To achieve balanced diet,

we must receive at least bi units of vitamin i per day, i =
1, . . . ,m.
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A unit of food j contains aij units of vitamin i. Elements

aij form matrix A . x = (x1, . . . , xn) is the vector of vari-

ables, where xj is the amount of food j in the diet. We want to

find the quality xj of each food j that should be consumed per

day, so that all necessary vitamins are received and the cost

is minimized. This is the min-cost diet problem which can be

formulated as follows:

minimize

n
∑

i=1

cixi = cTx

subject to

a11x1 + · · ·+ a1nxn ≥ b1

...

am1x1 + · · ·+ amnxn ≥ bm

and x = (x1, . . . , xn) ≥ (0, 0, . . . , 0) or,

min cTx (8)

subject to:

Ax ≥ b,x ≥ 0. (9)
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2 Geometrical interpretation of LP Prob-

lems

Consider the problem:

max
(

1 5
)

(

x1

x2

)

s.t.

(

5 6
3 2

)(

x1

x2

)

≤

(

30
12

)

with x1, x2 ≥ 0.

Infinitely many points (x1, x2) satisfy the two constraints and

the set of feasible solutions is all such points. Now, we draw

the region of feasible solutions. This is shaded area OABC in

the figure below.

Later we will see that the optimal solution x∗ = (x∗
1, x

∗
2),

i.e. the one that maximizes the objective x1 + 5x2 is always

one of the four vertices O,A,B or C.

Geometrically, maximizing cTx = x1 + 5x2 subject to x ∈
(OABC) amounts to finding a straight line x1+5x2 = a that

intersects with the shaded region and has the largest value, a.
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3x1 + 2x2 = 12 (constraint 2)

5x1 + 6x2 = 30 (constraint 1)

x1 + 5x2 = a1

x1 + 5x2 = a2

O

A

B

C

Figure 1: The feasible region of an LP problem.

Thus, we can draw the lines x1 + 5x2 = a and consecu-

tively increase a to values a1 < a2 < . . .. Thus, we form the

parallel lines

x1 + 5x2 = a1
x1 + 5x2 = a2

...

x1 + 5x2 = amax,

until we reach the value amax, beyond which if we increase

a further, we will go out of the feasible region. Then amax is
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the maximum value of the objective function, and the point of

intersection of x1 + 5x2 = amax with region (OABC) is the

optimal solution.

In general the LP problem is of the form:

minimize cTx (10)

s.t. x ∈ P. (11)

Then P is called set of feasible solutions of the LP problem and

is a polyhedron.

x∗

−c

cT x = a (hyperplane)

P (polyhedron)

Figure 2: Feasible region of LP problems is a polyhedron.
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Objective cTx is linear in the vector of variables x, so its

level curves are hyperplanes orthogonal to c (shown by dashed

lines).

The optimal solution x∗ is the point in P as far as possible

in direction −c. Sometimes the optimal solution is not only one

point but several.

Also, it is important to note that the optimal solution of a LP

problem is always one of the vertices of the corresponding poly-

hedron. For example, if we have a LP problem of two variables

and an optimal solution for this problem exists then this will be

one of the vertices of the corresponding quadrilateral.

2.1 Cases of an LP problem solution

Consider the LP problem

minimize c1x1 + c2x2 (12)

subject to:

−x1+x2 ≤ 1, with x1 ≥ 0, , x2 ≥ 0, A = [−1 1] b = [1].
(13)

We have the following cases with regard to a solution:

1. An LP problem may have a unique solution, e.g. when

c = (1, 1), then ⇒ x∗
1 = 0, x∗

2 = 0 ⇒ x∗ = [0, 0]
is the unique optimal solution.
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2. The problem may have multiple optimal solutions.

– If c = (1, 0), then any vector (0, x2) is optimal

with x2 ∈ [0, 1]. The set of the optimal solutions

is infinite but bounded, since 0 ≤ x2 ≤ 1.

– If c = (0, 1), then there exist several optimal

solutions of the form(x1, 0) with x1 ∈ [0,∞].
The set of the optimal solutions is infinite and un-

bounded in this case.

We can easily understand that, that is because the vari-

able x1 and x2 in each case respectively does not par-

ticipate in the computation of total cost.

3. An LP problem has optimal cost −∞ and no finite fea-

sible solution. For example, if c = (−1,−1), then for

the problem

min (−x1 − x2)
s.t. x2 ≤ 1 + x1

for any feasible solution (x1, x2), we can produce an-

other feasible solution with less cost by simply increas-

ing x1. By considering vectors with increasing values of

x1, x2, we obtain a sequence of feasible solutions that

goes to −∞.
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3 Standard form of an LP Problem

An LP problem is said to be in standard form if it is of the form:

min cTx

s.t. Ax = b with x ≥ 0

A ∈ Rm×n, m < n, rank(A) = m, b ≥ 0.

Namely, an LP is said to be in standard form has equality con-

straints, and is a minimization problem.

An LP problem is in inequality form if it is of the form:

min cTx

s.t. Ax ≥ b with x ≥ 0

A ∈ Rm×n, m < n, rank(A) = m, b ≥ 0.

Those two forms are equivalent in the sense that starting from

a feasible solution of a standard form problem we can produce

a feasible solution of an inequality form problem with the same

cost (and vice versa):

Standard form Inequality form

feasible(optimal) ⇔ feasible(optimal)

Consider a non-standard LP problem:

min cTx

s.t. Ax ≥ b with x ≥ 0.
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In order to convert it to standard form, we need to convert the

inequalities to equalities. We subtract a positive quantity yi
out of each constraint i. We call yi, i = 1, 2 . . . ,m surplus

variables, with y ≥ 0. Then, we have:

a11x1 + . . .+ a1nxn ≥ b1 ⇒
a11x1 + . . .+ a1nxn − ym = b1

...

am1x1 + . . .+ amnxn ≥ bm ⇒
am1x1 + . . .+ amnxn − ym = bm

or in matrix form it is written as: (A − Im)

(

x

y

)

= b

where (A −Im) is a block matrix and Im is the m×m unit

matrix. Thus, the non-standard LP problem is transformed into

a standard LP problem:

min cTx

s.t.

Ax− y = [A − Im]

(

x

y

)

= b x ≥ 0,y ≥ 0.

Note that the vector of variables is (x,y) but the cost is

the same as above, cTx+ 0Ty = cTx.

If the problem is in the non-standard form:

min cTx

s.t. Ax ≤ b with x ≥ 0,
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we need to define positive variables yi, i = 1, 2 . . . ,m, to

add to each constraint, which we call slack variables and y ≥
0. The new form of the problem is:

min cTx

s.t. Ax+ y = [A Im]

(

x

y

)

= b x ≥ 0, y ≥ 0.

Note: All algorithms that we will examine later work for LP

problems in Standard form only.

3.1 Exercise

We start from the problem:

max x2 − x1

s.t. 3x1 = x2 − 5
|x2| ≤ 2
x1 ≤ 0

In order to bring an LP problem to a standard form, we change

”max” to ”min” and we need to transform all variables to non-

negative ones. Also we transform all inequalities in the problem

into equalities. So, the variable x1 will be replaced by the vari-

able x′
1 = −x1 and the two inequalities implied by |x2| ≤ 2

will be converted to equalities using slack variables x3 and x4.

Now the problem is expressed as:
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min −x2 − x′
1

s.t. −3x′
1 = x2 − 5

x2 + x3 = 2, −2 + x4 = x2

x3, x4, x
′
1 ≥ 0

In the original form of the problem, we have inequality −2 ≤
x2 ≤ 2, x2 should be redefined as u− v with u, v ≥ 0. The

reason is that a variable which is unrestricted in sign (such as

x2) can be written in general as the difference of two positive

variables. So in its standard form, the problem above becomes:

min −x2 − x′
1

s.t. 3x′
1 = 5− x2

u− v + x3 = 2, v − u+ x4 = 2
x3, x4, x

′
1, v, u ≥ 0

4 Routing as an LP problem

Routing in communication networks means selecting paths for

transferring traffic from given source(s) to given destination(s).

Consider a network which is abstracted as a directed graph

G(N ,A), where N is the set of nodes and A is the set of

edges of the graph. Let N = n be the number of nodes of the

network. For each edge (i, j) ∈ A we define uij to be the

capacity of edge junction (i, j), which is the maximum amount

of traffic (in bps) that can be carried over the edge. Also, let cij
be the cost per unit of transmitted traffic over the edge (i, j).
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For each source k and destination l, define as bkl the

amount of traffic (bps) that is generated by node k and needs to

be transferred to l. In this example, all nodes may be sources

and destinations (if not, then bkl = 0).

Figure 3: A graph, depicting a network (note here the graph is

directed).

Problem:
Choose the paths for routing traffic for each source k = 1 . . . n
to each destination l = 1 . . . n while minimizing total cost.

The variables in this problem are defined as a flow vector

f =
(

fkl
ij : (i, j) ∈ A

)

where fkl
ij is the amount of traffic

with origin k and destination l that traverses link (i, j) ∈ A.
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For each node i = 1 . . . n we define:

bkli =







bkl if i = k

−bkl if i = l
0 otherwise

(14)

Thus, bkli denotes the net inflow at node i of traffic originated

at k and destined at l.
Note that There are tree signicant kinds of routing:

• Single path routing: where each source node selects

the shortest path to send data to its corresponding

destination.

• Multipath routing: where load is devided evently among

the first shortest paths in order to be send from the

source to the destination.

• Mincost routing: where the data must be transmitted

with the minimum overall cost. Note that Mincost routing

can be either Singlepath or Multipath.
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So, considering the Mincost routing, we have the problem:

min
∑

(i,j)∈A

n
∑

k=1

n
∑

l=1

cij f
kl
ij

s.t. 0 ≤
n
∑

k=1

n
∑

l=1

fkl
ij ≤ uij , ∀k, l = 1 . . . n and ∀(i, j) ∈ A

∑

j:(i,j)∈A

xkl
ij −

∑

j:(i,j)∈A

fkl
ji = bkli , ∀i = 1 . . . n

In the problem there is a set of constraints, one for each

node that reflect the flow conservation constraint at each node.

Also, there is a constraint for each link that denotes the capacity

constraint for each link.

The problem is called minimum cost network flow problem,

and as we will see later, there are several known problems that

emerge as special cases of this, such as the shortest path, the

Max flow and the assignment problem.

5 BFS (Basic Feasible Solution)

Consider the system of inequalities Ax = b, with x ≥ 0 and

matrix A of dimension m× n , m ≤ n and rank(A) = m.

Matrix A can be written in a block matrix form as A = [B D],
where

(i) the m × m matrix B includes all m linearly independent
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columns of A and

(ii) the m×(n−m) matrix D includes the rest of the columns

of A.

By definition, B is non-singular (|B| 6= 0) where |B| is the

determinant of matrix B. Then, matrix B is said to be the basis

for the system. The columns of B called basic columns. Then,

the system of equations BxB = b has a unique solution,

xB = B−1b. Vector xB is of dimension m× 1 and consists

of those variables that correspond to the columns of B (these

are called basic variables.

Thus, for example if A is 2 × 4 and the first and third col-

umn of A are linearly independent, then xB = (x1, x3)
T

and

x2 = x4 = 0.

Note that vector x = (xB 0)T solves the original system

Ax = b because:

Ax = [B D] (xB 0)T = B · xB +D · 0 = b

5.1 Definitions

Definition 1: We call a vector of the form (xB 0)
T

a Basic

solution with respect to the basis B. Thus, all vectors of values

variables that can be divided into a non-zero and a zero vari-

able part (the non-zero part corresponding to the columns of a

basis) are called Basic solutions (Note here that this definition

does not imply feasibility).
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Defintion 2: A basic solution x = (xB 0)
T

that satisfies

Ax = b, x ≥ 0 (i.e. it is feasible) is called Basic Feasible

Solution (BFS).

• If the BFS xB > 0 has all m components positive, the

BFS is called non-degenerate BFS.

• Otherwise, if some of the components of xB are zero

(i.e the positive components of xB are fewer than m) ,

the BFS is called degenerate BFS.

An alternative definition: Consider an LP problem with con-

straints Ax = b, x ≥ 0 and A a m×n matrix, m ≤ n (with

m linear independent rows). Then x ∈ Rn is a Basic Fea-

sible Solution if there exist indices B(1), ..., B(m) such that

columns aB(1), aB(2), . . . , aB(m) of matrix A are linearly in-

dependent and ∀i 6= B(1), B(2), ..., B(m) it is xi = 0.

Also it should be Ax = b. In addition if xi > 0 ∀i ∈
{B(1), B(2), ..., B(m)} ⇒ x is a non-degenerate BFS.

5.2 Example

Consider the set of constraints:
x1 + x2 + 2x3 ≤ 8

x2 + 6x3 ≤ 12
x1 ≤ 4

x2 ≤ 6
x1 , x2 , x3 ≥ 0
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After converting them to a standard form, we get:
x1 + x2 + 2x3 + x4 = 8

x2 + 6x3 + x5 = 12
x1 + x6 = 4

x2 + x7 = 6
x1 , x2 , . . . , x7 ≥ 0

So the constraints correspond to the following representation:

Ax = b where:

x = [x1, x2, . . . , x7]
T

,

b = [8, 12, 4, 6]
T

,

A =









1 1 2 1 0 0 0
0 1 6 0 1 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 1









Let the basis be B = [ a1 a3 a4 a7 ]. If we consider

the system of equations BxB = b, the solution to that is

xB = [4, 2, 0, 6]
T

and x = [4, 0, 2, 0, 0, 0, 6]
T

is a BFS

which is degenerate (since x4 = 0).

Observe that in the case that we choose the basis to be B =
[ a4 a5 a6 a7 ] then we have solution xB = [8, 12, 4, 6]

T

andx = [0, 0, 0, 8, 12, 4, 6]
T

is a BFS that is non-degenerate.

Clearly, there are several ways of choosing the basis for an
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LP problem. For a matrix A of dimension m × n, m ≤ n
with rank(A) = m, we can choose among C(n,m) =

n!
(n−m!)m! different bases B /textbfat most, and so we can

have a corresponding number of basic solutions.

5.3 Basic LP theorem

The basic theorem in LP is that in order to solve a LP problem,

we will only need to check the BFS and among them find the

optimal BFS, i.e the BFS that minimizes cTx.

• (a) If there exists a feasible solution in an LP problem

(i.e. in a 2-dimensional problem, the corresponding

quadrilateral is not empty), then there exists a BFS.

• (b) If there exists an optimal feasible solution in an LP

problem, then there exists an optimal BFS. Note that in

an LP problem the optimal solution is always a BSF i.e.

is of the form x = (xB 0)
T

.

6 Fundamental theorem of Linear Pro-

gramming

Before we present the above theorem, we will state some sig-

nificant definitions.
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Definition 1: Consider a polyhedron P , defined by linear

equality and inequality constraints as defined in previous sec-

tions. Then, the point (represented by vector) x0 is a vertex of

P if there exists c such that cTx0 < cTy for all y ∈ P with

y 6= x0.

T 

w

x

c y = c w T T

c y = c x T 

Figure 4: A vertex point x and a point w that is not a vertex.

As shown in figure 4 , w in the figure is not a vertex be-

cause there is no hyperplane that meets P only at w. That

is, a point w of a polyhedron is a vertex of the polyhedron if

and only if a hyperplane passing through the point divides the

space in two half-spaces and all points of the hyperplane ex-

cept from w lie on the same side (same half-space). In the
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example of figure 4 ,there exist all the points y on the hyper-

plane cTy = cTw that make the definition of w being vertex

of P not hold.

Defintion 2: A point x is called extreme point of P if there

are no distinct points x1,x2 of P such that x = αx1 + (1−
α)x2. In other words, if x is an extreme point and it is x =
αx1 + (1− αx2) for some α ∈ (0, 1), then it must be x =
x1 = x2. Thus, an extreme point of a polyhedron cannot be

represented as a convex combination of two other points of the

polyhedron.

The Theorem (Fundamental theorem of Linear Program-
ming) For a linear programming problem with constraints that

define the polyhedron P of feasible points we have:

The point x0is a vertex of P ⇔
x0 is an extreme point of P ⇔
x0 is a BFS (basic feasible solution) of the LP problem.

We now demonstrate part of the proof which will help us

in the subsequent discussion about the Simplex Algorithm. We

will show that if a point x is an extreme point of the polyhedron

of feasible points P , then x is BFS of the LP problem.

Assume that x is extreme point of P . Then it satisfies x ∈
P and Ax = b, x ≥ 0. Assume that x is of the form x =
(x1, . . . ,xp, 0, . . . , 0)

T
, with p ≤ n. Namely it probably has

some of its elements non-zero (if p = n then solution does not
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have any zero elements). Point x satisfies the equation

x1a1 + . . .+ xpap = b (15)

where ai is the ith column of matrix A. Note that A can be

written as A = [a1 . . .an].
Define numbers yi, for i = 1, ..., p such that:

y1a1 + . . .+ ypap = 0. (16)

In order to show that x is a BFS of the LP problem, it suffices

to show that columns ai, i = 1 . . . p of matrix A are linearly

independent. If they are, then they will form a basis and the so-

lution x = (x1, . . . , xp) will be a BFS. Note that the solution

is still BFS even if we have the case that p = n.

To show ai, i = 1 . . . p of matrix A are linearly indepen-

dent, we will show that yi = 0 for i = 1, . . . , p. We multiply

equation (16) by ε > 0 and add and subtract it from equation

(15) . We get:

(x1 + εy1)a1 + . . .+ (xp + εyp)ap = b, (17)

and

(x1 − εy1)a1 + . . .+ (xp − εyp)ap = b. (18)

Since xi > 0, ε > 0 can be we chosen arbitrarily small arbi-

trary very small so that xi + εyi ≥ 0, and xi − εyi ≥ 0. It
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can be easily deduced that we can choose

ε = min

{∣

∣

∣

∣

xi

yi

∣

∣

∣

∣

, i = 1, . . . , p, yi 6= 0

}

. (19)

Then, for the vectors

z1 = (x1 + εy1, . . . , xp + εyp, 0, . . . , 0) (20)

and

z2 = (x1 − εy1, . . . , xp − εyp, 0, . . . , 0) (21)

we have Az1 = b, Az2 = b, z1, z2 ≥ 0, z1, z2 ∈ P .

Now observe that x = 1
2z1 +

1
2z2, but the fact that x is

extreme point results in x = z1 = z2 which leads to yi =
0 (since xi = xi + εyi ⇒ yi = 0 ∀i). Thus vectors

a1, . . . , ap are linearly independent and thus x is a BFS.

As a result of the theorem : if we want to solve an LP prob-

lem, we need to search for the optimal solution only among the

extreme points of P .

7 Useful facts

Assume we have the system of linear equations Ax = b. Let

matrix A have some m linearly independent columns, A is of

dimension m × n, m < n, and rank(A) = m. Denote by

B the sub-matrix that consists of these columns. Let D be the
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submatrix with the rest of the columns. The augmented matrix

of this system is [A b]. We want to bring this matrix to the form

[I D b̃].
We know from the methodology of solving linear systems

of equations that the augmented matrix can be brought in that

form with elementary operations on it:

• Interchanging any two rows of the matrix,

• Multiplying one of its rows by a real, non-zero number

• Multiplying one of its rows by a real, non-zero number

and adding to another row

If the augmented matrix is brought in that form, thenx = b̃

is the solution of the linear system Ax = b. Because A is of

dimension m×n, m < n, and rank(A) = m the system has

infinite solutions.

Matrix A is brought in the form [I D b̃] and then the linear

system of equations can be written as:

x1 + y1,m+1xm+1 . . . y1nxn = y10 (22)

x2 + y2,m+1xm+1 + . . .+ y2nxn = y20 (23)

...

xm + ym,m+1xm+1 + . . .+ ymnxn = ym0 (24)
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where the first factor in each equation is reflected in the unit

matrix I , the remaining factors in each equation represent ma-

trix D and the right side of the equations represent b̃.

7.1 Example

We have the following constraints:

x1 + x2 − x3 + 4x4 = 8 (25)

x1 − 2x2 − x3 + x4 = 2 (26)

The augmented matrix is:

(

A b
)

=

(

1 1 −1 4 | 8
1 −2 −1 1 | 2

)

Multiply the first row by −1 and add to the second row:

(

A b
)

=

(

1 1 −1 4 | 8
0 −3 0 −3 | −6

)

Divide the second row by −3:

(

A b
)

=

(

1 1 −1 4 | 8
0 1 0 1 | 2

)
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Multiply the second row by −1 and add to the first row.

(

A b
)

=

(

1 0 −1 3 | 6
0 1 0 1 | 2

)

If we choose as basis matrix B = [a1, a2], an obvious

solution is x = (6, 2, 0, 0). This solution is feasible (since it

satisfies Ax = b), basic and non-degenerate.

If we choose as basis B = [a3, a4], the solution x =
(0, 0, 0, 2) is feasible, basic and degenerate. Another possible

solution is x = (3, 1, 0, 1) which is feasible but not basic.

If we choose as basis B = [a2, a3], the solution x =
(0, 2,−6, 0) is basic but non-feasible, since we do not accept

negative solutions.

8 Introduction to Simplex Algorithm

In order to solve a Linear Programming problem, we move from

one BFS to another BFS until we find the optimal one, which

will be the one with the property that if I try to move to whatever

other BFs, the value of the objective function is not improved.

This is precisely what the Simplex algorithm does.
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Figure 5: In LP, the Simplex algorithm moves from one BFS to

another.

In the following, we will assume that we have non-degenerate

solutions. We will treat the cases of degenerate solutions sep-

arately.

A given BFS at some step of the algorithm
Consider that at some stage of the algorithm, we have the

BFS

x = (y10, . . . , ym0, 0, . . . , 0), yi0 > 0, i = 1, . . . ,m.
(27)

The way, we move from one BFS (vertex, or extreme point

of the polyhedron defined by the constraints Ax = b) to an-
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other is as follows: In each step we change a non-basic vari-

able to basic and a basic variable to non-basic. This operation

is called pivoting. The non-basic variables are set to zero while

the basic variables are found to be non-negative values. Talk-

ing in columns, we insert to the basis a column that is currently

not in the basis and we take out of the basis a column that used

to be in the basis.

Suppose we have chosen the column aq , q > m (non-

basic column now) and we want to have it inside the base. We

have the column aq as a linear combination of the current basis

{a1, . . . , ap}:

aq = y1qa1 + y2qa2 + . . .+ ymqam (28)

where matrix A = [a1, . . . , am, am+1, . . . , aq, . . . , an].
Also note that B = [a1 . . .am] and D = [am+1, . . . , an]

We want to move the non-basic column aq in the basis.

Multiply the left- and the right-hand side of the equation above

with ε > 0 to get:

εaq = ε(y1qa1 + . . .+ ymqam) (29)

Now we know that the current BFS (the vector b̃ we saw

before) satisfies Ax = b and can be written as a linear com-

bination of the basic columns as:

y10a1 + . . .+ ym0am = b (30)
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Subtract the one equation from the other to get:

b =

(y10 − εy1q)a1 + (y20 − εy2q)a2 + . . .

+(ym0 − εymq)am + εaq (31)

Notice that since the equation Ax = b is satisfied again, the

coefficients correspond to a new solution,






















y10 − εy1q
y20 − εy2q

...

ym0 − εymq

0
ε
0























where ε appears in the q-th position, q > m.

This operation can be understood as follows: currentlyxq =
0. Assume we start increasing the (currently non-basic) vari-

able xq to some positive value ε, so as to make it basic. Equiv-

alently, column aq will enter the basis. When ε increases, then

q-th component increases too. The variables x1, . . . , xm de-

crease if yiq > 0 and increase if yiq < 0.

The question that arises now is: Up to which value ε can

xq be increased so that we go from one BFS to another? The

answer is the following: the maximum value that ε can take
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is determined by that component of the solution that becomes

zero first. This value of ε is clearly

ε = min
i

{

yi0
yiq

: yiq > 0

}

(32)

Suppose that p is the index that is first zeroed, 1 ≤ p ≤
m . Then, p corresponds to the basic variable that will now

become non-basic. Specifically, it is

p = arg min
i=1,...,m

{

yi0
yiq

: yiq > 0

}

(33)

Therefore, variable xp now becomes zero, or equivalently

column ap exits the basis. The new basis is therefore,

{a1, . . . , ap−1, ap+1, . . . , am, aq} (34)
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and the new BFS is:

















































y10 − εy1q
...

yp−1,0 − εyp−1,q

0
yp+1,0 − εyp+1,q

...

ym0 − εymq

0
...

ε
...

0

















































with ε in the q-th position.

8.1 Cases of degenerate BFS

It may happen that the new BFS is degenerate, namely a vari-

able that is basic is zero. This can happen in the following

cases:

1. The coefficients are such that two basic variables can

become zero when we want to change the base. For the
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example above, we may have two indices 0 ≤ p1, p2 ≤
m such that xp1

= 0 and xp2
= 0.

2. It may happen that ε = 0. Then, the variable we want

to turn to basic and place it in the basis cannot take a

larger value and the BFS remains the same. When the

current BFS x is degenerate, then it may be that ε = 0
and the new BFS remains the same as the current BFS

(especially this is the case if some basic variable is 0
and the corresponding denominator is positive).

3. Cycling phenomenon : It may happen that the a se-

quence of basis changes lead us through a sequence

of changes of bases back to the initial basis.

Also note that in the case that none of coefficients yiq is

positive, we can move further from the current BFS, but we can-

not discover any new BFS for the problem ⇒ the polyhedron P

is unbounded and the LP problem is said to be unbounded.
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8.2 Critical questions

8.2.1 When does Simplex algorithm stop?

Suppose that we have a BFS

x =

(

xB

0

)

=

























y10
y20

...

ym0

0
...

0

























What is the cost of the solution? In other words, we find the

value of the objective function cTx for this solution. We have

the value

z = cTx = c1y10 + c2y20 + . . .+ cmym0 = cTBx, (35)

where cTB is the part of the cost vector c that corresponds to
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the basis. Suppose we get to a new BFS,

x
′

=



































y10 − εy1q
y20 − εy2q

...

ym0 − εymq

0
...

ε
...

0



































where ε comes at the q-th component of the solution. The new

cost is:

z
′

=

m
∑

i=1,i 6=p

ci(yi0 − εyiq) + cqε, (36)

where q denotes the new variable xq that became a basic vari-

able. We have

z
′

= z + ε[cq − (c1y1q + c2y2q + . . .+ cmymq)]. (37)

Now we set zq the new column that we want to insert to the

basis as a function of the old basis:

zq = c1y1q + c2y2q + . . .+ cmymq. (38)
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Then we get

z
′

= z + ε(cq − zq) = z + ε rq (39)

or z
′

− z = ε(cq − zq).
In order for the new solution to be ”better” than the current

one, its objective function value has to be smaller than the one

of the current solution. If z
′

− z < 0, then the new BFS (that

corresponds to the non-basic column aq entering the basis)

has a lower objective function value. Since ε > 0, this happens

when cq−zq < 0 is true. Define cq−zq = rq as the reduced

cost coefficient corresponding to the newly entered variable xq .

If cq − zq < 0 then by entering column aq in the basis, we

have arrived to a better BFS (one with a lower cost).

Fact: The solution

x =

(

xB

0

)

is optimal if ∀q = m + 1, . . . , n it is cq − zq > 0. In other

words, this means that I am currently at the optimal BFS if I

try to change the basis by all possible means (i.e, insert to the

basis any non-basic column aq) and I will never manage to re-

duce the value of the objective function. Note that the reduced

cost variables cq − zq = rq are defined for each variable. As

an exercise, we can easily show the following:

Problem: Show that for the basic variables xi, i = 1, . . . ,m,

it is ri = 0.

40



Remark: The change of basis performed between columns

ap and aq is called (p, q) pivoting operation.

8.2.2 How do I choose which non-basic variable will be-
come basic?

How can I select the column q that will enter the base? There

are three possible ways to do that:

1. If z′ − z = ǫ(cq − zq), we choose q such that the

difference cq − zq takes the minimum value (the rate

of cost reduction becomes as large as possible). To be

more specific,

q = arg max
l∈{m+1,...,n}

|rl| = arg min
l∈{m+1,...,n}

rl.

(40)

Thus, we choose to make basic the variable that leads

to the largest rate of cost reduction (cost reduction per

unit of non-basic variable increase, cq − zq = z′−z
ε

).

2. Choose

q = arg max
l∈{m+1,...,n}

εl|rl| = arg min
l∈{m+1,...,n}

εlrl.

(41)

In this way of choosing q we take into account the ac-

tual change in the cost value, which also depends on ε.

Note that εl is the value of ε that turns the non-basic
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variable xl to basic and thus clearly ε has a different

value for different q. Indeed with this way of selecting q,

we reduce the value of the objective function as much as

possible, since εl(cl − zl) = z′ − z. Of course there

is the additional computational burden of finding εl and

computing the products εlrl.

3. Choose q = argmini∈ {m+1,...,n}{ri : ri < 0}.

That is, we examine all non-basic variables starting from

the lowest-indexed one and select to place at the basis

the first one that has negative reduced cost coefficient.

The disadvantage with this approach is that it does not

guarantee that the value of the objective function at the

new BFS will be the smallest possible.

If we choose q using way (3), and choose p = min{j :
yjo

yjq
} = mini{

yio

yiq
} : yiq > 0} (in other words, we choose to

put out of the basis the lowest-indexed variable out of the ones

that become 0), then, even though I have a non-degenerate

new BFS, the cycling phenomenon mentioned above is avoided.

This is known as lexicographic pivoting rule.

8.3 Simplex algorithm : steps

1. Begin with an initial BFS. If the LP problem is defined

using inequalities, we define slack variables and bring it

to the standard form and find the BFS.
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2. Calculate the coefficients rq for each non-basic variable

xq .

3. - If rq ≥ 0 for all non-basic variables, then STOP

the algorithm. We have found the optimal

solution.

- Else, choose q according to one of the rules that

we described in question (2) previously.

If none of yiq > 0 then STOP(unbounded LP

problem)

Else, calculate p = argmini{
yi0

yiq
: yiq > 0}

(this selection rule for the variable that exits the

basis eliminates the cycling phenomenon).

4. Pivot(p,q) and find new BFS.

5. Go to step 2.

8.4 Example of Simplex Algorithm for an LP prob-
lem

Given the LP problem

max 7x1 + 6x2
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subject to the constraints:

2x1 + x2 ≤ 3 (42)

x1 + 4x2 ≤ 4 (43)

x1, x2 ≥ 0. (44)

solve it (find the optimal BFS).

Solution: We convert the problem to the standard form by

defining slack variables x3, x4, so the new problem (P) is:

min−7x1 − 6x2

subject to:

2x1 + x2 + x3 = 3 (45)

x1 + 4x2 + x4 = 4 (46)

x1, x2, x3, x4 ≥ 0 (47)

The objective function value z is : z = −7x1− 6x2 +0x3+
0x4.

We start running the Simplex Algorithm. Start with initial

BFS: x = (0, 0, 3, 4). The basis is B = [a3, a4].
At each step, we will express the cost as a function of the

non-basic variables. We will also write the basic variables as

functions of the non-basic variables to facilitate computation of

ε and the pivoting.
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Initial cost:z = −7x1−6x2+0x3+0x4 with value z0 =
0 for the current BFS. Write the basic variables as functions of

the non-basic ones:

x3 = 3− 2x1 − x2 (48)

x4 = 4− x1 − 4x2 (49)

STEP 1: Our goal is to change the basis, so that we find a

new BFS with lowest cost value. The question is ”which (non-

basic) variable xp should we choose to make basic?”. We

choose it according to the first rule case out of the three we

described at question (2) in this lecture.

We see that r1 = −7, r2 = −6 (reduced cost coeffi-

cients). In other words, if I increase x1 or x2 by making one

of the two basic, I observe that the increase of x1 causes the

largest decrease in z. That is, since |r1| > |r2|, we choose

to make variable x1 basic (equivalently put the first column a1
of matrix A in the basis. Thus it is q = 1. If we increase x1,

we observe that, out of the basic variables x3, x4, the first that

becomes zero is x3 and this occurs for x1 = ε = 3/2. Thus

p = 3 and x3 will become non-basic.

Pivot(3, 1). New basis: B = [a1, a4]
New BFS: x = ( 32 , 0, 0,

5
2 ) and new cost value: z =

− 21
2 (observe that we reduced the value of the objective).
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We now write the new basic variables as functions of non-

basic variables:

x1 =
3

2
−

1

2
x2 −

1

2
x3 (50)

x4 =
5

2
−

7

2
x2 +

1

2
x3 (51)

and the cost:

z = −7x1 − 6x4 = −
21

2
−

5

2
x2 +

7

2
x3 (52)

STEP 2: Now again we will have to choose which non-

basic variable to make basic. Observe that if we make variable

x3 basic, the cost will be increased, which is undesirable. So

we choose to make basic the variable x2. Thus q = 2.

If we increase x2, we observe that, out of the basic vari-

ables x1, x4, the first that becomes zero is x4 and this occurs

for x2 = ε = 5/7. Thus p = 4 and x4 will become non-

basic.

Pivot(4, 2). New basis: B = [a1, a2]
New BFS: x = ( 87 ,

5
7 , 0, 0) and new cost value: z2 =

− 81
7 (observe that with the change of basis we have reduced

the objective function value more). From equations

Again, we write the basic variables as a function of non-

basic variables.

x1 =
8

7
−

4

7
x3 +

1

7
x4 (53)
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x2 =
5

7
+

1

7
x3 −

2

7
x4 (54)

and the cost:

z = −7x1 − 6x2 = −
86

7
+

22

7
x3 +

5

7
x4 (55)

STEP 3: Now again we will have to choose which non-

basic variables to make basic. However, observe that if make

either x3 or x4 basic (i.e try to increase them from 0), the cost

value will be increased. So the algorithm stops here and we say

that we found the optimal BFS and we solved the LP problem.

Optimal solution: x = ( 87 ,
5
7 , 0, 0).

An alternative presentation of the above steps: We can

also find the solution using the matrix form. In every step, the p

and q variables are chosen the same way as we already men-

tioned above. Thus, we have:

The augmented matrix of the primal problem is:

(

A b
)

=

(

2 1 1 0 | 3
1 4 0 1 | 4

)

So, the basis is B = [a3, a4] and thus an initial BFS is again

x = (0, 0, 3, 4).

STEP 1: Following the same procedure as above we find

that the new basis must be B = [a1, a4] in order to lower cost
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value.

Multyplying the first row with − 1
2 and it add to the second row

and then divide the first row by 2, we take the new basis:

(

A b
)

=

(

1 1
2

1
2 0 | 3

2
0 7

2 − 1
2 1 | 5

2

)

So, the new BFS in step1 is again x = ( 32 , 0, 0,
5
2 ).

STEP 2: In the same spirit like before, we find that the new

basis must be B = [a1, a2] so as to have additional reduction

of the cost value. Multyplying the first row with − 1
7 and it add

to the second row and then divide the first row by 2
7 , we take

this new basis:

(

A b
)

=

(

1 0 4
7 − 1

7 | 8
7

0 1 − 1
7

2
7 | 5

2

)

So, the new BFS in step2 is again x = ( 87 ,
5
7 , 0, 0).

STEP 3: Like before, the algorithm stops here and we say

that we found the optimal BFS: x = ( 87 ,
5
7 , 0, 0)., because

we again observe that the cost value will be increased if make

either x3 or x4 basic.
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9 Modelling Network Problems using LP

9.1 Maximum lifetime routing in wireless sen-
sor networks

gateway

sensor

i

j

Figure 6: A wireless sensor network with a set of sensor nodes

and a set of gateways.

We will now see an example of a problem from wireless

sensor networks, that is formulated as an LP problem.

A sensor network consists of a set of miniature-sized sen-

sor nodes that sense and monitor processes such as vibration,

sound, light, temperature, movement. The information needs
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to be transferred from the sensors to a set of information pro-

cessing centers, called gateways. The data will be transferred

with multi-hop routing as shown in figure 1. Of course the dif-

ferent routes may intersect (something that is not shown in the

figure). Sensor nodes have the ability to forward their data, as

well as other nodes’ data.

All sensors can potentially produce information data. Gate-

ways are connected with optical fiber and we will assume that

the data from a sensor will have reached its destination if it

reaches any of the gateways. We will also not deal with in-

terference from multiple ongoing transmissions (which can be

here assume to be reduced or eliminated by means of an ap-

propriate scheduling protocol). We assume there exist several

kinds (or commodities) of traffic (e.g. temperature, sound, etc)

The transmitted energy from a sensor node can be ad-

justed to a level appropriate for a receiver within its transmis-

sion range to the able to receive the data correctly. We will

discuss later this issue.

Upon arrival of new information at a node (either generated

by the node itself or forwarded from other nodes) a routing de-

cision needs to be made so that the data is forwarded to an

appropriate neighbor. We will see that routing accounts to find-

ing the way to split the traffic streams across different routes,

so as to ”balance” energy consumption among nodes and thus

increase network lifetime.

The topology is considered to be static, namely with no

50



mobility. Note that mobility either of the sensor nodes or of

the gateways or both may further help in reducing the energy

consumption and improve network lifetime. However, we will

not consider such an issue here.

We define the following quantities:

Pij : the minimum power needed for sensor i to send in-

formation to to sensor j. This os proportional to the distance

dij between the nodes i and j and is given as Pij = γdaij ,

where a is a constant that specifies the type of wireless propa-

gation environment and γ is the minimum required SNR at the

receiver such that reception is acceptable. sensors

Specifically, at the receiver we have SNR ≥ γ ⇒
Pij

daijσ
2
≥

γ, and thus the minimum power is Pij = γdaijσ
2. Note that

σ2 is the noise power.

eij : The amount of energy consumed by sensor i for the

transport of one unit of information (bit or packet) to sensor j.

It is measured in Joules per bit. Now, we determine eij in more

detail and note that eij is known to each sensor i only for its

neighbors j (let Ni be the set of neighbors of sensor node i).
Energy and power are related as E = Pt, which has

units (energy/bit) = (power/bit) × (sec). We understand that

energy per bit is the product of power and transmitting rate,

eij = Pijrij . Thus, the parameter eij captures both chang-

ing the power level and the transmission rate, e.g changing the

modulation level to reach j.
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Each sensor has an initial amount of energy Ei. During

a sensor operation, energy can be consumed to perform the

following tasks:

• Transmission of information (this is the most

energy-consuming task).

• Reception of information (since the reception circuits

have to be on and process the received information).

• CPU operation (battery is consumed to perform

numerical operations and tasks. Thus, the algorithms

for sensor networks need to be simple and of low

computational load.

• Sensing (the sensing module consumes energy)

• ON-time of circuits. Even if not involved in any of the

operations above, a sensor consumes energy even by

being ON (awake as we say).

In this problem, we will assume that energy is consumed

only for transporting data. The network can be represented as

a directed graph G = (N ,A), where N is the set of nodes

and A is the set of edges. An edge exists whenever a node j
is within the transmission range of node i (can be reached for

a constant power P )
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We now define the following quantities that will help us con-

struct the model in our problem. Let c = 1, . . . , C denote the

C different kinds of information transferred in the network.

• Q
(c)
i : Rate of generation of kind c of traffic at node i in

units bits/sec.

• Qi =

C
∑

c=1

Q
(c)
i : total rate traffic generation at node i.

• q
(c)
ij : The rate at which information of kind c is

transferred from node i to j (in bits/sec).

• qij =

C
∑

c=1

q
(c)
ij : The total rate of information transfer

from sensor i to sensor j (in bits/sec).

• Oc = {i ∈ N : Q
(c)
i > 0}. The set of origin nodes

of traffic of type c.

• Dc : the set of destinations of traffic of type c

The variables are the qij ’s. The problem of routing is equiv-

alent to finding flows qij or equivalently the flow vector q =
{qij ∀(i, j) ∈ A}. Vector q shows how information flows in

each edge (i, j) and the way that information streams are split

in each node.
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9.1.1 Network Lifetime

The sensor network lifetime is defined as time between the

beginning of network operation and the time when first node

”dies”, namely its energy vanishes and its battery is drained.

Here, we should note that there are several different definitions

of network lifetime. For example, we lifetime can be alterna-

tively defined as the time until transfer of information from the

sources to the destinations is still feasible no matter how many

nodes have zero battery. Or network lifetime, can be the time

when the battery of some percentage k% of sensor nodes be-

comes zero. However, we will consider the definition of network

lifetime we said before. This is a meaningful definition in the

following sense: the network operates normally until the first

node’s battery finishes. Then, this node cannot handle traf-

fic any more and additional re-routing algorithms need to be

applied in the network to circumvent that node and find alter-

native routes. Hence, much more additional energy is needed

and the rate at which nodes’ batteries will be emptying will be

higher from then on. Therefore, the time when the battery of

one node vanishes is a benchmark and can be defined as the

network lifetime.

Let us express the network lifetime as a function of flow

vector q. First, we express the node lifetime as a function of

the flow vector. In the problem formulation from now on, we

will assume that the network carries one type of traffic. The

generalization to more than one types of traffic is easy.
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For a flow vector q, the node lifetime is:

Ti(q) =
Ei

∑

j∈Ni
eijqij

(56)

where the denominator shows the total rate of decrease of en-

ergy for node i.
The Network lifetime for flow vector q is defined as:

TN (q) = min
i∈N

Ti(q) = min
i∈N

Ei
∑

j∈Ni
eijqij

(57)

The maximum lifetime routing problem is defined as fol-

lows: Find the flow vector q so as to maximize network lifetime:

max
q

TN (q) = max
q

min
i∈N

Ei
∑

j∈Ni

eijqij
(58)

for qij ≥ 0, ∀ i ∈ N , ∀j ∈ Ni.

There is also the following constraint for the problem:

Qi +
∑

j:i∈Nj

qij =
∑

k∈Ni

qik, ∀ i ∈ N \Dc (59)

This equation expresses the flow conservation principle at

each node i. The way the problem is formulated now is not Lin-

ear and so is difficult to solve. With a change of variables and
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the definition of a new variable, we will show that the formu-

lation above is actually equivalently to a Linear Programming

problem. Define the network lifetime as a new variable,

T = min
i∈N

Ei
∑

j∈Ni

eijqij
(60)

Then, since T is the mimimum of all lifetimes for every i, we

have:

T ≤
Ei

∑

j∈Ni

eijqij
, ∀i (61)

Multiplying the flow conservation equation with T we get:

TQi + T
∑

j:i∈ Nj

qij = T
∑

k∈Ni

qik (62)

We define new variables q̂ij = Tqij where q̂ij ≥ 0. Then,

the flow conservation equation becomes:

TQi +
∑

j:i∈Nj

q̂ij =
∑

k∈Ni

q̂ik. (63)

Also, there appears the inequality constraint:

∑

j∈Ni

eij q̂ij ≤ Ei. (64)
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The objective function is now linear in the variable vector (q̂, T )
and the objective is now stated as

max
q̂,T

T (65)

Thus, we converted our problem into a linear programming prob-

lem, since the objective is linear in the variable vector and the

constraints are linear in the variables as well.

In general if we have a problem of the form min-max (the

problem above was of the max-min form)

min
x

max
i=1,...,m

aTi x+ bi, (66)

the idea is to define an extra variable,

t = max
i=1,...,m

aTi x+ bi. (67)

and the problem will be:

min
x,t

t (68)

subject to the constraints:

t ≥ aTi x+ bi, ∀ i = 1, . . . ,m (69)

When we have several linear functions of x, the min-max prob-

lem is converted into a linear programming problem.
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9.2 Carrier assignment in OFDM systems

1 2 3

carriers

1/T

FDMA

OFDMA(orthogonal)/TDMA

Figure 7: OFDM versus conventional FDMA.

We will now examine and formulate the problem of carrier

assignment in OFDM systems as a linear programming prob-

lem. OFDM (Orthogonal Frequency Division Multiplexing) is dif-

ferent from conventional FDMA systems in the following sense:

in OFDM systems, the spectrum is divided into several sub-

carriers with overlapping spectra (see figure 7 . Note than in

FDMA, the spectrum is divided into non-overlapping spectra.

The innovation in OFDM is that, due to a well-known prop-
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erty of the Fourier transform, although the spectra are over-

lapping they are orthogonal to each other, that is, they do not

cause interference to each other. Thus, more efficient use of

spectrum is achieved. The OFDM is said to have higher spec-

tral efficiency than FDMA. Another innovation is that each user

f

t

.f N

.

.

f 2

f3

f 1

slot

Figure 8: Resources in the system : Timeslots making up one

frame and sub-carriers

can split its bit stream and use several sub-carriers in paral-

lel (each sub-carrier corresponds e.d. to a different frequency.

Note that in FDMA, each user was allocated one frequency.

We will consider here an OFDM/TDMA system. There exist
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K users and N subcarriers. Time is divided into time slots and

C time slots make up one time frame. There are two kinds of

resources to be allocated to users: the frequencies (subcarriers

1, . . . , N ) and the timeslots (slots 1, . . . , C within a frame).

See figure 8 for how resources are organized.

9.2.1 Formulation of a sub-carrier assignment problem as
an LP problem

This example is about carrier assignment to users in one cell.

the BS transmits to K users with N subcarriers in the down-

link.

t

f1

f2

f3

Tf

A

A

A A

B B B

Figure1 : Example

Tf : frame duration
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There exist a set of subcarrier frequencies and a set of C
time slots that need to be assigned to users in an OFDM sys-

tem. The timeslots make up a time frame of duration Tf sec.

In general, a user can be assigned several time slots in several

different subcarriers. The figure below shows the resources

(subcarriers/timeslots) that are assigned to two users A and B.

Each user i perceives each subcarrier j to be of different

quality. There exist two main reasons for that:

• Co-channel interference. Different users are located in

different regions within a cell and thus experience

different amounts of co-channel interference in each

sub-carrier due to different amounts of subcarrier reuse

in neighboring cells. For example, a user may be in a

location that is close to a cell in which subcarriers 1 and

2 are reused which subcarrier 3 is not. In that case,

that user perceives subcarrier 3 as being of very good

quality, while subcarriers 1 and 2 are of lower quality.

Also, different users perceive the same subcarrier as

being of different quality for the same reason. For

example, if another user is in a location close to a cell

where subcarrier 3 is used, then this user perceives

subcarrier 3 as of lower quality than the first user does.

• Frequency selectivity. Even in the absence of interfer-

ence whatsoever, a user has different channel gain in

different frequencies. That is, a transmitted signal has
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different channel attenuation in different frequencies. Fre-

quency selectivity results in different frequency response

function H(f) in different subcarrier frequencies f . The

phenomenon of frequency selectivity is attributed to multi-

path: the same signal follows several different paths while

traveling from the transmitter to the receiver and each

path is of different length (and thus arrives with differ-

ent delay at the receiver). These delay differences give

rise to a frequency dependence on the amplitude and

phase of the signal (for more details, look in the class of

Wireless Communications notes).

In the problem, we assume that the time frame duration is

small enough, so that each user has the same quality across

all time slots of a subcarrier. Therefore, we do not consider

temporal channel quality variations in our problem.

Given the fact that different users experience different qual-

ity in a subcarrier, there comes the question: Which user is the

most suitable to be assigned to a subcarrier?

As mentioned above, each user i experiences different qual-

ity in different subcarriers j. If the user utilizes only one carrier

j, the achieved transmission rate ri is:

ri =
S

Tf

· bij · aij · C · Tf

= S · bij · aij · C (70)

where S is the number of symbols of the user transmitted in
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a time slot, aij is the number of time slots that are used in

a frame in subcarrier j , bij is the maximum tolerable modu-

lation level (in bits/symbol) that can be assigned to a user in

subcarrier j and C · Tf is the time that is needed per frame

(sec/frame). Rate ri has units of bits/sec. Clearly, the achiev-

able rate for a user i in a subcarrier j depend on bij , aij . The

more slots the user uses, the more bits it can transfer in a frame

duration. Also, the larger the modulation level, the larger the

achievable rate. The quality of each subcarrier j for a user i is

reflected on the Signal-to-Interference and Noise ratio (SINR)

of a user.

As we have said before, if the SINR is large (the subcarrier

is of good quality), the BS can afford to transmit with a large

modulation level (and still maintain the BER below a threshold

ǫ. On the other hand, if the SINR for a user in a subcarrier is not

good, the BS cannot transmit with a high modulation level. In-

stead, it needs to use lower modulation level, so as to maintain

BER below ǫ.
Each user sends a message to the BS and informs it about

the quality in each subcarrier. The user receiver can easily

measure the quality in different subcarriers at its receives and

then it can feed back this information at the BS. The user i thus

essentially indirectly informs the BS of the modulation level vec-

tor (bi1, ..., biN ) that the BS can give in the different subcarri-

ers. Now, if the user has also declared its requirements in rate

to the BS, the BS gets informed about the user’s preferences
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and can estimate how many slots are needed for every user in

order to fulfil its rate requirements (if the user uses exclusively

one subcarrier). Thus, the number of slots that are needed by

a user i in order to fulfil its rata requirements if it used only one

subcarrier j is:

aij =

⌈

ri · Tf

S · bij

⌉

(71)

Thus we make the following observations:

• The more the user rate requirements, the more the

slots that the user needs in order to fulfil them.

• The better the channel quality in a subcarrier for a user,

the higher the achievable modulation level and thus the

fewer the number of slots that are required in order for

the user to fulfil its rate requirements.

The BS faces the following problem:

Given a number of users with some rate requirements and

given a number of carriers, allocate carriers and timeslots to

users, such that the user rate requirements are satisfied and

the minimum total number of time slots are used. This optimiza-

tion objective is meaningful, since the BS would like to have as

many free slots are possible in case they are needed:

• in order to serve a burst of many new arriving users.

Hence the free slots help to serve sudden increased in

user loads.
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• in order to cope with sudden subcarrier quality deteri-

oration for many users. This often occurs in wireless

systems. If the quality of one or more subcarriers de-

teriorates for users, then the users need additional time

slots in order to fulfil rate requirements.

An example with three users A,B and C and three subcar-

rier frequencies f1, f2, f3 is given in the figure below (denoted

as Figure 4). The matrix element (i, j) shows the number of

required time slots by user i in subcarrier j in order to fulfil its

rate requirements by using exclusively this subcarrier. Thus for

example user A prefers to use subcarrier f1 since it will occupy

fewer slots there. User C also prefers subcarrier f1 to the other

two for the same reason.
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A

B

C

f1 f2 f3

2

2 5

5

3

3

4

4

1

Figure 4 : User requirements in frequencies

However, if a subcarrier is preferable by several users, it

may happen that the number of slots in that subcarrier is not

adequate to accommodate all users. For instance, if subcarrier

f1 has C = 4 time slots in a frame, and user A is assigned to

subcarrier f1, user B to subcarrier f2 and user C to subcarrier

f1, then 5 slots are needed to satisfy users A and C in subcar-

rier f1 (but only 4 are available!). This is shown in the figure

below (denoted as figure 5)

So,only 2 slots out of the 3 needed can be given to user C

at subcarrier f1. Thus the rest of its requirements need to be

fulfilled by assigning to the user slots by lesser quality subcar-

rier (e.g the next more preferable subcarrier for user C is f2).
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f1

f2

f3

A A

B

C C

Figure 5

However note that if user C is given slots from subcarrier f2
the 1 remaining needed slot (if it was assigned to subcarrier

f1) is equivalent to more than one (actually ⌈4/3⌉ = 2 slots,

if assigned to subcarrier f2).

Linear Programming formulation

The variables of the problem are xij : portion (percentage)

of rate requirements of user i that are satisfied by carrier j,

i = 1, . . . ,K and j = 1, . . . , N . The variable vector is

x = (xij : i = 1, . . . ,K, j = 1, . . . , N).
A problem instance is described by the longNK×1 vector
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a = (aij : i = 1, . . . ,K, j = 1, . . . , N). As mentioned

before, the parameters aij are known to the BS for each user i
and each subcarrier j and denote the number of time slots that

are needed by user i to entirely fulfil its rate requirements when

assigned only to carrier j. Let aij ∈ R. Let all the subcarriers

have capacity of C time slots per frame.

We want to minimize the total number of time slots that are

needed to satisfy all users:

min
x

K
∑

i=1

N
∑

j=1

aijxij (72)

subject to the following constraints:

K
∑

i=1

aijxij ≤ C, for j = 1, . . . , N. (73)

and
N
∑

j=1

xij = 1, for i = 1, . . . ,K. (74)

The first constraint specifies that the available slot capacity must

not be exceeded. The second constraint says that user rate re-

quirements need to be satisfied. Also, for the variables xij it is

0 ≤ xij ≤ 1. Since the objective function and the constraints

are linear in the variable vector x, the formulation above is an

LP problem.
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10 Duality

We now turn our attention to a very important topic of Linear

Programming, that of duality. Duality appears in LP as well as

in non-LP problems.

Consider the original LP optimization problem as we have

seen it till now:

min cTx (75)

subject to:

Ax = b, and x ≥ 0. (76)

This is called Primal problem (P).

Suppose there exists an optimal solution x∗. Matrix A has

dimension m × n (that means that there are m constraints).

We define λ = (λ1, λ2, ..., λm) where λi denotes the addi-

tional cost per unit if constraint i is not fulfilled.

Then we have:

L(x,λ) = cTx+ λ
T (b−Ax) (77)

= cTx+

m
∑

i=1

λi(bi − ai
Tx) (78)

and we have the unconstrained problem:

min cTx+ λ
T (b−Ax) (79)
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subject to x ≥ 0. The term λ
T (b − Ax) is the penalty as-

sociated with violating the constraints. Define g(λ) the optimal

cost for the relaxed problem as a function of λ,

g(λ) = min
x≥0

cTx+ λ
T · (b−Ax) (80)

We have

g(λ) ≤ min
x≥0,Ax=b

cTx+ λ
T (b−Ax) (81)

since minx∈A f(x) ≤ minx∈B f(x) for B ⊆ A. Thus, we

further get:

g(λ) ≤ min
x≥0,Ax=b

cTx (82)

or

g(λ) ≤ cTx∗ (83)

since x∗ is feasible solution for the primal problem.

For each λ, g(λ) is a lower bound on the optimal cost of

the primal problem, cTx∗. The question now in to find the best

(highest) lower bound. This is the dual problem.

10.1 Dual Problem

The dual problem is a maximization problem, namely the max-

imation of the lower bound for the cost g(λ) ≤ cTx∗.

The primal problem without the constraints is:

g(λ) = min
x≥0

cTx+ λ
T (b−Ax) (84)
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and then

g(λ) = λ
Tb+min

x≥0
(cT − λ

TA)x (85)

Now,

min
x≥0

(cT − λ
TA)x = 0, if cT − λ

TA ≥ 0T (86)

else it is −∞. Hence, in maximizing g(λ), we must only con-

sider those values of λ for which g(λ) is not −∞.

The dual problem is therefore:

maxλTb (87)

subject to the constraints:

λ
TA ≤ cT (88)

Notice that the dual has no constraints on the sign of λ. The

primal problem is a minimization problem, whereas the dual

problem is a maximization problem. In the dual problem cT

(the cost vector for the primal) has become right-hand side of

the constraints and vector b has became the rate of benefit.

If we have an LP problem in inequality form (constraints are

Ax ≥ b), we convert it to the standard form by using a slack

variable s ≥ 0:

Ax− s = b (89)
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or

[A − I](x s)
T
= b (90)

Then, according to the previously found dual, we will have the

dual constraints:

λ
T [A − I] ≤ [cT 0T ] (91)

or

λ
TA ≤ cT (92)

and

λ
T (−I) ≤ 0 ⇔ λ ≥ 0 (93)

So, if in the primal problem the constraints are inequalities,

in the dual, we have the constraint that the dual variables λ ≥
0.

11 Primal LP problems and their dual

problems

11.1 Forms of the primal problem

Below we show some primal problems of linear programming

and their corresponding dual.
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No Primal Problem Dual Problem

1

min cTx maxλTb

s.t. Ax = b s.t. λTA ≤ cT

x ≥ 0 λ unrestricted

2

min cTx maxλTb

s.t. Ax = b s.t. λTA = cT

λ unrestricted

3

min cTx maxλTb

s.t. Ax ≥ b s.t. λTA = cT

λ ≥ 0

4

min cTx maxλTb

s.t. Ax ≥ b s.t. λTA ≤ cT

x ≥ 0 λ ≥ 0

Generally, when the primal problem has inequality con-

straints, then in the dual we have the variables λ ≥ 0. When

the primal problem has equality constraints, then in the dual the

variables λ are unrestricted in sign.

Fact: The dual of the dual is the primal problem.

Proof: Assume the primal problem and its corresponding

dual of equation (4) before. The dual problem can be written as

minλT (−b) s.t. λT (−A) ≥ −cT , λ ≥ 0 (94)

The dual problem of the above is:

max (−c)
T
x s.t. (−A)x ≤ (−b), x ≥ 0 (95)
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which can be written as

min cTx s.t. Ax = b, x ≥ 0 (96)

which is the primal problem of equation (4). Thus, we proved

that the dual problem of a dual problem is its primal problem.

11.2 Example (The Diet Problem)

A diet contains m different vitamins that need to be received

daily with quantities at least equal to b1, ..., bm respectively.

The diet also have n different foods. Let aij denote the amount

of vitamin i per unit of j-th food.

A company intends to propose a diet that is most econom-

ical. We can compose such a diet by choosing nonnegative

food quantities x = (x1, ...xn). One unit quantity of food j
and has a cost of cj . We want to determine the cheapest diet

that satisfies the nutritional requirements. This problem can be

formulated as the LP primal problem,

min cTx s.t.Ax ≥ 0, x ≥ 0 (97)

The corresponding dual problem can be defined as

maxλTb s.t.λTA < cT , λ ≥ 0 (98)

where λi (dual problem variable) is the price of the unit quan-

tity of vitamin i = 1, ...,m. In other words, this is the problem
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that another company (competitive to the first one) needs to

solve. The company proposes a diet in which it has syntheti-

cally reproduced each food with vitamins. It then needs to find

the pricing mechanism for each vitamin, i.e find the price vec-

tor λ to maximize its total benefit. At the same time, it has the

constraints that the cost of the equivalent for food j should be,

λ1a1j + λ2a2j + ...+ λmamj ≤ cj . (99)

The inequality above should hold in order for the second com-

pany to be competitive. One unit quantity of food j has a

production cost cj and a price λ
TAj where Aj is the j-th

column of matrix A, with elements aij , i = 1, . . . ,m and

j = 1, . . . , n.

11.3 Theorems and Lemmas in Duality

11.3.1 Duality Theorem

If the primal problem has an optimal solution x∗, then so does

the dual (it has an optimal solution λ
∗) and the optimal values

of their respective objective functions are equal. In other words,

cTx∗ = λ
∗Tb. (100)

Before coming to that, we will show that cTx∗ ≥ λTb.
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11.3.2 Weak Duality Lemma

Suppose that x0 and λ0 are feasible solutions to primal and

dual problems respectively. Then,

cTx0 ≥ λ
T
0 b. (101)

This inequality is known as the Weak Duality Lemma. Now, set

λ
∗ = λ0 and x∗ = x0 and we get

cTx∗ ≥ λ
∗Tb. (102)

Every feasible solution of the dual problem gives a lower bound

on the value of the objective function of the primal problem.

Also, every feasible solution to the primal problem gives an up-

per bound on the value of the objective function of the dual.

Note that the weak duality lemma holds for any of the four

primal-dual pairs that we mentioned in the beginning (it can be

verified easily).

Two immediate conclusions are:

• If the primal problem is unbounded so that

cTx∗ = −∞, then the dual problem is infeasible.

• If the dual problem is unbounded so that λ∗b = +∞,

then the primal problem is infeasible.

Note: By saying a problem is infeasible, it means that its

set of feasible solutions is the empty set. Also, it is possible that

both primal and dual problem be infeasible.
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11.3.3 Theorem

Suppose that x and λ are feasible solutions to the primal and

dual problem respectively. If cTx = λ
Tb, then x and λ are

optimal solutions to the primal and dual problems respectively.

11.3.4 Lemma

Suppose that x and λ are feasible solutions to the primal and

dual problem respectively. Then,

cTx ≥ λ
TAx ≥ λ

Tb. (103)

Proof: For the first inequality, we must show that

(cT − λ
TA)x ≥ 0, (104)

which is true because cT − λ
TA ≥ 0 and x ≥ 0.

For the second inequality, we must show that

λ
T (Ax− b) ≥ 0, (105)

which is also true because λ ≥ 0 as a feasible solution to the

dual problem and Ax − b ≥ 0 as x is a feasible solution to

the primal problem.

If the constraint Ax ≥ b was replaced by Ax = b then

the respective dual problem would be

maxλTb, s.t.λTA ≤ cT , λ unrestricted, (106)
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which shows us that λT (Ax− b) ≥ 0, is always true.

Note that , since solutions of primal and dual problem co-

incide, we can choose to solve the one that has the least com-

plexity. This is of great importance especially in the case that

one LP problem requires a large amount of resources in or-

der to be solved (or maybe is inherently difficult to solve it)

whereas the corresponting dual problem requires significantly

less amount of recources. Also, dual problem help us to inter-

pret the characteristics of LP problem and solve some of the

problems in a distributed way.

11.3.5 Strong Duality Theorem

Suppose that x∗ and λ
∗ are feasible solutions to the primal

and dual problem respectively and cTx∗ ≥ λ
∗Tb. There are

four options about the solutions of primal and dual problems:

• Both problems have optimal solutions (of finite value).

• Both problems are infeasible (their sets of feasible

solutions are empty).

• The primal problem is unbounded and the dual problem

is infeasible.

• The primal problem is infeasible and the dual problem is

unbounded.
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11.3.6 Theorem: Complementary Slackness Conditions

The feasible solutions x∗ and λ∗ to the primal and dual prob-

lem respectively are optimal solutions if and only if

1. (cT − λ
∗TA)x∗ = 0

2. λ
∗T (Ax∗ − b) = 0.

We omit the proofs and focus on their interpretation.

1. We know that x∗ ≥ 0 and cT − λ
∗TA ≥ 0T . This

means that,

(cj − λ
∗TAj)x

∗
j = 0 ∀ j = 1, ..., n. (107)

The conclusions are:

If x∗
j > 0 ⇒ λ

∗TAj = cj (108)

If λ∗TAj < cj ⇒ x∗
j = 0, (109)

where cj is the j-th element of vector c, x∗
j is the j-th element

of vector x∗ and Aj is the j-th column of matrix A.

Thus, if a component of the primal solution is strictly posi-

tive, the corresponding constraint in the dual must be met with

equality at the optimal solution. And also, if an inequality con-

straint at the dual is not met with ”clean” inequality at the op-

timal solution, the corresponding variable at the primal optimal

solution is zero.

2. We know that λ∗ ≥ 0 and Ax∗ ≥ b. This means that

λ∗T
i (aTi x

∗ − bi) = 0 ∀ i = 1, ...,m. (110)
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The conclusions are:

If λ∗
i > 0 ⇒ aTi x

∗ = bi (111)

If aTi x
∗ > bi ⇒ λ∗

i = 0. (112)

where λi is the i-th element of vector λ, ai is the i-th row of

matrix A and bi is the i-th element of vector b. Similar state-

ments can be made here as those for case 1.

So, in general, we have:

• If the variable of (P) > 0 then constraint of (D) is

equality

• If the variable of (D) > 0 then constraint of (P) is

equality

• If constraint of (P) is inequality then the variable of (D)

= 0

• If constraint of (D) is inequality then the variable of (P)

= 0

where the Primal problem is denoted as (P) and the dual prob-

lem as (D).
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12 Interpretation of dual variables

Consider the primal LP problem

min cTx (113)

subject to:

Ax = b, x ≥ 0 (114)

Recall as ri the reduced cost coefficients from the simplex

algorithm. Let the optimal BFS be x = (xB 0). At the end of

the simplex algorithm, matrix A is partitioned as [B D], where

B is the matrix of linearly independent columns, corresponding

to the basis. As we know, xB = B−1b. Recall also that at the

end of the simplex algorithm the vector of relative coefficients

corresponding to the non-basic variables is rT ≥ 0 (a (n-m)

dimension vector ). It can be easily shown that at the end of the

simplex algorithm, it is

rT = cTD − cTBB
−1D, (115)

where for the cost vector is separated in two parts correspond-

ing to the basic and non-basic variables, as

c = (cB cD). (116)

Since at the optimal solution it is rT ≥ 0T , we have the in-

equality

cTD − cTBB
−1D ≥ 0 ⇒ cTBB

−1D ≤ cTD. (117)
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Now, consider the dual problem,

maxλTb (118)

subject to:

λ
TA ≤ cT , (119)

and λ unrestricted in sign. Define λ = cTBB
−1. We are going

to prove that λT = cTBB
−1 is the optimal solution to the dual

problem.

First, we will check if λ is a feasible solution to the dual

problem, i.e. if it satisfies λTA ≤ cT . Indeed, it is λTA =
λ
T [B D] = [λTB λ

TD] = [cTB cTBB
−1D] ≤ [cTB cTD] =

cT . Thus, λ is a feasible solution of the dual.

Next, we prove that λ is the optimal solution for the dual

problem. We have λ
Tb = cTBB

−1b = cTBxB = cTx,

where xB is the vector of the basic variables. Therefore, we

proved that if the primal LP has an optimal BFS with basis B,

then λT = cTBB
−1 is optimal solution for the dual problem.

Vector λT is called vector of simplex multipliers.

12.1 Sensitivity Analysis

Consider the primal problem:

min cTx
subject to: Ax = b

x ≥ 0
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Let the optimal basic feasible solution (BFS) be x = (xB, 0),
with basis matrix B and xB = B−1b.

Let’s assume that the right-hand side of the constraints

changes by a small ∆b, that is b  b + ∆b. For small

changes ∆b, the basis matrix B does not change. After the

change, the new optimal solution will be

x′ = (xB
′, 0)

where

xB
′ = B−1(b+∆b) = xB +∆xB

since ∆xB = B−1∆b.

The value of the objective function before the change was

cTBxB . After the change, it is cTB(xB +∆xB).
The objective function has been changed by quantity

∆z = cTB∆xB = cTBB
−1∆b = λ

T∆b

Suppose there was only one constraint, m = 1, then: ∆z =
λ∆b ⇒ λ = ∆z

∆b
. So, λ can be interpreted as the rate of

change of the value of the objective function for small changes

of the constraints. Since the constraints often represent re-

sources, λ can be interpreted as the price per unit of the re-

sources. This is also obvious from the fact that ∆z = λ∆b if

∆z is the profit delivered by quantity b of the resources. There-

fore, λ specifies the change in the value of the objective func-

tion with respect to a unit change in resources. It is also called

shadow price or marginal cost.
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For more than one constraint, m > 1, it is λi =
∂z

∂bi
and

λi is the rate of change in the value of the objective function

with respect to a change in constraint i.
Note that the more the value of λ increases, the more the

cost becomes sensitive to changes.

Next, we will study some examples of LP problems and will

try to interpret duality theorems for them.

12.2 Shortest Path Problem

First, we consider the shortest path (SP) problem. This prob-

lem is a special case of the more general minimum cost flow

problem.

e1

e2

e4

e5

e3
s t

Figure 9: An example network.
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Consider a directed graph G = (V,E), where V repre-

sents the set of nodes and E represents the set of edges of

the graph. Let cj ≥ 0 be the cost associated with each edge

ej ∈ E. The min-cost path problem is the problem of finding a

directed path of minimum total cost from a source node s to a

destination node t. For the special case where cj = 1 for each

ej ∈ E, we have the shortest path problem, i.e the problem of

finding the shortest route to th destination.

The problem arises in several applications such as rout-

ing, power control etc. The cost of an edge (i, j) may denote

the required power to reach from transmitter i to receiver j.

Then, the shortest path specifies the route with the minimum

total power consumption. energy costs can also be similarly

incorporated in that context. Costs may also denote delays in

packet forwarding in a network (which may model link rates or

queueing delays at nodes).

In the LP problem, the feasible set is

F = sequences {P = (ej1 , . . . , ejk)} such that the se-

quence is a directed path from s to t, i.e all possible paths

leading from source to destination.

Let the path cost be c(P ) =
∑k

i=1 cji . Define Let the

node-edge incidence matrix A = [Aij ], i = 1, ..., |V |, j =
1, ..., |E|, with

Aij =







+1 if edge ej leaves node i
−1 if edge ej enters node i
0 otherwise.
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Example: For the graph of Figure (9) , it is

A =









+1 +1 0 0 0
0 0 0 −1 −1
−1 0 +1 +1 0
0 −1 −1 0 +1









The rows, starting from the first one, stand for nodes s, t, a, b
respectively. The columns, starting from the first one, stand for

edges e1, e2, e3, e4, e5 respectively.

Associate a flow variable fj with each edge ej to represent

flow of an imaginary fluid through ej . Consider the flow vector

f = (fj : j = 1, ..., |E|). The flow conservation principle at

each node i can be expressed as the equation

aTi f = 0, i 6= {s, t} , (120)

where ai is the i-th row of matrix A. A path from s to t is a

flow of one unit leaving s and entering t. this flow satisfies the

flow conservation equations above at each intermediate node

in the path, and also aTs f = +1 and aTt f = −1. Overall, the

constraints are written as

Af =















+1
−1
0
...

0














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The first two rows stand for s and t respectively and the next

rows stand for nodes i 6= s, t. The primal problem can be

stated as:

min cT f
subject to: f ≥ 0

Af =















+1
−1
0
...

0















In its most general form, the problem is the minimum cost flow

problem that has solutions f ≥ 0 and f ≤ 1. The shortest

path problem is a special case of the minimum cost flow prob-

lem, where fe ∈ {0, 1}. At the optimal solution,

• if fej = 1, then edge ej is part of the optimal path P ∗

to the destination.

• if fej = 0, then edge ej is not path of the optimal path.

In the dual problem there is one variable for each node in

the network. The dual problem is:

max (λs − λt)
subject to : λi − λj ≤ cij for each edge e = (i, j)
λi unrestricted in sign
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The constraints can be seeing as emerging from the dual

constraints λTA ≤ cT . Let λi be the cost of having one flow

unit at node i. The complementary slackness conditions for

this problem in the optimal solution are written as

(λi − λj − cij) fij = 0 (121)

If λi − λj < cij ⇒ fij = 0. This means that if the cost

of transporting one unit of flow from node i to node j is more

than the difference in costs of having the flows at i and j, then

edge (i, j) is not included in the shortest path (because there

can be another way of transporting one unit of flow from i to j.

On the other hand, if fij > 0 ⇒ λi − λj = cij , and this

means that edge (i, j) is included in the shortest path.

For the shortest path problem from a single source to a

single destination and non-negative edge costs, there is the Di-

jkstra algorithm. A more general algorithm for multiple sources

and destinations and also negative costs is the Bellman-Ford

algorithm.

12.3 Assignment Problem

Consider the following problem. There exist n tasks / jobs to

be assigned to n persons. The benefit of assigning task j to

person i is aij . Alternatively, aij denotes the cost of assigning

task j to person i. Depending on one or the other case, we

have the min-cost or max-weight assignment problem. We will

consider the second case.
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Define the variables

xij =

{

0 if task j is not assigned to person i
1 if task j is assigned to person i

(122)

The maximum weight assignment problem (P) is the following:

max
{xij}

n
∑

i=1

n
∑

j=1

aijxij (123)

subject to:
n
∑

i=1

xij = 1, ∀ task j (124)

n
∑

j=1

xij = 1, ∀ person i, (125)

and xij ∈ {0, 1}.

Define a dual variable λj for each constraint correspond-

ing to a task j and a dual variable µi for each constraint cor-

responding to a person i. These can denote the cost of having

the task j assigned and the cost of having occupied person i.
The dual problem is:

min
n
∑

j=1

λj +
n
∑

i=1

µi (126)
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subject to:

λj + µi ≥ aij , ∀(i, j) (127)

and {λj} , {µi} unrestricted in sign.

Based on complementary slackness, we have at the opti-

mal solution: (aij − λj − µi)xij = 0. Thus, if λj + µi >
aij ⇒ xij = 0. This means that if the benefit aij of assign-

ing task j to person i is less than the incurred cost, then do not

assign task j to person i. On the other hand, if xij > 0 ⇒
λj + µi = aij , i.e it is valid and meaningful to assign task j
to person i if the incurred benefit equals the incurred cost.

12.4 Minimum Cost Flow Problem

Consider a network represented by a directed graph G(V,E).
Let cij be the cost of transferring one unit of flow through the

edge (i, j), and uij be the capacity of edge (i, j), i.e the max-

imum flow that can be transported through the edge (i, j). Also

define

bi







> 0 if i is the source

< 0 if i is the destination

= 0 otherwise

For each node

in the network, we have

bi +
∑

j:(j,i)∈E

fji =
∑

j:(i,j)∈E

fij , (128)
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namely the flow conservation equation. Also, 0 ≤ fij ≤ uij .

The minimum cost flow problem is:

min
∑

(i,j)∈E

cijfij , (129)

subject to the constraints above. The problem is called unca-

pacitated min-cost flow problem, if uij = +∞ for all edges

(i, j), otherwise it is called capacitated.
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