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1 Non-linear Programming Problems with

Equality Constraints

In this part of the course, we will discuss methods for solving a

class of nonlinear constrained optimization problems that can

be formulated as:

min f(x)
s.t hi(x) = 0, i = 1, ....,m

gj(x) ≤ 0, j = 1, ...., p
where

x ∈ ℜn, f : ℜn → ℜ, gj : ℜ
n → ℜ, and m ≤ n.

In particular, we will first consider the class of Non-linear

Programming problems with constraints that can expressed as

equalities {hi(x) = 0, i = 1, . . . ,m}. A point x0 is called

feasible point if it satisfies the constraints.

The constraints hi(x) = 0, i = 1, ....,m define a sur-

face S = {x : hi(x) = 0, i = 1, ....,m}.
The tangent plane at a point x0 on the surface S is the

collection of derivatives at point x0 of all differentiable curves

on S passing through x0. A tangent plane to a surface can be

visualized as generalizing the tangent line to a point on a curve.

Problem :

We would like to find an explicit characterization of the tangent

plane at a point x0 on the surface defined by the constraints of
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our problem,

S = {x : hi(x) = 0, i = 1, ....,m} (1)

as a function of the gradients of the constraint functions hi,

i = 1, . . . ,m. For a point x0 ∈ S , we introduce the set of

points

M =
{
y : ∇hT

i (x0)y = 0, ∀i = 1, . . . ,m
}

(2)

that is vector y denotes all points that are orthogonal to the

Gradients of the constaints.

Note that surface S and M coicide only when we are

working at one or two dimensions. Generally, S is different

fromM.

Definition :

A point x0 ∈ S is said to be a regular point if vectors

∇h1(x0), . . . ,∇hm(x0) are linearly independent.

Theorem :

At a regular pointx0 ∈ S = {x : hi(x) = 0, i = 1, ....,m},
the tangent plane isM.

Thus, at regular points we can characterize the tangent plane

in terms of the gradients of the constraint functions.

Example :

Consider the surface

S =
{
x ∈ ℜ3 : h1(x) = x1 = 0, h2(x) = x1 − x2 = 0

}
.

The surface is clearlyS = {x = (0, 0, x3) : x3 ∈ ℜ}, namely

the x3-axis.
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At a point x0 ∈ S , it is

▽h1(x0) =
[
1 0 0

]

▽h2(x0) =
[
1 −1 0

]

So, ∇h1(x0),∇h2(x0) are linearly independent ∀x0 ∈ S
and so every point x0 ∈ S is a reqular point. Then, the tan-

gent plane at S at point x0 is:

M =
{
y : ∇hT

i (x0)y = 0
}

=






y :





1
0
0



 (y1 y2 y3) = 0,





1
−1
0



 (y1 y2 y3) = 0







=⇒M = {(y1, y2, y3) : y1 = 0, y1 = y2}

= {(0, 0, y3) : y3 ∈ ℜ} (4)

Observe that the surfaces S andM coincide.Also, note that

M is not a function of x.That is because, in this specific case,

Gradient is not a function of x, too. But, in general cases,M
is dependent on variable x.

1.1 Lagrange Theorem for m = 1 constraint

Lemma (for one equality constraint): Let x0 be a regular

point of the surface defined by the equality constraints, S =
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{h(x) = 0} and x0 is a local minimizer of f : ℜn → ℜ,

subject to the constraint h(x) = 0. Then all points y that

satisfy ∇h(x0)
Ty = 0 also satisfy ∇f(x0)

Ty = 0. So,

that means that both vectors ∇h,∇f are orthogonal to vec-

tors y on the tangent plane at point x0 of the surface S and

this means that they are parallel to each other. Hence we arrive

at the theorem of Lagrange for one constraint m = 1 which is

stated as follows:

Lagrange Theorem for m = 1 constraint: Let the point x0

be a local minimizer of f : ℜn → ℜ subject to the constraint

h(x) = 0 , h : ℜn → ℜ and x0 also be a reqular point

(ie ∇h(x0
∗) 6= 0), then there exists a scalar λ∗ such that

∇f(x0
∗) + λ∗∇h(x0

∗) = 0

that is∇f(x0
∗) and∇h(x0

∗) are parallel.

Note that the theorem above provides a first-order neces-

sary condition for a point to be a local minimizer of f(·) subject

to an equality constraint.

1.1.1 Definition (as reminder)

1. The vectors u1, . . . ,un are linearly independent if and

only if the equation λ1u1 + . . . + λnun = 0 has as

solution only the all-zero vector

(λ1, . . . , λn) = (0, . . . , 0).

2. If the equation above has more solutions (essentially
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non-zero) other than the all-zero one, then vectors

u1, . . . ,un are called linearly dependent.

Note : One vector u by itself is linearly dependent or indepen-

dent? If u 6= 0 then λu = 0 ⇒ λ = 0 ⇒ u: linearly

independent. But if u = 0 then the equation λu = 0 has

several (infinite) solutions. So, u = 0 is linearly dependent.

Example :

Consider the surface

S =
{
(x1, x2) : h(x1, x2) = x2

1 = 0
}
= {(0, x2) , x2 ∈ ℜ}.

We have

∇h(x1, x2) =
[
2x1 0

]

{
if x1 6= 0 then ∇h is linearly independent

if x1 = 0 then ∇h is linearly dependent

and

M =

{

(y1, y2) :
[
0 0

]
(

y1
y2

)

= 0

}

In this example we cannot define the tangent plane at non-

regular points. From now on, unless otherwise stated, we will

consider surfaces S = {x : hi(x) = 0, i = 1, ....,m} that

have all their points regular.

That is the reason why in the Lagrange theorem point x0 must

be regular.
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1.1.2 Example

An Example on Lagrange theorem is shown in Figure 1 (where

note that the curve h = 0 corresponding to the constraints

should be intersecting with line f = f2 at a point x0 so that

the gradients of f and h are at the same point).

∇

∇ h

f f3

f2

f1

h=0
f3>f2>f1

Figure 1: Example for the theorem of Lagrange.
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1.2 Lagrange Theorem for m > 1 constraints

The Lagrance Theorem for m > 1 constraints becomes as
follows:
Let the point x0 be a local minimizer of f : ℜn → ℜ subject

to the constraints h1(x) = 0, . . . , hm(x) = 0. Assume that

x0 is a regular point. Then, there exists a real vector λ∗ ∈
ℜm : ∇f(x0) +

∑m
i=1 λi

∗ ∇h(x0) = 0.

(1,0) (2,0)

Figure 2: Lagrange theorem..
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Thus, at an optimal point (if this is optimal), the gradient of

the objective function can be written as linear combination of

the gradients of the constraints.

1.2.1 Example

Consider the following problem which is depicted in figure 2:

min f(x1, x2) = x1 + x2

s.t (x1 − 1)
2
+x2

2−1 = 0, (h1(x1, x2) = 0)

(x1 − 2)
2
+x2

2−4 = 0, (h2(x1, x2) = 0)
We have:

∇h1(x1, x2) = (2 (x1 − 1) , 2x2)
∇h2(x1, x2) = (2 (x1 − 2) , 2x2)

The surface S is the point (0, 0). So we have

∇h1 (0, 0) = (−2, 0)
∇h2 (0, 0) = (−4, 0).

Now we try to confirm Lagrange theorem:

∇f(x∗) +
∑m

i=1 λi∇h(x
∗) = 0⇒

(
1
1

)

+ λ1

(
−2
0

)

+ λ2

(
−4
0

)

=

(
0
0

)

⇒

1− 2λ1 − 4λ2 = 0⇒
1 = 0

So, because of (0, 0) is not a regular point, we can’t apply

Langrange theorem here! The condition cannot hold for any

λ1, λ2, namely the gradient of the objective function cannot be

expressed as a linear combination of the constraints.
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1.3 Lagrangian function

Recall again the form of the problem we are considering here:

min f(x)
s.t h1(x) = 0

...

hm(x) = 0
Define the Lagrangian function at point x as:

L (x, λ1, . . . , λm) = f(x) + λ1h1(x) + . . .+ λmhm(x)

= f(x) +

m∑

i=1

λihi(x) (5)

The Hessian matrix of the Lagrangian at pointx, Λ(x, λ1, . . . , λm)
is defined as

Λ(x, λ1, . . . , λm) = F (x) +

m∑

i=1

λiHi(x), (6)

where F (x) is the Hessian matrix of the objective function f
at point x, given by

F (x) =







∂2f

∂x2

1

· · · ∂2f
∂xn∂x1

...
. . .

...
∂2f

∂x1∂xm
· · · ∂2f

∂x2
n






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where the partial derivatives are evaluated at pointx andHi(x)
is the Hessian matrix of hi at point x, i = 1, ..,m.

2 Necessary and Sufficient Conditions

We now state the necessary conditions of second-order for the

existence of local minimum. Then, we state second-order suf-

ficient conditions for existence of local minimum.

First order necessary conditions for existence of local
minimum: Let point x∗ be a local minimizer of f : ℜn →
ℜ subject to the constraints h1(x) = 0, ..., hm(x) = 0.

Suppose x∗ is a regular point. Then, there exists vector λ∗ ∈
ℜm such that:

∇f(x∗) +

m∑

i=1

λi
∗ ∇hi(x

∗) = 0 (7)

Second order necessary conditions for existence of lo-
cal minimum: LetM = {y : ∇hi(x

∗)y = 0, i = 1, ...,m}
be the tangent plane at point x∗ of the surface defined by the

equality constraints. Then, matrix

Λ (x∗, λ∗) = F (x∗)+λ1
∗ H1(x

∗)+ ...+λm
∗ Hm(x∗)

(8)

is positive-semidefinite onM. That is,

yTΛ (x∗, λ∗)y ≥ 0, ∀y ∈M, y 6= 0 (9)
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Sufficient conditions for existence of local minimum:
If there exists a real vector λ ∈ ℜm which, at a point x∗

satisfies

∇f(x∗) +

m∑

i=1

λi
∗ ∇hi(x

∗) = 0 (10)

and if matrix

Λ (x∗, λ∗) = F (x∗)+λ1
∗ H1(x

∗)+ ...+λm
∗ Hm(x∗)

(11)

is positive definite onM
(whereM =

{
y : ∇hi(x

∗)Ty = 0, i = 1, ...,m
}

) that is,

yTΛ (x∗, λ∗)y > 0, ∀y ∈M,y 6= 0,

then x∗ is a local minimizer of f : ℜn → ℜ subject to the

constraints hi(x) = 0, i = 1, ..,m.
Note that , unless otherwise stated in the cases we will con-

sider, we will assume thatM = ℜn.

2.1 Sufficient conditions minimum for convex
functions

Assume that the objective function f : Rn → R is a convex

function and the constraint functions hi(x), with hi : R
n →

R are also convex functions which define the surface of con-

straints S = {x ∈ R
n, hi(x) = 0, i = 1, . . . ,m}. If there
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exists x∗ ∈ S and λ∗ ∈ R
m such that

∇f(x∗) +

m∑

i=1

λi
∗∇hi(x

∗) = 0

then the x∗ is global minimum of f .

Note 1: In the case of convex functions, the sufficient con-

ditions for existence of global minimum are obtained only by

equating the partial derivatives of the Lagrangian to zero. The

Hessian matrices of functions f , hi are positive-definite and

the second condition is not needed. In the case of convex func-

tions, the local minimum is global minimum.

Note 2: The factors λi, i = 1, . . . ,m are called Lagrange

multipliers regardless if functions are convex or not.

2.2 Local and global maximum of NLP problems

For the maximization problem

max f(x)
s.t. h1(x) = 0 , . . . ,hm(x) = 0

the second-order sufficient conditions for existence of local max-

imum are as follows: If there exist x∗, λ∗ such that the gradient

of the Lagrangian function is zero,

∇f(x∗) +

m∑

i=1

λi
∗∇h(x∗) = 0
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and the Hessian matrix of the Lagrangian

Λ(x∗, λ∗) < 0,

i.e, the matrix is negative-definite, then x∗ is local maximum of

f under the constraints hi(x) = 0, i = 1, . . . ,m.

Note: If f(x) is a concave function and the constraint

functions hi(x), i = 1, . . . ,m are also concave, then x∗ is a

global maximum of f in the constrained maximization problem.

2.3 Examples

2.3.1 Example 1

Consider the minimization problem,

min 1
2x

TQx

subject to Ax = b

where Q > 0 is symmetric, positive definite matrix, A ∈
R

m×n,m < n and b ∈ R
m.

From equation Ax = b we get a Lagrangian multiplier

vector λ. The Lagrangian function is:

L(x,λ) =
1

2
xTQx+ λT (b−Ax)

The objective function 1
2x

TQx is convex because∇f(x) =
Qx and the Hessian is F (x) = Q > 0. The Lagrange
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condition for existence of minimum is:

∇xL(x,λ) = 0 ⇒ Qx−ATλ = 0

and the optimal solution satisfies:

x∗ = Q−1ATλ

To find λ, we use the fact that x∗ is a feasible point, so it satis-

fies the constraints. So:

Ax = b ⇒

AQ−1Aλ = b ⇒

λ = (AQ−1A)−1b

Thus,

x∗ = Q−1AT (AQ−1AT )−1b (12)

is the global minimum of our problem.

2.3.2 Example 2

Consider the problem

max f(x) = x1x2 + x2x3 + x1x3

subject to: x1 + x2 + x3 = 3.
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Solution: The Lagrangian function is:

L(x1, x2, x3, λ) = x1x2+x2x3+x1x3+λ(x1+x2+x3−3)

We equate the partial derivatives ∂L
∂xi

= 0, i = 1, 2, 3, and

we get the equations below:

x2 + x3 + λ = 0 (13)

x1 + x3 + λ = 0 (14)

x1 + x2 + λ = 0 (15)

and we also have the constraint:

x1 + x2 + x3 = 3 (16)

Solving the 4× 4 system of equations, we have:

x∗
1 = 1, x∗

2 = 1, x∗
3 = 1, λ = −2

For the objective function f(x), we get the gradient vector:

∇f(x) =





x2 + x3

x1 + x3

x1 + x2




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The Hessian matrix is:

F (x) =





0 1 1
1 0 1
1 1 0





and does not depend on x. The Hessian matrix for the con-

straint h(x) = x1 + x2 + x3 − 3 is:

H(x) =





0 0 0
0 0 0
0 0 0





Thus,

Λ(x∗, λ) = F (x∗) + λH(x∗) =





0 1 1
1 0 1
1 1 0





since H(x∗) = 0. Now, we don’t know whether the Hessian

matrix is positive- or negative- definite in R
3. As a result,we

cannot claim if ∀y ∈ R
3 : yTΛy is a positive or negative

quantity. But, we take into account the precise formulation of

the sufficient condition, which states that the Hessian should

be positive-definite (negative-definite) on the tangent plane to

the surface defined by the constraints, so as to have local mini-

mum (local maximum) in the problem. The tangent plane to the

surface defined by the (one and only) constraint in the problem,

h(x) = 0 ⇒ x1 + x2 + x3 − 3 = 0
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is

M = {
(
y1 y2 y3

)
: ∇h(x)Ty = 0}

= {y :
(
1 1 1

)





y1
y2
y3



 = 0} ⇒

and finally

M = { (y1, y2, y3) : y1 + y2 + y3 = 0} (17)

We examine if the Hessian matrix is positive- or negative-definite

at the tangent planeM. We have

yTΛy =
(
y1 y2 y3

)





0 1 1
1 0 1
1 1 0









y1
y2
y3





= y1(y2 + y3) + y2(y1 + y3) + y3(y1 + y2)

We have:

y2 + y3 = −y1, y1 + y3 = −y2, y1 + y2 = −y3

and thus yTΛy = −y21 − y22 − y23 ≤ 0. Thus, the Hessian

matrix is negative-definite and x∗ = (1, 1, 1) that was found

above is local maximum to the problem.

21



2.3.3 Example 3

Consider the problem

max
xTQx

xTPx
(18)

with matrix Q = QT ≥ 0 and P = PT > 0 (Q,P are

symmetric and positive-definite matrices).

In the problem above, if x is an optimal solution, then all

multiples ax, a 6= 0, a ∈ R are optimal solutions too. In order

to avoid the multiplicity of solutions, we set xTPx = 1 and we

get the constrained problem:

maxxTQx

subject to: xTPx = 1

The Lagrangian function is:

L(x, λ) = xTQx+ λ(1− xTPx) (19)

and by the condition∇L(x, λ) = 0

⇒ 2Qx − 2λPx = 0 ⇒ Qx = λPx ⇒ P−1Qx =
λx.

From the above, we observe that if x is a solution and max-

imizes xTQx then it is an eigenvector which corresponds to

some eigenvalue λ of matrix P−1Q.

Thus, suppose that x∗ is optimal solution, then we have:

x∗TPx∗ = 1

22



and then

P−1Qx∗ = λ∗x∗ ⇒ PP−1Qx∗ = λ∗Px∗ ⇒
Qx∗ = λ∗Px∗ ⇒ x∗TQx∗ = λ∗x∗TPx∗ ⇒
λ∗ = x∗TQx∗

where λ∗ is the Lagrange multiplier at the optimal solution.

Note that λ∗ must be one of the n eigenvalues of P−1Q,

which are λ1 < λ2 < ... < λn). In particular, λ∗ is the

maximum eigenvalue of matrix P−1Q and the optimal solu-

tion x∗ is the eigenvector which corresponds to the maximum

eigenvalue λ∗ of P−1Q.

2.3.4 Example 4

Solve the problem

min cTx, (20)

subject to:
n∑

i=1

xi = 0 and

n∑

i=1

x2
i = 1 (21)

Solution:

x∗
i =

ci + λ∗

µ∗
, (22)
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with

λ∗ = −
1

n

n∑

i=1

ci, and µ∗ = ±
1

2
n2

√
√
√
√

1

n

n∑

i=1

c2i −
1

n
(−nλ∗)

2

(23)

3 Interpretation of Lagrange multipliers

Consider again the NLP problem with one equality constraint,

min f(x)
s.t. h(x) = 0

Letλ be the Lagrange multiplier corresponding to the one equal-

ity constraint. Assume a small variation c in the right-hand side

of the constraint. Note that, as in the LP case, the constraint

often specifies requirements in resources. Letx∗(0) be the op-

timal solution to the problem by having the constraint h(x) =
0 and the value of the objective function is f(x∗(0)). Let

x∗(c) be the optimal solution by having the constraint h(x) =
c , c ∈ R, and let the corresponding value of the objective

function be f(x∗(c)).
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We calculate the rate of change of the value of the objective

function for small variations of the constraints,

df(x(c))

dc
=

∂f(x(c))

∂x1

dx1(c)

dc
+ . . .+

∂f(x(c))

∂xn

dxn(c)

dc

= ∇f(x(c)Tx′(c) (24)

where x′(c) is the vector of derivatives

(dx1(c)/dc, . . . , dxn(c)/dc).
From the first-order conditions we have

∇f(x(c)) + λ∇h(x(c)) = 0⇒

∂f(x(c))

∂xi

+ λ∇
∂h(x(c))

∂xi

= 0 for i = 1, . . . ,m⇒

∂f(x(c))

∂xi

= −λ
∂h(x(c))

∂xi

for i = 1, . . . ,m.

We substitute in the equation above and we have:

df(x(c))

dc
=

= −λ

(
∂h(x(c))

∂x1

dx1(c)

dc
+ . . .+

∂h(x(c))

∂xn

dxn(c)

dc

)

⇒
df(x(c))

dc
= −λ (25)
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since if we differentiate both sides of the constraint h(x) = c
with respect to c, we get that

∂h(x(c))

∂x1

dx1(c)

dc
+ . . .+

∂h(x(c))

∂xn

dxn(c)

dc
= 1 (26)

Therefore, λ is interpreted as the rate of change in the value of

the objective function per unit of change in the resources. Thus

it represents the price of the unit of constraint requirement.

Note 1: If a small variation of a contraint causes decrease

in the objective’s value,then λ is positive for this specific cos-

traint. Respectively, if it causes increase in the objective’s value,

then λ is negative for this specific costraint.

Note 2: Remember that we did the interpretation of La-

grange multipliers in LP problem in the same spirit, where we

had prove that ∆z
∆b

= λ.

3.1 Sensitivity analysis for m > 1 constraints

Consider the NLP problem with more than one constraints:

min f(x)
s.t. h1(x) = 0, . . . ,hm(x) = 0.

Note that all constraints can be collectively described by vec-

tor h(x) = 0. Let λ be the vector of Lagrange multipliers

associated with the constraints.
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Now let c ∈ R
m denote a vector of small changes in the

right-hand sides of the constraints. Similarly with the case of

one constraint, we can define x(0) the optimal solution for

constraints h(x) = 0 and x(c) the optimal solution for con-

straints h(x) = c. By following the methodology for the case

of one constraint, we can prove:

∇cf(x(c)) = −λ⇒







∂f(x(c))
∂c1

...
∂f(x(c))

∂cn







=






−λ1

...

−λn






where

λi =
∂f(x(c))

∂ci
(27)

is again the price per unit of the resource i, or equivalently the

rate of the of the value of the objective function with regard to

small changes in the resource (constraint) i.

4 Beamforming

4.1 Starting from an example

We continue on the topic of Non-linear programming problems

with equality constraints and we will solve the problem:

minxTAx
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s.t. cTx = 1

where x = (x1, . . . , xn), c = (c1, . . . , cn) and A is a ma-

trix of dimension n×n. Let λ be the Lagrange multiplier asso-

ciated with the constraint of the problem. Thus the Lagrangian

is,

L(x, λ) = xTAx+ λ(cTx− 1) (28)

We use the conditions∇xL(x, λ) = 0 ⇔ ∂L
∂xi

= 0 and we

have:

∇xL(x, λ) = 0⇒ 2Ax+ λc = 0⇒ x∗ = −
1

2
λA−1c.

Now, we use the constraint cTx = 1 to find the value of the

Lagrange multiplier λ.

cTx = 1⇔ −
1

2
λcTA−1c = 1⇔ λ =

−2

cTA−1c

Thus, the optimal soluton is

x∗ =
A−1c

cTA−1c
(29)

As an application of this optimization problem, we will study the

fundamental problem that arises in the case of beam-forming.

4.2 Beamforming Basics

In the case that we do not have a single omni-directional an-

tenna but an array of omni-directional antennas, we can adapt
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Figure 3: Different shapes of the antenna array radiation dia-

gram as a result of controlling the electric current phases and

amplitudes.
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the radiation diagram by changing the amplitudes and phases

of the alternate electric currents that feed the antenna. Thus,

for example, for an antenna array of M elements, the radia-

tion diagram (namely the width and length of the main lobe and

the angle of the lobe) is a function of of the complex numbers

{Iie
jφi}

M

i=1, where Ii is the amplitude and φi is the phase

of the alternate current which stimulate the antenna element

i. Thus, we can control the radiation diagram and dynamically

change the shape and form and make diagrams like the ones

depicted in figure 3 Note that in the radiation diagram, most of

the transmission power is concentrated towards a given direc-

tion, that of the main lobe. There also exist several side lobes

as well.

An antenna array of controllable radiation diagram is called

adaptive antenna array or smart antenna and the control of the

radiation diagram is called beam-forming. Clearly, the radia-

tion diagram can be controlled either in order to transmit or to

receive a signal. A smart antenna can adapt its radiation dia-

gram according e.g. to the instantaneous position of the user.

The following advantages exist for an adaptive antenna array:

1. Minimization of interference. Beam-forming can take

place either in the reception or in transmission. We can

shape the diagram in such a way that we can transmit

or receive from a certain direction, that specified by the

main lobe. For reception, the antenna array can receive

signals only emitted from certain directions and atten-
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uate signals emitted from other directions. The same

holds for transmission.

2. Capacity increase. A transmitter can transmit at the

same conventional channel (frequency or timeslot) to

more than one users. Also, the same holds for the case

of reception. In that case, a different radiation diagram is

formed for each user. Clearly, there exists a M -fold in-

crease in system capacity if the antenna array can serve

at the same channel M users simultaneously (in the

same frequency and time slot).

If we have M antenna elements in the antenna array, there

can be k ≤ M radiation diagrams, one for each user. For

simplicity assume that M = 2 here. The antenna can form

at most two radiation diagrams and each diagram corresponds

to a complex vector w1 = (w11, w12) where w11 = I1e
jφ1

and w12 = I2e
jφ2 , and w2 = (w21, w22), defined similarly.

The two vectors define the two radiation diagrams (basically the

main lobes) and each radiation diagram can serve one user (if

w1 and w2 are linearly independent, the antenna array can

serve simultaneously both users). Each radiation diagram cor-

responds to a vector with dimension equal to the number of

antenna elements.

We will now assume that the vectors are real numbers and

we will not further worry about complex numbers. Still, the the-

ory can be extended to cover the complex number case. We
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will also concentrate on the case where the signal of several

users is received at a base station and the base station will at-

tempt to discriminate the signal of only one user (the one of

interest) by computing the beam-forming vector w.

The main signal processing segment at the receiver is the

adaptive beamformer (Figure 2 ). The adaptive beamformer

finds vectorw. Its task is to findM numbers (w1, . . . , wM ) =
w. The signal yi that has reached the i-th antenna is multiplied

bywi. Then we have to sum the above products to find the inte-

rior product wTy = w1y1+ . . . wMyM as the total outcome

of combining all received signals at antennas by an appropri-

ate number. That is, the output from each array element i is

weighted by a weight wi and added. The objective is to search

for the wi’s such that the Signal-to-Noise Ratio (SNR) of the

signal of the user of interest is maximized. The SNR is taken at

the output, after the summation in figure 2.

We define the antenna array response vector to the direc-

tion of arrival θ as v(θ) = (vi(θ), . . . , vM (θ)) that shows

how each antenna receives a signal coming from an angle θ.

The received signal (vector signal) at the M antennas at some

frozen time t is

y(t) =

K∑

j=1

√

PjGj

L∑

ℓ=1

ajvj(θℓ)sj(t− τj) + n(t)

where:

K : number of users.
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Pj : transmission power of the user j
Gj : path gain (denoting the distance loss) between user j and

the BS. It is given by Gj = 1
d
γ

j

, where dj is the distance from

user j to the BS and γ is a constant that depends on the envi-

ronment.

L: The number of paths of the multi-path (assume each user

has its signal arriving through L paths).

Each of these (user j) paths has:

αℓ
j : Attenuation factor of path ℓ of user j because of shadow-

ing (this is a random number, usually log-normally distributed).

θℓ: angle of arrival of ℓ-th path.

vj(θℓ): Response vector of the antenna to a signal which is

sent from user j and comes from path angle θℓ.

sj : the transmitted signal of user j.

τj : Signal delay for the signal of user j.

n(t): A vector that indicates noise at the receiver in each an-

tenna.

Each user j can be completely specified by a vector called

spatial signature of user j,

aj =
L∑

ℓ=1

αℓ
jvj(θℓ). (30)

As we can see, the spatial signature depends on

• position of user i,
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• number of paths,

• direction of arrival (DoA) of each path,

• shadowing coefficient of each path.

Thus, we have:

y(t) =

k∑

j=1

√

PjGjajsj(t− τj) + n(t)

Let the transmitted signal sj by user j be represented as:

sj(t) =
∑

n

bj(n)g(t− nT )

where,

g(·): pulse shaping filter function, specifying the shape of the

pulse on which the bits will be carried.

T : The symbol time.

{bj(n)}, n = 1, . . . ,: the sequence of bits.

At the receiver, we have the matched filter receiver (matched to

the pulse shaping filter function of the transmitter) that is given

by g(t) = g∗(−t). The output of the matched filter is sampled

at discrete times t = nT (once in a symbol time) and we have

the received discrete-time signal at the output of the matched

filter as

y(n) = y(t) ∗ g∗(−t)|t=nT
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Convolution of the received signal with the matched filter and

sampling at t = nT, n = 1, . . . is equivalent to operation

∫ nT

(n−1)T

∑

n

b(n)g(t− nT )g∗dt = b(n)

The receiver calculates the above integral in each symbol time

interval. Thus, the signal from continuous-time becomes discrete-

time:

y(n) =

K∑

j=1

√

PjGjajbj(n) + n(n)

The expected power of the output signal after the beamforming

and the multiplication with factors wi is,

E[e2] = E

[

|wTy|
2
]

= E
[
wTyyTw

]
= wT

E[yyT

︸︷︷︸

A

]w

Matrix A is of dimension M ×M and each element Aij =
E[yiyj ] shows the correlation between received signals at an-

tennas i and j. We can see from the relation above that

A =

K∑

j=1

PjGjaja
T
j + σ2I

under the assumptions that user signals are zero-mean

(E[|bi(n)|] = 0), different user signals are uncorrelated (E[bi(n)bj(n

37



0, for i 6= j), user signals are unit-power (E[|b2i (n)|] = 1).

Also each random variable representing noise at each antenna

is Gaussian with zero mean and variance σ2, and the noise

variables at different antennas are uncorrelated:

E[ninj ] =

{
0 ,if i 6= j
σ2 , if i = j

The base station receives data from all K users and needs

to calculate the beam-forming vector w to distinguish the sig-

nal of a user i. We can write the matrix A as consisting of

two parts, one concerning the user of interest i and another

concerning all other users (which is essentially interference),

A = PiGiaia
T
i

︸ ︷︷ ︸

Ai

+
∑

j 6=i

PjGjaja
T
j + σ2I

︸ ︷︷ ︸

Aint

Thus, we have:

E[wTAw] = wT (PiGiaia
T
i +Aint)w = wTAintw+PiGi‖w

T

The expected signal power at the output comprises the sig-

nal power that originates from user i and the power that orig-

inates from all other users. Thus, we have for the signal-to-

interference and noise ratio:

SINRi =
PjGj‖w

Tai‖
2

wTAintw
,
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The receiver wants to find the vector w to maximize SINRi, so

it faces the problem:

max
w

SINRi = min
w

wTAintw

PjGj‖wTai‖
2

This is equivalent to maintainingwTai = 1 (fixed) at the direc-

tion of the user of interest and trying to minimize interference.

Thus, the problem becomes:

min
w

wTAintw

subject to: wTai = 1

From the solution of the problem in the beginning of the lecture,

we find that the optimal beam-forming vector w∗ is:

w∗ =
A−1

int ai

aTi A
−1
int ai
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5 NLP problems with inequality constraints

In previous lectures, we studied non-linear programming prob-

lems with equality constraints. We will now generalize the the-

ory to problems which also have inequality constraints. Namely,

we will consider problems of the form:

min f(x) (31)

subject to:

hi(x) = 0, i = 1, ...,m, and gj(x) ≤ 0, j = 1, ..., p.
(32)

A point x0 is called feasible if it satisfies all constraints,

namely it is hi(x0) = 0, i = 1, ...,m and gj(x0) ≤ 0, j =
1, ..., p.

An inequality constraint gj(·) is called active at point x0 if

it is satisfied with equality, namely it is gj(x0) = 0, otherwise

it is called inactive.

Let J (x0) be set of indices of inequality constraints that

are active at point x0. A point x0 is called regular point of

the constraints if the vectors∇hi(x0), for i = 1, . . . ,m and

∇gj(x0) for j ∈ J (x0) are linearly independent.
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6 Necerrary and Sufficient Conditions

6.1 First-order Necessary Conditions for exis-
tence of local minimum

Define the Lagrangian function at point x, as

L(x,λ,µ) = f(x) +

m∑

i=1

λihi(x) +

p
∑

j=1

µjgj(x) (33)

where λi, i = 1, . . . ,m are the Lagrange multipliers corre-

sponding to the equality constraints and µj , j = 1, . . . , p are

the Karush-Kuhn-Tucker (KKT) multipliers corresponding to in-

equality constraints gj(x) ≤ 0.

6.1.1 Karush-Kuhn-Tucker (KKT) theorem

Suppose that x∗ is a regular point of constraints hi(x) =
0, i = 1, ...,m and gj(x) ≤ 0, j = 1, ..., p. If x∗ is

a local minimum of f(x) subject to the constraints hi(x) =
0, i = 1, ...,m and gj(x) ≤ 0, j = 1, ..., p, then there

exist vectors λ∗ ∈ R
m and µ∗ ∈ Rp

+ (µ∗ ≥ 0) such that:

∇L(x, λ∗, µ∗) = (34)

∇f(x∗) +

m∑

i=1

λi
∗∇hi(x

∗) +

p
∑

j=1

µj
∗∇gj(x

∗) = 0
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and

p
∑

i=1

µj
∗gj(x

∗) = 0 (35)

Note that in the second equation above, since µj
∗ ≥ 0 and

g(x∗) ≤ 0, the fact that
∑p

i=1 µj
∗gj(x

∗) = 0 means that

each term of the summation, µj
∗gj(x

∗) = 0.

This further means the following:

• if the j-th KKT multiplier is µj
∗ > 0, then the

corresponding constraint gj(x
∗) = 0, i.e it is met with

equality at the optimal solution x∗.

• Also, if a constraint is satisfied with strict inequality at the

optimal solution, i.e gj(x
∗) < 0 then the corresponding

KKT multiplier µj
∗ = 0 and thus it doesn’t affects the

Langrancian function.

These conditions are reminiscent of complementary slack-
ness ones we saw at Linear Programming.

6.1.2 Graphical interpretation of KKT theorem

Consider the problem of minimizing function x subject to three

inequality constraints g1(x) ≤ 0, g2(x) ≤ 0 and g3(x) ≤ 0.
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Figure 6: Graphical representation of the KKT theorem.

Each of the inequality constraints defines a subspace that

is located on the one side of the curve gj(x) = 0.

Assume that at the optimal point, x∗, we have that the ac-

tive constraints are the first and the second, i.e it is g1(x
∗) = 0

and g2(x
∗) = 0, while the third one is inactive, g3(x

∗) < 0.

This case is depicted in figure 6.

The KKT theorem states that ifx∗ is local minimum of f(·),

43



subject to the constraints gj(·) ≤ 0, j = 1, 2, 3, then:

∇f(x∗) + µ1∇g1(x
∗) + µ2∇g2(x

∗) + µ3∇g3(x
∗) = 0

(36)

Since g3(x
∗) < 0 (inactive)−→ µ3 = 0 and we have

∇f(x∗) = −µ1∇g1(x
∗)− µ2∇g2(x

∗) (37)

that is, the gradient of f at point x∗ is linear combination of the

gradients of the active constraints at x∗.

6.1.3 Example

Consider the problem

min 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2 (38)

subject to:

x2
1 + x2

2 ≤ 5, and 3x1 + x2 ≤ 6 (39)

The Lagrangian is:

L(x1, x2, µ1, µ2) = 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2

+µ1(x
2
1 + x2

2 − 5)

+µ2(3x1 + x2 − 6)

From the KKT theorem, we have that if (x∗
1, x

∗
2) is local mini-

mum, then
∂L(·)

∂x1
(x∗

1, x
∗
2) = 0 (40)
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∂L(·)

∂x2
(x∗

1, x
∗
2) = 0. (41)

So we get the equalities:

4x1 + 2x2 − 10 + 2µ1x1 + 3µ2 = 0 (42)

2x1 + 2x2 − 10 + 2µ1x2 + µ2 = 0 (43)

Furthermore it is µ1 ≥ 0, µ2 ≥ 0 and also we have the

complementary slackness conditions:

µ1(x
2
1 + x2

2 − 5) = 0 (44)

µ2(3x1 + x2 − 6) = 0 (45)

Then if we want to find a point that satifies the necessary con-

ditions of KKT theorem, we should start by taking cases and try

various combinations of active constraints and check signs of

the resulting KKT multipliers.

Assume that

µ2 = 0 3x1 + x2 − 6 < 0
and that

µ1 > 0 x2
1 + x2

2 − 5 = 0
Then, for the conditions of the partial derivatives, we replace

with µ2 = 0 and we have:

4x1+2x2−10+2µ1x1 = 0 and 2x1+2x2−10+2µ1x2 = 0.
(46)

45



Also, since µ1 > 0, the first constraint holds with equality,

x2
1 + x2

2 − 5 = 0.

We solve the system of equations and find x∗
1 = 1, x∗

2 =
2, µ∗

1 = 1 and this gives 3x∗
1 + x∗

2 − 6 = −1 < 0 and thus

the second constraint is satified.

Similarly, we can try other cases:

µ1 > 0, µ2 > 0
µ1 = 0, µ2 > 0
µ1 = 0, µ2 = 0.

6.2 Other forms of optimization problems

We saw that when we have the minimization problem

min f(x) (47)

subject to:

hi(x) = 0, i = 1, ...,m and gj(x) ≤ 0, j = 1, ..., p
then we have the condition of the gradient of the Lagrangian

being zero and also µj ≥ 0 for j = 1, . . . , p.

What happens now if we have the problem:

max f(x) (48)

subject to:

hi(x) = 0, i = 1, ...,m and gj(x) ≤ 0, j = 1, ..., p.
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Write the objective as: max f(x) = −min f(x)
subject to:

hi(x) = 0, i = 1, ...,m and gj(x) ≤ 0, j = 1, ..., p.

How will the KKT change? Let us apply the KKT theorem

to the minimization problem of−f(x).

If x∗ is local maximum then

∇xL(x
∗, λ∗, µ∗) = (49)

∇(−f(x∗)) +

m∑

i=1

λi
∗∇hi(x

∗) +

p
∑

j=1

µj
∗∇gj(x

∗) = 0

and also:

µ∗ ≥ 0 (50)

and

µj
∗gj(x) = 0, ∀j (51)

Multiplying with (-):

∇f(x∗)−
m∑

i=1

λi
∗∇hi(x

∗)−

p
∑

j=1

µj
∗∇gj(x

∗) = 0⇒

(52)

47



∇f(x∗) +

m∑

i=1

λi
∗∇hi(x

∗) +

p
∑

j=1

µj
∗∇gj(x

∗)) = 0,

(53)

with µj
∗ ≤ 0.

Thus, ifx∗ is local maximum, thenx∗ satisfies∇L(x∗, λ∗, µ∗) =
0 and now it should be µ∗ ≤ 0.

The condition µj
∗gj(x

∗) = 0 for each j = 1, . . . , p should

also hold.

Now assume we have the problem:

min f(x)

subject to:

hi(x) = 0, i = 1, . . . ,m and gj(x) ≥ 0, j = 1, . . . , p
i.e the inequalities are now reversed.

We multiply with −1, so as to bring the inequality in the usual

form: −gj(x) ≤ 0
Then, the KKT theorem is: If x∗ local minimum of f , then:

∇f(x∗)+

m∑

i=1

λi
∗∇hi(x

∗)+

p
∑

j=1

µj
∗(−gj(x

∗)) = 0⇒

(54)
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∇f(x∗)+

m∑

i=1

λi
∗∇hi(x

∗)−

p
∑

j=1

µj
∗∇gj(x

∗) = 0, µj
∗ ≥ 0

(55)

or

∇f(x∗)+

p
∑

i=1

λi
∗∇hi(x

∗)+

p
∑

j=1

µj
∗∇gj(x

∗) = 0, µj
∗ ≤ 0

(56)

There is also a fourth case that is treated similarly.

In conclusion, we have 4 cases:

i) min f(x)
subject to:

hi(x) = 0, i = 1, ...,m and gj(x) ≤ 0, j = 1, ..., p.

ii) max f(x)
subject to:

hi(x) = 0, i = 1, ...,m and gj(x) ≤ 0, j = 1, ..., p.

iii) min f(x)
subject to:

hi(x) = 0, i = 1, ...,m and gj(x) ≥ 0, j = 1, ..., p.

iv) max f(x)
subject to:

hi(x) = 0, i = 1, ...,m and gj(x) ≥ 0, j = 1, ..., p.

If we write the KKT condition at point x∗, for all 4 cases we
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get that:

∇L(x∗, λ∗, µ) = (57)

∇f(x∗) +

m∑

i=1

λi
∗∇hi(x

∗) +

p
∑

j=1

µj
∗∇gj(x

∗) = 0

and µj
∗gj(x

∗) = 0 for each j = 1, . . . , p.

For each of the 4 cases, we have:

i) µj ≥ 0, j = 1, ..., p.

ii) µj ≤ 0, j = 1, ..., p.

iii) µj ≤ 0, j = 1, ..., p.

iv) µj ≥ 0, j = 1, ..., p.

Example:
Which are the conditions of KKT theorem for the problem be-

low:

min f(x) subject to: x ≥ 0.

Solution

∇f(x∗) ≥ 0

x∗ ≥ 0 and

∑

i

xi

∂f(x∗)

∂xi

= 0. (58)

6.3 Second-order necessary conditions for ex-
istence of local minimum

If x∗ is a regular point of the constraints:
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hi(x
∗) = 0, i = 1, ...,m

gj(x
∗) ≤ 0, j = 1, ..., p

and ifx∗ is local minimum of f subject to the constraints above,

then ∃ λ∗ ∈ R
m, µ∗ ≥ 0 (∈ R

p
+) such that:

i) ∇L(x∗, λ∗, µ∗) = 0

ii) µj
∗gj(x

∗) = 0, j = 1, . . . , p
iii) The Hessian matrix of the Lagrangian function,

Λ(x∗, λ∗, µ∗) = F (x∗)+

m∑

i=1

λi
∗Hi(x

∗)+

p
∑

j=1

µj
∗Gj(x

∗)

(59)

where F (x∗): Hessian matrix of f(x) at x∗,

Hi(x
∗): Hessian matrix of hi(x) at x∗,

Gj(x
∗): Hessian matrix of gj(x) at x∗

is positive semi-definite on the tangent subspace of the active

constraints at x∗.

6.4 Second Order Sufficient Conditions for ex-
istence of local minimum

Consider the problem:

min f(x)

s.t. hi(x) = 0, i = 1, . . . ,m,
gj(x) ≤ 0, j = 1, . . . , p.
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If ∃ λ∗ ∈ Rm, µ∗ ∈ Rp
+, (ie.µ ≥ 0) such that:

∇L(x∗,λ∗,µ∗) = (60)

∇f(x∗) +

m∑

i=1

λi
∗∇hi(x

∗) +

p
∑

j=1

µj
∗∇gj(x

∗) = 0

and

µjgj(x
∗) = 0, j = 1, . . . , p (61)

and

The Hessian matrix of the Lagrangian function,

Λ(x∗,λ∗,µ∗) = f(x∗)+
m∑

i=1

λi
∗Hi(x

∗)+

p
∑

j=1

µj
∗Gj(x

∗) > 0

(62)

is positive-definite on the subspace:

M = {y : ∇hi(x
∗)Ty = 0,∇gj(x

∗)Ty = 0 for j ∈ J (x∗)},
(63)

with J (x∗) = {j : gj(x
∗) = 0, µj

∗ > 0} the set of active

constraints at point x∗. Thus,M is the subspace that is tan-

gent level to the surface of the active constraints

then x∗ is local optimum of function f .

Remark: Note that in our problems, unless otherwise spec-

ified, we will always assume thatM = R
m and thus we will
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not worry about finding an explicit characterization ofM. How-

ever, we will need to show that matrix Λ(·) is positive-definite,

i.e for all y ∈ R
m it is yTΛ y > 0, y 6= 0.

6.5 Second-order Sufficient Conditions for Con-
vex Functions

Consider the problem:

min f(x)

subject to:

hi(x) = 0, i = 1, . . . ,m
gj(x) ≤ 0, j = 1, . . . , p,

with functions f, hi, gj convex, i = 1, . . . ,m and j = 1, . . . , p.

The second-order sufficient conditions for existence of mini-

mum in this case are as follows:

If ∃ x∗,λ∗ ∈ Rm, µ∗ ∈ Rp
+. µ

∗ ≥ 0 such that:

∇L(x∗,λ∗,µ∗) = (64)

∇f(x∗) +

m∑

i=1

λi
∗∇hi(x

∗) +

p
∑

j=1

µj
∗∇gj(x

∗) = 0

and

µj
∗gj(x

∗) = 0, j = 1, . . . , p (65)
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then x∗ is global minimum of function f subject to the con-

straints.

7 Sensitivity analysis

Consider the problem:

min f(x)

s.t. h(x) = 0

g(x) ≤ 0

Note that we have collectively described all equality con-

straints and all inequality constraints with two vectors h(·) and

g(·) respectively. Now, assume we increase the right-hand

side of the constraints (resources) as follows:

h(x) = c

g(x) ≤ d

Let x(0,0) to be the optimal solution to the initial problem

and let x(c,d) be the solution of the problem formed after we

increased the right-hand sides of constraints. Then by following

a similar reasoning as the one in the sensitivity analysis for

problems with equality constraints, we have:

∇cf(x, (c,d)) = −λ
∇df(x, (c,d)) = −µ
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and for the i-th Lagrange multiplier we have:

λi = −
∂f(x(c,d))

∂ci






(c,d)=(0,0)

namely λi is the rate of change of the objective function with

respect to a unit of change in the i-th equality constraint, i.e it

is the derivative of the cost function with respect to the

quantity ci that the i-th equality constraint changes.

For the j-th KKT multiplier we have:

µj = −
∂f(x(c,d))

∂dj






(c,d)=(0,0)

namely µj is the rate of change of the objective function with

respect to a unit of change in the j-th inequality constraint, i.e

it is the derivative of the cost function with respect to the

quantity dj that the j-th inequality constraint changes.

Thus, λi, µj can be interpreted as price per unit of the corre-

sponding resource that is described by the i-th equality or the

j-th inequality constraint.

7.1 Problem

Consider the problem

minf(x1, x2) = (x1− 1)2 + x2 − 2

subject to: h(x) = x2 − x1 − 1 = 0 (λ)
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g(x) = x1 + x2 − 2 ≤ 0 (µ ≥ 0)

We define one Lagrange multiplier λ for the equality con-

straint and one KKT multiplier µ for the inequality constraint.

We define the Lagrangian function and we consider:

∇L(x1, x2, λ, µ) = 0⇒

{
∂L(·)
∂x1

= 0
∂L(·)
∂x2

= 0

and also we have the condition:

µ(x1 + x2 − 2) = 0
µ ≥ 0

We have the following two cases:

a) µ > 0⇒ x1 + x2 − 2 = 0
Thus, using the 4 equations we compute x∗

1 = 1/2, x∗
2 =

3/2, λ∗ = −1, µ∗ = 0 and we confirm whether µ >
0 is satisfied. Since µ = 0 we arrive at paradox so this

is not the case, and we proceed to the next case.

b) µ = 0⇒ x1 + x2 − 2 < 0
Thus, using the 3 equations we compute x∗

1 = 1/2, x∗
2 =

3/2, λ∗ = −1 and we confirm whether (x∗
1, x

∗
2) feasi-

ble. It turns out that this is the case, and thus (x∗
1, x

∗
2)

is the optimal solution to the problem with

f(x∗
1, x

∗
2) =

3
4 .
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Note that if both cases produced a feasible solution, then

the optimal would be the one that minimizes the objective’s

value. Also, observe that we didn’t use the second order con-

dition because the primal function is convex and thus Hessian

matrix is, without doubt, positive-definite.

8 The water-filling algorithm

As an example of an optimization problem with equality and

inequality constraints, we will consider a problem that arises in

various resource allocation instances. Consider a transmitter

that has at its disposalN orthogonal channels for transmission.

The transmitter has a total amount of power P , assume that

P = 1 without loss of generality.

The transmission rate (capacity) Ci for a channel i is given

by Ci = log2(1 +
Pi

Ni
), where Pi is transmission power as-

signed to channel i and Ni is the noise power (noise variance)

of channel i, i = 1, . . . , N .

The objective is to allocate (split) the available power across

channels so as to maximize total achieved capacity in all chan-

nels. This problem arises in OFDM systems in which the trans-

mitter transmits in parallel using N sub-carrier frequencies.

Also, the capacity can be viewed as a special case of a utility

function U(·). The utility function U(x) measures the amount

of satisfaction of a user or consumer if an amount x of good

(power, bandwidth, etc) is allocated to it. Here, obviously the
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resource is the power and the capacity is the derived utility.

The problem can be formulated as follows:

max

N∑

i=1

log2

(

1 +
Pi

Ni

)

subject to:

N∑

i=1

Pi = 1, Pi ≥ 0, i = 1, . . . , N. (66)

Note that in the most general case of utility function, we have

the optimization problem of distributing a total amount of good

W across users or consumers so as to maximize total utility

max

N∑

i=1

Ui(xi)

subject to
N∑

i=1

xi = W, and xi ≥ 0, (67)

where Ui(·) is the utility function of user i.
Now, the capacity maximization problem we are dealing with

can be written equivalently as

min−

N∑

i=1

log

(

1 +
Pi

Ni

)
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subject to
N∑

i=1

Pi = 1 (68)

and

−Pi ≤ 0, i = 1, . . . , N (69)

Define a Lagrange multiplier λ for the equality constraint and

a KKT multiplier µi ≥ 0 for each inequality constraint i =
1, . . . , N . Note also that in the above formulation we have

omitted for simplicity the base 2 of the logarithm.

The initial problem is actually case 4 of the four cases we

considered in the previous lecture, while the transformed one

is of the form of case 1. Both are equivalent. The Lagrangian

function is,

L(P, λ,µ) = (70)

−

N∑

i=1

log

(

1 +
Pi

Ni

)

+ λ

(
N∑

i=1

Pi − 1

)

+

N∑

i=1

µi(−Pi)

= −

N∑

i=1

log

(

1 +
Pi

Ni

)

+ λ

(
N∑

i=1

Pi − 1

)

−

N∑

i=1

µiPi

59



We apply KKT conditions to solve the problem:

∇PL(P, λ,µ) = 0 ⇒
∂L(P, λ,µ)

∂Pi

= 0 (71)

⇒ −
1

1 +
Pi

Ni

1

Ni

+ λ− µi = 0 ∀ i

and

µiPi = 0, ∀ i (72)

and we also have: Pi ≥ 0,
∑N

i=1 Pi = 1 and µi ≥ 0,

i = 1, . . . , N .

We solve equation (71) for µi:

µi = λ−
1

Pi +Ni

(73)

and substitute in µiPi = 0 to get:

(

λ−
1

Pi +Ni

)

Pi = 0 (74)

We distinguish three cases:

i) Pi > 0 and
(

λ− 1
Pi+Ni

)

Pi = 0. Then,

λ =
1

Pi +Ni

⇒ Pi =
1

λ
−Ni (75)
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However, since we do not know λ, we do not know the

sign of 1
λ
− Ni, and we can say that if 1

λ
> Ni ⇒

Pi =
1
λ
−Ni, since it has to be Pi ≥ 0.

ii)
(

λ− 1
Pi+Ni

)

> 0 and Pi = 0. Then,

Pi = 0 if
1

λ
< Ni (76)

iii) 1
λ
= Ni. Then,

(
1

Ni

−
1

Pi +Ni

)

Pi = 0⇒ (77)

Pi +Ni −Ni

(Pi +Ni)Ni

Pi = 0⇒ Pi = 0 (78)

Thus in conclusion we have:

P ∗
i =

{
1
λ∗
−Ni, if

1

λ∗
> Ni

0, if 1
λ∗
≤ Ni

or equivalently,

P ∗
i =

(
1

λ∗
−Ni

)+

= max

(

0,
1

λ∗
−Ni

)

(79)

with x+ =

{
x , if x > 0
0 , if x ≤ 0

61



From the form of the solution above, we can see that the

quantity 1
λ∗

is common for all channels and resembles a kind

of ”water-level”. Note that the better quality the channel is (the

smaller the noise power), the more power is allocated to it.

Also, the more noisy the channel, the less the power that is

allocated to it. If the channel is ”too noisy”, i.e the noise power

exceeds a certain power, then it is better from a capacity point

of view not to allocate any power in the channel.

1 2 3 N

N1 N2 N3 NN

P1 PNP2

1

λ∗

Figure 7: Water-filling algorithm with different amount of power

Pi allocated to each channel i.

62



The result of water-filling can be seen in figure 7. In order to

compute λ, one could argue that the constraint
∑N

i=1 P
∗
i = 1

could be used, or
∑N

i=1

(
1
λ∗
−Ni

)+
= 1. However, it is

not possible to solve the equation with regard to λ analytically,

since we do not know in advance whether in different channels

i the quantity 1
λ∗
−Ni will be positive or negative.

Instead, we use a simple algorithm. Each column repre-

sents a channel and the height of each column reflects the

noise. There are N channels that are differentiated due to dif-

ferent noise level. Also the quantity 1
λ∗

as we said is common

for all channels.

We divide available power P = 1 into small quantities ǫ.
We start allocating power in small quantities ǫ to the channel i1
with the best quality (the less noise power Ni1 ) until we reach

the level of a channel i2 of the second best quality, i.e second

smallest N . From that point, we assign power ǫ to each of

channels i1, i2 until we reach channel i3 with the third best

quality (third smallest N ). Then we allocate power ǫ to these

three channels. We continue in that fashion until we exhaust

the available power. The point where we exhaust the power

defines the final water level 1
λ∗

. The procedure is shown in

figure 8.
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1 2 3

N1 N2 N3

1

λ∗

4

N4

Figure 8: Successive power allocation in water-filling.

9 Lagrangian Duality in NLP

9.1 The Lagrangian

We consider an optimization problem (P) in the form:

min f(x)
s.t. hi(x) = 0, i = 1, . . . , p

gj(x) ≤ 0, j = 1, . . . ,m
(80)
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Ω =

{
x : hi(x) = 0, i = 1, . . . , p

gj(x) ≤ 0, j = 1, . . . ,m

}

with variable x ∈ Ω.

In Lagrangian duality, we start by writing the Lagrangian:

L(x, λ, µ) = f(x) +

m∑

i=1

λihi(x) +

p
∑

j=1

µjgj(x) (81)

We refer to λi as the KKT multiplier associated with the i th

inequality constraint fi(x) ≤ 0; similarly we refer to µi as the

Lagrange multiplier associated with the i th equality constraint

hi(x) = 0. Vectors λ and µ are called the dual variable

vectors associated with the problem (P). We may call both kinds

of variables Lagrangian variables.

9.2 The Lagrangian dual function

We define the Lagrange dual function lD as the minimum value

of the Lagrangian over x. That is, for λ ∈ Rm, µ ∈ Rp,

lD(λ, µ) = min
x∈Ω

L(x, λ, µ) (82)

= min
x∈Ω
{f(x) +

m∑

i=1

λihi(x) +

p
∑

j=1

µjgj(x)}
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9.3 Lower bounds on optimal value

The Lagrangian dual function yields lower bounds on the opti-

mal value f(x∗) of the problem (P): For any λ ≥ 0 and any µ
we have

lD(λ, µ) ≤ f(x∗). (83)

Supposex0 is a feasible point for the problem (1), i.e., hi(x) =
0, gj(x) ≤ 0, and λ ≥ 0. Then we have

m∑

i=1

λihi(x0) +

p
∑

j=1

µjgj(x0) ≤ 0 (84)

since each term in the first sum is zero, and each term in the

second sum is non-positive, and therefore

L(x0, λ, µ) = f(x0)+

m∑

i=1

λihi(x0)+

p
∑

j=1

µjgj(x0) ≤ f(x0)

(85)

Note that in the second sum, we have that each term is non-

positive, since µj ≥ 0 and gj(x0) ≤ 0. Thus,

lD(λ, µ) = min
x∈Ω

L(x, λ, µ) ≤ L(x0, λ, µ) ≤ f(x0)

(86)

So ∀ x0 which is feasible, lD(λ, µ) ≤ f(x0) ≤ f(x∗), and

(83) holds.
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9.4 Lagrangian dual problem

We saw from inequality (83), that we can get a lower bound

from lD on the optimal value of the objective function for each

pair (λ,µ) with µ ≥ 0. The next natural question is to find the

best lower bound that can be obtained by the Lagrangian dual

function. This brings us to the formulation of the Lagrangian

dual problem (LD), which is given as:

max lD(λ,µ)
s.t. µ ≥ 0.

(87)

There are two main reasons why we prefer to solve (LD) prob-

lem instead of the original one (P). The first reason is because

it may be easier to solve (LD) since it has fewer constraints,

and second and most important, because lD(λ,µ) is always

concave, independently of the original (P). This last claim can

be shown by the following line of thoughts:

Consider functions of one variable for simplicity. First we

need to show that if f1(x), f2(x) are concave functions, then

f(x) = min {f1(x), f2(x)} is also concave.

We know that a function is concave when:

f(ϑx+ (1− ϑ)y) ≥ ϑf(x) + (1− ϑ)f(y).
In our case:
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f(ϑx+ (1− ϑ)y) =

min {f1(ϑx+ (1− ϑ)y), f2(ϑx+ (1− ϑ)y)} ≥

min {ϑf1(x) + (1− ϑ)f1(y), ϑf2(x) + (1− ϑ)f2(y)} ≥

ϑmin {f1(x), f2(x)} + (1− ϑ)min {f1(y), f2(y)} =

ϑf(x) + (1− ϑ)f(y)

The above result can be extended for more functions

f1(x), f2(x), . . . , fn(x) and is also valid for convex func-

tions f1(·), f2(·), if min is substituted by max. Namely, we

can show that if f1(·), f2(·) are convex, thenmax {f1(·), f2(·)}
is a convex function.

So from the (LD) problem we see that

lD(λ,µ) = min
x
{ linear functions of λ and µ}. Since we

know that all linear functions can be considered to be concave,

the proof is completed.

9.5 Week Duality

The optimal value of the Lagrangian dual problem (LD), which

we denote d∗ = lD(λ∗,µ∗), is, by definition, the best lower

bound on p∗ = f(x∗), which is the optimal value of primal

problem (P). In particular, we have the important inequality:

d∗ ≤ p∗. (88)
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This property is called Weak Duality Lemma and can be shown

as follows:

f(x) ≥ p∗ (89)

where

p∗ = min
x∈Ω

f(x)

≥ min
x∈Ω
{f(x) +

m∑

i=1

λihi(x) +

p
∑

j=1

µjgj(x)} = lD(λ, µ)

⇒ f(x) ≥ p∗ ≥ lD(λ,µ) ∀λ,µ (90)

⇒ f(x) ≥ p∗ ≥ lD(λ∗,µ∗) = d∗ (91)

The weak duality inequality (88) holds even if d∗ and p∗ are

infinite. If the primal problem (P) is unbounded from below, so

that p∗ = −∞, we must have d∗ = −∞, i.e., the Lagrange

dual problem is infeasible. Conversely, if the dual problem (LD)

is unbounded from above, so that d∗ = ∞, we must have

p∗ =∞, i.e., the primal problem is infeasible.

We refer to the difference p∗ − d∗ as the optimal duality

gap of the original problem, since it gives the gap between the

optimal value of the primal problem and the best i.e. greatest

lower bound on it that can be obtained from the Lagrangian

dual function. The optimal duality gap is always non-negative.
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9.6 Strong Duality

If the equality

d∗ = p∗ (92)

holds, i.e., the optimal duality gap is zero, then we say that

strong duality holds. This means that the best bound that can

be obtained from the Lagrange dual function is tight.

Strong duality does not, in general, hold. But if the primal

problem (P) is convex, i.e., of the form

minimize f(x)
s.t. gj(x) ≤ 0, j = 1, . . . ,m

Ax = b

(93)

with functions f(·), g1(·), . . . , gm(·) convex, we usually (but

not always) have strong duality. There are many results that

establish conditions on the problem, beyond convexity, under

which strong duality holds. These conditions are called con-

straint qualifications.

One such simple constraint qualification is Slater’s condi-

tion. The condition says:

if there exists x ∈ Ω such that

gj(x) ≤ 0, j = 1, . . . ,m, Ax = b (94)

then we have strong duality.

Note that in Linear Programming strong duality always holds.
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9.7 Solving primal problem (P) using Lagrangian
dual (LD)

We transform our primal problem (P) in its Lagrangian dual form

max
λ,µ≥0

lD(λ,µ) (95)

In order to find λ∗, µ∗ we start from an arbitrary λ0 and

µ0 and use the gradient ascent method:

λ(t+1) = λ(t) + α∇λlD(λ(t),µ(t)) (96)

and

µ(t+1) = µ(t) + α∇µlD(λ(t),µ(t)). (97)

If µ < 0 somewhere, then we substitute with 0.

In case lD(λ,µ) is not differentiable, we use the so called

super-gradient method. Then, denote a vector w as the super-

gradient of lD(·) the iteration becomes:

λ(t+1) = λ(t) + α ·w(t) (98)

Also, in the same spirit, we can write the iteration for µ using

the corresponding supergradient.Note that this supergradient

will be different than w.

In general, vector w is called super-gradient of function f
at x0 if and only if:

f(x)− f(x0) ≤ wT (x− x0). (99)
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In our case f(x) ≡ lD(λ,µ), so the above equation be-

comes:

lD(λ,µ)− lD(λ(t),µ) ≤ wT (λ− λ(t)) (100)

Note: In the case that lD is not differentiable, we use

super-gradient only if the search direction is ascent. If search

direction is descent we use the sub-gradient.

These topics are considered advanced and we will not elabo-

rate in them more.

10 Saddle-point interpretation

In this section we give several interpretations of Lagrangian du-

ality.

10.1 Max-min characterization of weak and strong
duality

To simplify the discussion we assume there are no equality con-

straints. The results are easily extended to cover them. First

note that

max
µ≥0

L(x,µ) = max
µ≥0



f(x) +

p
∑

j=1

µjgj(x)



 (101)
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We can express the optimal value of the primal problem as

p∗ = min
x

max
µ≥0

L(x,µ). (102)

By definition of the dual function, we also have

d∗ = max
µ≥0

min
x

L(x,µ). (103)

Thus, weak duality can be expressed as the inequality:

max
µ≥0

min
x

L(x,µ) ≤ min
x

max
µ≥0

L(x,µ) (104)

and strong duality as the equality:

max
µ≥0

min
x

L(x,µ) = min
x

max
µ≥0

L(x,µ) (105)

Strong duality means that the order of the minimization

over x and the maximization over µ ≥ 0 can be switched

without affecting the result.

In fact, the inequality (104) does not depend on any prop-

erties of function L(·), and therefore we have:

max
z∈Z

min
w∈W

f(w, z) ≤ min
w∈W

max
z∈Z

f(w, z) (106)

for any f : Rn ×Rm → R (and anyW ⊆ Rn and Z ⊆
Rm). This general inequality is called the max-min inequality.

When equality holds, i.e.,

max
z∈Z

min
w∈W

f(w, z) = min
w∈W

max
z∈Z

f(w, z) (107)
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we say that f (andW andZ) satisfy the strong max-min prop-

erty or the saddle-point property.

We refer to a pair w0 ∈ W , z0 ∈ Z as a saddle-point of

function f(·) (andW and Z) if

f(w0, z) ≤ f(w0, z0) ≤ f(w, z0) (108)

for all w ∈ W and z ∈ Z .

10.2 Game theory interpretation of saddle point

We can interpret max-min inequality (104) the max-min equal-

ity (105) and the saddle-point property in terms of a zero-sum

game with two players, where each players has a continuous

set of strategies. If the first player (P1) chooses w ∈ W , and

the second player (P2) selects z ∈ Z , then P1 pays an amount

f(w, z) to P2. P1 therefore wants to minimize f , while P2

wants to maximize f . In this case there are certain connec-

tions between the saddle-point of f(·) and the so-called Nash

equilibrium point of the game. If we are at the Nash equilib-

rium, no player can do better by deviating his strategy from that

defined by the equilibrium.
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11 Decomposition theory

11.1 Example : Network pricing

Consider a (wired) network, represented as a directed graph

G = (S,A) where S is the set of network nodes that belong

at the network (|S| is the number of nodes) and A is the set of

links of the network (|A| is the number of links). The capacity

(in bits/sec) of link l ∈ A is defined by cl and shows the max-

imum number of bits per second that can be carried over the

link. We define the variable xs (in bits/sec) as the information

generation rate at every node (source) of the network as well

as the utility function Us(xs), which varies for every node, and

is concave function of xs. Note that every node in the network

can potentially be the information source (and thus belong in

set S). The utility function Us(xs) shows the amount of sat-

isfaction derived by node s if it is allowed to transmit with rate

xs. The utility function is a concave function of xs for each

node and each node may have a different utility function.

We have seen in previous lectures the physical meaning of

a function being concave. It means that the rate of satisfaction

with regard to change in xs is a decreasing function of xs. That

is, the user (node) is satisfied with a higher rate for small values

of xs and this satisfaction rate decreases as we assign more

resources xs to it. The capacity function c(P ) ∼ log(P ) as

a function of the allocated amount of power p is a special case
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of utility function.

Each node could be considered either as:

Source : the more information rate it sends to other nodes of

the network, the more it is satisfied, or

Destination : the more information rate it receives, the more it is

satisfied.

Suppose now a network consisting of many nodes. Our

goal is to maximize the total utility of all nodes in the network,

max
x

S∑

s=1

Us(xs)

by appropriately controlling the information generation rate xs.

The vector of variables x is x = (x1, x2, . . . , x|s|).
Suppose source s ∈ S uses the set of links L(s) in or-

der to transfer the information it produces. Define for each link

l ∈ A as S(l) to be the set of sources that use link l, i.e that

transfer their information through that link. This makes obvi-

ous the first, and essentially the only constraint of our problem

which is the fact that capacity of each link should not be ex-

ceeded, ∑

s:l∈L(s)

xs ≤ cl, l = 1, . . . , |A|

Every source sends its information through specific paths.

The above problem is an optimization problem with inequality

76



constraints, one for each link. In order to find the solution, we

use the Lagrangian function. So we define coefficient λl ≥ 0
as the KKT multipliers that correspond to link l, l = 1, . . . , |A|
and we have:

L(x,λ) =

|S|
∑

s=1

Us(xs) +

|A|
∑

l=1

λl(cl −
∑

s:l∈L(s)

xs)

=

|S|
∑

s=1

Us(xs) +

|A|
∑

l=1

λlcl −

|A|
∑

l=1

λl

∑

s:l∈L(s)

xs

=

|S|
∑

s=1

Us(xs)−

|S|
∑

s=1

|A|
∑

l=1

xsλl +

|A|
∑

l=1

λlcl

=

|S|
∑

s=1



Us(xs)− xs

∑

l∈L(s)

λl



+

|A|
∑

l=1

λlcl

Suppose that the values of λl are known. It is possible for the

global problem to be solved by each source individually, so that

each source s finds the optimal rate as

x∗
s = argmax

xs



Us(xs)− xs

∑

l∈L(s)

λl



 (109)

Hence, the initial global objective is decomposed in that way

into separate optimization problems, one for each source. If
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each source s finds the optimal rate x∗
s , then we have collec-

tively the optimal solution x∗ for the problem.

Now define the Lagrangian dual problem,

lD(λ) = max
x

L(x,λ) =

|S|
∑

s=1

max
xs



Us(xs)− xs

∑

l∈L(s)

λs





The value λl is the price paid by the source s that uses link

l for each unit of flow that it sends through link l. As we see,

the initial maximization decomposes into |S| apart maximiza-

tion problems, one for each source. Each source s solves a

separate problem of maximizing the net benefit, i.e the derived

utility minus the total cost of using the links in set L(s),

max
xs



Us(xs)− xs

∑

l∈L(s)

λl





Each source s can compute the optimal solution, x∗
s as the root

of the equation

dU(xs)

dxs

−
∑

l∈L(s)

λl = 0⇒ x∗
s(λ)

for a given price vector λ.
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The Lagrangian dual problem is:

min
λ≥0

lD(λ) = min
λ≥0





|S|
∑

s=1

Us(x
∗
s)− x∗

s(λ)
∑

l∈L(s)

λl





(110)

In the problem setup, there is a central agent (e.g the network

price controller that is ran by the network operator) that finds

the price of using each link depending on its use and popular-

ity. Thus, it computes different prices λl for each link l. Then, it

adapts the price using the following intuitive rule : whenever a

link is over-used its price has to be increased so as to discour-

age users from using it and thus reduce the link load. On the

other hand, when a link is under-utilized, the price has to be re-

duced so as to make it more attractive to users to transfer their

information through this link. Then, given the certain computed

link price vector λ, each source solves the separate maximiza-

tion problem and finds the amount of traffic x∗
s to send through

each link so as to maximize the net utility. The values of xs are

then sent to the central unit, which solves the Lagrangian dual

problem in order to recalculate the prices.

Since the minimization problem of the Lagrangian dual can-

not be solved analytically, the central entity can perform one

iteration of the gradient descent algorithm to update the link

prices. Thus, the price for link l is updated as follows:

λl(t+ 1) = λl(t)− a
∂lD(λ)

λl

⇒
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λl(t+ 1) =

max






λl(t)− a(cl −

∑

s∈S(l)

x∗
sλ(t)), 0







where a is the step size for the gradient descent algorithm and

we have taken care so that λl does not take negative values.

Note that the equation above arose since

∂lD
∂λl

= cl −
∑

s:l∈L(s)

x∗
s(λ(t)). (111)

It is possible that this sum could overcome the value of cl and

then the central unit must increase the value of price λl(t+1)
at the next iteration. In contrast, when a link is not used very

much, the value of λl(t + 1) decreases in order to make that

link attractive and used by more sources.

11.2 Primal-Dual Algorithm

The Algorithm that takes place is as follows:

1. Start with initial prices λl(0), for l = 1, . . . , |A|.

2. Each source s solves, independently from the other sources,
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the separate maximization problem

max
xs



Us(xs)− xs

∑

l∈L(s)

λl





and finds the optimal rate x∗
s(λ). Each source sends

the optimal values x∗
s(λ) to the central coordinating agent.

3. The central agent updates the price for using each link

as follows:

λl(t+ 1) = λl(t)− a
∂lD(λ)

λl

⇒

λl(t+ 1) =

max






λl(t)− a(cl −

∑

s∈S(l)

x∗
sλ(t)), 0







and broadcasts the new link prices to all sources.

4. t← t+ 1. Go to 1. Continue until convergence.

The algorithm above can be shown to converge to the optimal

rate vector x∗ = (x∗
1, . . . , x

∗
|S|), such that the total utility is

maximized.

Note: We could view the price update mechanism as a

form of congestion control for the reasons explained above.
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12 Extra Notes

We have the primal problem:

minimize f(x)
s.t. gi(x) ≤ 0, i = 1, . . . ,m and x ∈ X

(112)

Let

f∗ = inf
x∈X

gi(x)≤0
i=1,...,m

f(x) (113)

Now define the Langrancian primal function:

L(x,µ) = f(x) +

m∑

i=1

µigi(x) (114)

Then the Langrangian dual function is:

lD(µ) = min
x∈X

L(x,µ) (115)

The formulation of the Langrangian dual problem is:

maximize lD(µ)
s.t. µ ≥ 0

(116)

Let

q∗ = sup
µ≥0

lD(µ) (117)
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So, for all µ ≥ 0, x ∈ X , g(x) ≤ 0, we have that:

lD(µ) = min
x∈X

L(x,µ) ≤ f(x) +

m∑

i=1

µigi(x) ≤ f(x)

Thus, we have:

q∗ = sup
µ≥0

lD(µ) ≤ inf
x∈X

g(x)≤0

f(x) = f∗ (118)

Example of dual problem
Consider the primal problem:

min f(x) = 1
2

(
x1

2 + x2
2
)

s.t. g(x) = x1 − 1 ≤ 0, x ∈ X = R
2 (119)

The Langrangian function is:

L(x,µ) =
1

2

(
x1

2 + x2
2
)
+µ (x1 − 1) , µ ≥ 0 (120)

We equate the partion derivatives ∂L
∂xi

= 0, i = 1, 2 and

we get the equations:

∂L

∂x1
= 0 ⇒ x1 + µ = 0 (121)

∂L

∂x2
= 0 ⇒ x2 = 0 (122)
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and we also have the constraint:

µ (x1 − 1) = 0 (123)

Using the above contraint, we observe that if we consider µ >
0 then x1 − 1 = 0 ⇒ x1 = 1 and thus µ = −1 which

contradicts the initial assumption that µ ≥ 0.

So, we have that µ = 0 and thus x1
∗ = x2

∗ = 0.

The Langrangian dual function is:

lD(µ) = min
x∈R2

L(x,µ)

=
1

2

(
x1

2 + x2
2
)
+ µ (x1 − 1) (124)

Equating the partion derivatives ∂L
∂xi

= 0, i = 1, 2 we get

that x1 = −µ and x2 = 0. Then replacing these into the

above equation we have:

lD(µ) = −
1

2
µ2 − µ (125)

Now we define the dual problem:

max lD(µ)
s.t. µ ≥ 0

(126)

which gives us that µ∗ = 0.

So, we can verify that there is no duality gap (remember that
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the optimal duality gap is zero).

Examples

min f(x) = x1 − x2

s.t. g(x) = x1 + x2 − 1 ≤ 0
x ∈ X = {(x1, x2) : x1 ≥ 0, x2 ≥ 0}

(127)

min f(x) = |x1|+ x2

s.t. g(x) = x1 ≤ 0
x ∈ X = {(x1, x2 : x2 ≥ 0)}

(128)

Distributed implementation of waterfilling solution

max
∑M

i=1 log
(

1 + Pi

Ni

)

s.t.
∑M

i=1 Pi ≤ P
(129)

Sandle Point: (x∗,µ∗) is an optimal solution multiplier

pair iff x∗ ∈ X ,µ∗ ≥ 0 and (x∗,µ∗) is saddle point of the

Langrangian in the sense that

L(x∗,µ) ≤ L(x∗,µ∗) ≤ L(x,µ∗) (130)

f∗ = lD(µ∗) = max
µ

min
x

L(x,µ) (131)

and

q∗ = min
x

max
µ≥0

L(x,µ) (132)
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If q∗ = f∗ we have:

L(P,µ) = −

M∑

i=1

log

(

1 +
Pi

Ni

)

+ µ

(
M∑

i=1

Pi − P

)

=

M∑

i=1

[

− log

(

1 +
Pi

Ni

)

+ µPi

]

− µP

Given a Lagrange multiplier µ0 each user separately tries to

minimize the Lagrangian.Due to the separable character of the

problem we have:

∂
[

− log
(

1 + Pi

Ni

)

+ µPi

]

∂Pi

= 0 (133)

⇒ −
1

Pi +Ni

+ µ = 0

⇒ Pi = · · ·

Given all the Pi’s the BF finds the Langrange multipliers to

maximize the L using the iteration:

µ(k+1) = µ(k) +

(
M∑

i=1

Pi
(k) − P

)

(134)
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