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1194 H.P. Young 

1. Introduction 

Organizations of all kinds allocate common costs. Manufacturing companies 
allocate overhead expenses among various products and divisions. Telephone 
companies allocate the cost of switching facilities and lines among different types 
of calls. Universities allocate computing costs among different departments. Cost 
allocation is also practiced by public agencies. Aviation authorities set landing 
fees for aircraft based on their size. Highway departments determine road taxes 
for different classes of vehicles according to the amount of wear and tear they 
cause to the roadways. Regulatory commissions set rates for electricity, water, and 
other utilities based on the costs of providing these services. Cost allocation is 
even found in voluntary forms of organization. When two doctors share an office, 
for example, they need to divide the cost of office space, medical equipment, and 
secretarial help. If several municipalities use a common water supply system, they 
must reach an agreement on how to share the costs of building and operating it. 
When the members of NATO cooperate on common defense, they need to 
determine how to share the burden. The common feature in all of these examples 
is that prices are not determined externally by market forces, but are set internally 
by mutual agreement or administrative decision. 

While cost allocation is an interesting accounting problem, however, it is not 
clear that it has much to do with game theory. What does the division of defense 
costs in NATO or overhead costs in General Motors have in common with dividing 
the spoils of a game? The answer is that cost allocation is a kind of game in which 
costs (and benefits) are shared among different parts of an organization. The 
organization wants an allocation mechanism that is efficient, equitable, and 
provides appropriate incentives to its various patts. Cooperative garne theory 
provides the tools for analyzing these issues. Moreover, cooperative game theory 
and cost allocation are closely intertwined in practice. Some of the central ideas 
in cooperative game theory, such as the core, were prefigured in the early theoretical 
literature on cost allocation. Others, such as the Shapley value, have long been 
used implicitly by some organizations. Like Moliere's M. Jourdain, who was 
delighted to hear that he had been speaking prose all his life, there are people 
who use garne theory all the time without ever suspecting it. 

This chapter provides an overview of the game theoretic literature on cost 
allocation. The alm of the chapter is two-fold. First, it provides a concrete 
motivation for some of the central solution concepts in cooperative game theory. 
Axioms and conditions that are usually presented in an abstract setting often seem 
more compelling when interpreted in the cost allocation framework. Second, cost 
allocation is a practical problem in which the salience of  the solution depends on 
contextual and institutional details. Thus the second objective of the chapter is to 
illustrate various ways of modelling a cost allocation situation. 
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In order to keep both the theoretical and practical issues constantly in view, 
we have organized the chapter around a series of examples (many based on real 
data) that motivate general definitions and theorems. Proofs are provided when 
they are relatively brief. The reader who wants to delve deeper may consult the 
bibliography at the end. 

2. An illustrative example 

Consider the following simple example. Two nearby towns are considering whether 
to build a joint water distribution system. Town A could build a facility for itself 
at a cost of $11 million, while town B could build a facility at a cost of $7 million. 
If they cooperate, however, then they can build a facility serving both communities 
at a cost of $15 million. (See Figure 1.) Clearly it makes sense to cooperate since 
they can jointly save $3 million. Cooperation will only occur, however, if they can 
agree on how to divide the charges. 

One solution that springs to mind is to share the costs equally - $7.5 million for 
each. The argument for equal division is that each town has equal power to enter 
into a contract, so each should shoulder an equal burden. This argument is plausible 
if the towns are of about the same size, but otherwise it is suspect. Suppose, for 
example, that town A has 36 000 residents and town B has 12 000 residents. Equal 
division between the towns would imply that each resident of A pays only one-third 

as much as each resident of B, even though they are served by the same system. This 
hardly seems fair, and one can imagine that town B will not agree to it. A more 
plausible solution would be to divide the costs equally among the persons rather 

B's payment 

.................... The c o r e ~  

11 15 
Figure 1. The core of the cost-sharing game. 
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Table 1 
Five Cost allocations for two towns 

H.P. Young 

Town A Town B 

I. Equal division of costs between towns 7.50 
II. Equal division of costs among persons 11.25 

III. Equal division of savings between towns 9.50 
IV. Equal division of savings among persons 8.75 
V. Savings (and costs) proportional to opportunity costs 9.17 

7.50 
3.75 
5.50 
6.25 
5.83 

than the towns. This results in a charge of $312.50 per capita, and altogether the 
citizens of town A pay $11.25 million while the citizens of town B pay $3.75 million 
(see Table 1). 

Unfortunately, neither of these proposals takes into account the opportunity 
costs of the parties. B is not likely to agree to equal division, because $7.5 million 
exceeds the cost of building its own system. Similarly, A is not likely to agree to 
equal division per capita, since $11.25 exceeds the cost of building its own system. 
Thus the equity issue is complicated by the need to give the parties an incentive 
to cooperate. Without such incentives, cooperation will probably not occur and 
the outcome will be inefficient. Thus we see that the three major themes of cost 
allocation - efficiency, equity, and incentives - are closely intertwined. 

Ler us consider the incentives issue first. The simplest way to ensure that the 
parties have an incentive to cooperate is to focus on the amounts that they save 

rather than on the amounts that they pay. Three solutions now suggest themselves. 
One is to divide the $3 million in savings equally among the towns. In this case 
town A would pay $11 - 1.5 = $9.5 million and town B would pay $7 - 1.5 = $5.5 
million. A second, and perhaps more plausible, solution is to divide the savings 
equally among the residents. Thus everyone would save $62.50, and the total cost 
assessments would be $8.75 million for town A and $6.25 million for town B. Yet 
a third solution would be to allocate the savings in proportion to each town's 
opportunity cost. This yields a payment of $9.17 million for A and $5.83 million 
for B. (Note that this is the same thing as allocating total cost in proportion to 
each town's opportunity cost.) 

All three of these allocations give the parties an incentive to cooperate, because 
each realizes positive savings. Indeed, any solution in which A pays at most $11 
million and B pays at most $7 million creates no dis incent ive  to cooperation. The 
set of all such solutions is known as the core of the cost-sharing game, a concept 
that will be defined more generally in Section 4 below. In the present case the 
core is the line segment shown in Figure 1. 

This example illustrates several points. First, there is no completely obvious 
answer to the cost allocation problem even in apparently simple cases. Second, 
the problem cannot be avoided: costs must be allocated for the organization to 
be viable. Third, there is no external market mechanism that does the job. One 
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might try to mimic the market  by setting price equal to marginal cost, but this 
does not work either. In the preceding example, the marginal cost of including 
town A is $15 - 7 = $8 million (the difference between the cost of the project with 
A and the cost of the project without A), while the marginal cost of including 
town B is $15 - 11 = $4 million. Thus the sum of the marginal costs does not 
equal total c o s t -  indeed it does not even cover total cost. Hence we must find 
some other means to justify a solution. This is where ideas of equity come to the 
fore: they are the instruments that the participants use to reach a joint decision. 
Equity principles, in other words, are not merely normative or philosophical 
concepts. Like other kinds of norms, they play a crucial economic role by 
coordinating players' expectations, without which joint gains cannot be realized. 

3. The cooperative game model 

Let us now formulate the problem in more general terms. Let N = {1 ,2 , . . ,  n} be 
a set of projects, products, or services that can be provided jointly or severally by 
some organization. Let c(i) be the cost of providing i by itself, and for each subset 
S _  N, let c(S) be the cost of providing the items in S jointly. By convention, 
c((o) = 0. The function c is called a discrete costfunction or sometimes a cost-sharing 
garne. An allocation is a vector (x 1 . . . . .  xù) such that Z x ~ =  c(N), where xt is the 
amount  charged to project i. A cost allocation method is a function ~b(c) that 
associates a unique allocation to every cost-sharing game. 

In some contexts it is natural to interpret c(S) as the least costly way of carrying 
out the projects in S. Suppose, for example, that each project involves providing 
a given amount  of computing capability for each department in a university. Given 
a subset of departments S,c(S) is the cost of the most economical system that 
provides the required level of computing for all the members of S. This might 
mean that each department is served by a separate system, or that certain groups 
of departments are served by a common system while others are served separately, 
and so forth. In other words, the cost function describes the cost of the most 
economical way of combining activities, it does not describe the physical structure 
of the system. If the cost function is interpreted in this way, then for any partition 
of a subset of projects into two disjoint subsets S' and S", we have 

c(S' ~S") <~ c(S') + c(S"). (1) 

This property is known as subadditivity. 
A second natural property of a cost function is that costs increase the more 

projects there are, that is, c(S) <~ c(S') for all S _c S'. Such a cost function is monotonic. 
Neither monotonicity nor subadditivity will be assumed in subsequent results 
unless we specifically say so. 

The reason for carrying out projects separately rather than jointly is that it 
generates cost savings. Hence it often makes sense to focus attention on the 
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cost-savings directly. For each subset S of projects the potential cost savino is 

v(S) = ~ c(i) - c(S). (2) 
ieS 

The function v is called the cost-savings garne. 
If c is subadditive, then v is nonnegative and monotone increasing in S. Indeed, 

for every S and i¢S, subadditivity implies that c(S + i) <~ c(S) + c(i), from which it 
follows that v(S) <~ v(S + i). (We write "S + i" instead of "S w {i}".) Since v(¢) = 0, 
it follows that v is nonnegative and monotonic. It also follows that v(N) is the 
largest among all v(S), so from a purely formal point of view, N is the efficient set 
of projects to undertake. This assumption will be implicit throughout the remainder 
of the chapter. We do not, however, need to assume subadditivity and monotonicity 
of the cost function in order to prove many of the theorems quoted below, and 
we shall not assume them unless explicitly noted. 

4. The Tennessee Valley Authority 

The Tennessee Valley Authority was a major regional development project created 
by an act of Congress in the 1930s to stimulate economic activity in the 
mid-southern United States. The goal was to construct a series of dams and 
reservoirs along the Tennessee River to generate hydroelectric power, control 
flooding, and improve navigational and recreational uses of the waterway. Econo- 
mists charged with analyzing the costs and benefits of this project observed that 
there is no completely obvious way to attribute costs to these purposes, because 
the system is designed to satisfy all of them simultaneously. The concepts that 
they devised to deal with this problem foreshadow modern ideas in game theory, 
and one of the formulas they suggested has since become (after minor modifications) 
the standard method for allocating the cost of multi-purpose reservoirs. 

Table 2 
Cost function for navigation (1), flood control (2), and 

power (3), in thousands of dollars 

Subsets S Cost c(S) 

0 
{1} 163520 
{2} 140826 
{3} 250096 
{1,2) 301607 
{1,3} 378821 
{2,3} 367370 
{1,2,3} 412584 
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Table 2 shows the cost function for the TVA case as analyzed by Ransmeier 
(1942, p. 329). There are three purposes: navigation (1), flood controt (2), and 
power (3). 

Ransmeier (1942, p. 220) suggested the following criteria for a cost allocation 
formula: 

The method should have a reasonable logical basis... It should not result in 
charging any objective with a greater investment than would suffice for its 
development at an alternate single-purpose site. Finally, it should not charge 
any two or more objectives with a greater investment than would suffice for 
alternate dual or multiple purpose development. 

In terms of the joint cost function c(S) these requirements state that, if xl is the 
charge to purpose i, then the following inequality should hold for every subset S 
of purposes (including singletons), 

x(S) <~ c(S), (3) 

where x(S) = ~a~s x~. Condition (3) is known as the stand-alone cost test. Its rationale 
is evident: if cooperation among the parties is voluntary, then self-interest dictates 
that no participant or group of par t ic ipants-  be charged more than their 
stand-alone (opportunity) cost. Otherwise they would have no incentive to agree 
to the proposed allocation. 

A related principle known as the "incremental cost test" states that no project 
should be charged less than the marginal tost  of including it. In Table 2, for 
example, the cost of including project 1 at the margin is 

c(1, 2, 3) - c(2, 3) = 45 214. 

In general, the incremental or marginal cost of a subset S is defined to be 
c ( N ) -  c ( N -  S), and the incremental cost test requires that the allocation x ~ R  u 
satisfy 

x(S) ~ c(N) - c(N - S) for all S ~_ N. (4) 

Whereas (3) provides incentives for voluntary cooperation, (4) arises from consi- 
derations of equity. For, if (4) were violated for some S, then it could be said that 
the coalition N - S is subsidizin9 S. In other words, even if there is no need to 
give the parties an incentive to cooperate, there is still an argument for a core 
allocation on equity grounds 1. 

It is easily seen that conditions (3) and (4) are equivalent given that costs are 
allocated exactly, namely, 

x(N)  = c(N). (5) 

1This idea has been extensively discussed in the literature on public utility pricing. See for example 
Faulhaber (1975), Sharkey (1982a, b, 1985), and Zajac (1993). 
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xl  = 412,584 
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x2 = 140,826 

x~ = 163,520 

x l  = 45,214 

II- ~ .~--~S------~ x a = 412,584 

x2 = 412,584 xä=250 = ,096 x 2 = 33,763 

Figure 2. The core of tlae TVA cost-sharing game. 

The core  of the cost-sharing garne c, written Core  (c), is the set of all al locations 
x ~ R  N such that  (3) and (5) [equivalently (4) and (5)] hold for all S ~ N. 

The core of the TVA cost game is i l lustrated in Figure 2. The top vertex x 1 
represents the si tuation where all costs are allocated to purpose  1 (navigation); 
the r ight-hand vertex allocates all costs to purpose  3 (power), and the left-hand 
vertex allocates all costs to purpose  2 (flood control). Each point  in the triangle 
represents a division of the $412 584 a m o n g  the three purposes.  

In this example  the core is fairly large, because there are strongly increasing 
returns to scale. This is due to the fact that  the marginal  cost of building a higher 
dato (to serve more  purposes)  decreases with the height of the dam.  

The core is a closed, compact ,  convex subset of R N. It  may,  however,  be empty.  
Consider  the cost function 

c(1) -- c(2) = c(3) = 6 

c(1, 2) = c(1, 3) = c(2, 3) = 7 

c(1,2, 3) = 11. 

If  x is in the core, then 

x 1 +  x2 <~ 7, x 1 +  x3 <~ 7, xz + x3 «. 7. 

However ,  the sum of these inequalities yields 2(x I + x z + x3)  « 21, which contra-  
dicts the break-even requirement  x 1 + x 2 + x 3 = 11. Hence the core is empty.  
Fu r the rmore  this is true even though the cost function is both  subaddit ive and 
monotonic .  A sufficient condit ion that  the core be nonempty  is that  the cost 
function exhibit increasing returns to scale, as we shall show in Section 9. 
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Table 3 
The ACA method applied to the TVA data 

1201 

Purpose Total 

1 2 3 

1. Alternate cost c(i) 
2. Separable cost c(N) - c(N -- i) 
3. Alternate cost avoided (1-2) 
4. Allocation of nonsep, cost 
5. Allocation (2 + 4) 

163 520 1 4 0 8 2 6  2 5 0 0 9 6  554442 
147630 136179 213 393 497202 
15890 4647 36704 57240 
4941 1445 11412 17 798 

152571 137624 2 2 4 8 0 5  515000 

Al though  the Tennessee Valley Au tho r i t y  d id  not  a d o p t  a formal  m e t h o d  for 
a l loca t ing  costs, they t ook  as a basis an a p p r o a c h  k n o w n  as the "a l te rna t ive  
just i f iable  expendi ture  me thod"  and  then rounded  oft the results accord ing  to 
" judgment .  ' 'z This has beeome,  after fur ther  refinements,  the pr inc ipa l  t ex tbook  
m e t h o d  used by  civil engineers to a l locate  the eosts  of mul t i -pu rpose  reservoirs,  
and  is k n o w n  as the "separab le  costs  remain ing  benefits me thod"  [James  and  Lee 
(1971)]. We  shall  now descr ibe  a simple version of this method .  

Given  a cos t -shar ing  game c, define the separable  cost  of  a pu rpose  i ~ N  to be 
its marg ina l  t o s t  

si = c ( N )  - e ( N  - i). 

The a l t e r n a t e  cos t  for i is the s tand-a lone  cost  c(i). The difference between the 
a l te rna te  cost  and  the separable  cost  is the a l t e r n a t e  cos t  avo ided  

ri = c(i) - sl. 

The a l t e r n a t e  cos t  avo ided  m e t h o d  (ACA) assigns costs accord ing  to the fo rmula  

xi  = si + [ r i / r ( N ) ]  Ic(N) - s(N)].  3 (6) 

In  o ther  words,  each project  pays  its separable  cost  and  the "nonsepa rab le  cost"  
c ( N )  - s ( N )  is a l loca ted  in p r o p o r t i o n  to the numbers  rv The  implici t  a s sumpt ion  
here is tha t  all r~ >~ 0, which is the case if c is subaddi t ive .  Table  3 i l tustrates the 
ca lcula t ion  for the TVA cost  data.  

The  A C A  m e t h o d  can be given a more  succinct and  intui t ive fo rmula t ion  in 
terms of the cost-savings game. F o r  each project  i ~ N  define i 's m a r g i n a l  sav ings  

ZAs Ransmeier remarks, "there is little to recommend the pure judgement method for allocation. 
In many regards it resembles what Professor Lewis has called the 'trance method' of utility valuation." 
(1942, p.342). 

3The more sophisticated separable costs remainin 9 benefits method (SCRB) incorporates benefits 
as follows. Let b(i) be the benefit from undertaking project i by itself. Then the maximum justifiable 
expenditure for i is min {b(i), c(/)) and r i in formula (6) is defined to be ri = min (b(i), c(i} - s v [James and 
Lee (1971)]. 
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to be 

v'(N) = v(N) - v(N -- i). (7) 

Given that i is charged xi, the resulting savings are Yi = c ( i ) -  xl. A simple 
manipulation of(6) shows that the ACA imputes savings according to the formula 

yi = [v '(N)/ j~ N [vJ(N)] l v ( N  ). (8) 

In other words, the ACA allocates cost savings in proportion to each project's 
marginal contribution to savings [Straffin and Heaney (1981)]. This solution was 
proposed independently in the game theory literature as a means of minimizing 
players' "propensity to disrupt" the solution [Gately (1974), Littlechild and Vaidya 
(1976), Charnes et al. (1979)]. 

There is no reason to think that the A C A  method yields a solution in the core, 
and indeed it does not in general (see Section 6 below for an example). However, 
when there are at most three projects, and the cost function is subadditive, then 
it is in the core provided that the core is nonempty. Indeed we can show more. 
Define the semicore of a cost function to be the set of all allocations x such that, 

for every i, x i <~ c(i), x (N - i) <~ c(N - i), and x(N) = c(N). (9) 

In the case of two or three projects the semicore is clearly the same as the core. 

Theorem 1. I f  c is subadditive, then the alternate cost avoided method is in the 
semicore whenever the latter is nonempty. 

Proof. It is easiest to work in terms of the cost-savings game v. By assumption 
c is subadditive, so v is nonnegative and monotone. By assumption, c has a 
nonempty semicore, so there is an allocation of savings y such that 

vi(N) >~ Yi >~ v(i) = 0 for every iEN. 

Hence 

y(N) = v(N) <~ ~ v2(N). (10) 
jEN 

The ACA allocation is defined by 

From this and (10) we conclude that 

0 <~ y* <~ vi(N). (11) 

Letting x* = c ( i ) -  y* it follows that x* is in the semicore of c. [] 
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5. Equitable core solutions 

Core allocations provide incentives for cooperation. They are also fair  in the sense 
that no subgroup subsidizes any other. If core allocations exist, however, there 
are usually an uncountable number of them. Which is most equitable? Here we 
shall suggest one answer to this question. 

Let us begin by noticing that in the case of two projects the natural solution is 
to choose the midpoint of the core. This solution treats the two projects equally 
in the sense that they save equal amounts relative to their opportunity costs. There 
is another way of justifying this answer however. Consider a cost allocation 
situation in which some costs can be attributed directly to particular projects. 
In the TVA case, for example, the cost of the generators is directly attributable 
to hydropower generation, the cost of constructing levees is directly attributable to 
controlling flooding, and the cost of building locks is directly attributable to 
navigation. Sometimes the distinction between direct and joint costs is not so clear, 
however. Deepening the river channel probably benefits navigation most, but it has 
a favorable impact on flood control and hydropower generation as well. 

F rom a formal point of view, we say that a cost function c decomposes into 
:direct costs d = (d»d 2 . . . . .  dn) andjoint costs c* if c can be written in the form 

c(S) = d(S) + c*(S) for every S ~ N. (12) 

A cost allocation method q5 is invariant in direct costs if whenever c satisfies (12), then 

~ß(c) = d + q5(c*), (13) 

that is, qS~(c) = dl + c~i(c*) for every i. 
A cost allocation method is symmetric if it is invariant under any renaming of 

the projects. In other words, given any cost function c on N, and any permutation 
rt of N, if we define the cost function rcc such that ~c(nS) = c(S), then 

dp~Ci)(~c ) = qS~(c) for every iEN. (14) 

Theorem 2. I f  c~ is symmetric and invariant in direct costs, then for any two-project 
cost function c defined on N = { 1, 2}, 

c~i(c ) = c ( i ) -  s/2 where s = c(1) + c(2) - c(1,2). (15) 

The proof  of this result is straightforward and is left to the reader. 
The method defined by (15) is called the standard two-project solution. When 

total savings s are nonnegative (which is true if c is subadditive), the standard 
solution is simply the midpoint of the core. Thus Theorem 2 provides an axiomatic 
justification of a solution that is intuitively appealing on equity grounds. 

When there are more than two projects, it seems natural to apply the same idea 
and divide the cost-savings equally among the various projects. In the TVA case, 
this yields the cost allocation (116 234, 93 540, 202 810) which is in the core. But 
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x l  = 163 ,520  

x 1 = 1 4 7 , 6 3 0  

e e  

1 4 0 , 8 2 6  X2 = / X3 = 2 5 0 , 0 9 6  

Figure 3. The core of the modified TVA cost game. 

there are many situations where the equal savings allocation is not in the core. 
Consider the following variation of the TVA data: total costs are $515 000 000 and 
all other costs remain the same as before. The eore of this modified TVA game is 
shown in Figure 3, and the equal division of savings (e) is not in it. Hence we must 
find some other principle for determining an equitable allocation in the core. 

Consider the following approach: instead of insisting that all projects be treated 
equally, let us treat all projects - and all subgroups of projects - as nearly equally 
as possible. By this we mean the following. Let c be a cost function and ler x be 
an allocation of total cost c(N). Each subset of projects S _ N realizes cost savings 
equal to e(S, x) = e(S) - x(S). We shall say that the set S is strictly better oft  than 
the set Tif e(S, x) > e(T, x). A natural criterion of equity is to maximize the position 
of  the least well-off subset, that is, to find an allocation x that maximizes 
mins e(S,x). This is known as the maximin criterion. 4 A maximin allocation is 
found by solving the linear programming problem 

max 8 

subjectto e(S,x)>le for allS, 4) c S ~ N  

and x(N) = c(N). (16) 

The set of all solutions to x (16) is called the least core of c. 
If there is more than one allocation in the least core, we may whittle it down 

further by extending the maximin criterion as follows. Order the numbers e(S, x), 

4This idea is central to John Rawls's A Theory of Justice (1971). 



Ch. 34:. Cost Allocation 1205 

~b cz_ S c N, from lowest to highest, and denote this vector of dimension (2" - 2) by 
O(x). The prenucleolus is the allocation x that maximizes O(x) lexicographically, 
that is, i fy is any other cost allocation and k is the first index such that Ok(X) ~ Ok(y), 
then Ok(X) > Ok(y) [Schmeidler (1969)]. s 

The prenucleolus occupies a central position in the core in the sense that the 
minimal distance from any boundary is as large as possible. In Figure 3 it is the 
point labelled "n", with coordinates xl = $155 367.2, x 2 = $138 502.5, x3 = $221 130.25. 
(Note that this is not the center of gravity.) 

We claim that the prenucleolus is a natural extension of the standard two-project 
solution. Let us begin by observing that, when there are just two projects, the 
prenucleolus agrees with the standard two-project solution. Indeed, in this case 
there are just two proper subsets {1} and {2}, and the allocation that maximizes 
the smaUer of c(1) - xl and c(2) - x 2 is clearly the one such that c(1) - x 1 = c(2) - x 2 .  

When there are more than two projects, the prenucleolus generalizes the standard 
two-project solution in a more subtle way. Imagine that each project is represented 
by an agent, and that they have reached a preliminary agreement on how to split 
the costs. It is natural for each subgroup of agents to ask whether they fairly divide 
the cost allocated to them as a subgroup. To illustrate this idea, consider Figure 3 
and suppose that the agents are considering the division n = (155 367.2, 138 502.5, 
221 130.25). Let us restrict attention to agents 1 and 3. If they view agent 2's 
allocation as being fixed at $138502.50, then they have $376497.50 to divide 
between them. The range of possible divisions that lie within the core is represented 
by the dotted line segment labelled L. In effect, L is the core of a smaller or 
"reduced" game on the two-player set {1,3} that results when 2's allocation 
is held fixed. Now observe that (nx, n3) is the midpoint of this segment. In other 
words, it is the standard two-project solution of the reduced garne. Moreover the 
figure shows that the prenucleolus n bisects each of the three line segments through 
n in which the charge to one agent is held fixed. This observation holds in general: 
the prenucleolus is the standard two-project solution when restricted to each pair of 
agents. This motivates the following definition. Let c be any cost function defined 
on the set of projects N, and let x be any allocation of c(N). For each proper subset 
T of N, define the reduced costfunction c-r, x as follows: 

cT.~(S)= min {c(SwS' ) -x(S ' )}  i f q S c S ~ T ,  
S ' ~ N - T  

CT,x(T) = x(T), 

c~,~(~b) = 0. (17) 

A cost allocation method ~b is consistent if for every N, every cost function c on 

5If x' and x" are distinct allocations that  maximize 0(-) lexicographically, then it is relatively easy 
to show that O(x'/2 + x"/2) is strictly larger lexicographically than both O(x') and O(x"). Hence 0 has a 
unique maximum. The lexicographic criterion has been proposed as a general principle of justice by 
Sen (1970). 
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N, and every proper subset Tof  N, 

,~(c) = x ~ 4,(eT,x) = x »  (18)  

If (18) holds for every subset Tor  cardinality two, then Ó is pairwise consistent. 
Note that this definition applies to all cost games c, whether or not they have a 
nonempty core. 6 

Consistency is an extremely general principle of fair division which says that if 
an allocation is fair, then every subgroup of claimants should agree that they 
share the amount allotted to them fairly. This idea has been applied to a wide 
variety of allocation problems, including the apportionment of representation 
[Balinski and Young (1982)], bankruptcy rules [Aumann and Maschler (1985)], 
surplus sharing rules [Moulin (1985)], bargaining problems [Harsanyi (1959), 
Lensberg (1985, 1987, 1988)], taxation [Young (1988)], and economic exchange 
[Thomson (1988)]. For reviews of this literature see Thomson (1990) and Young 
(1994). 

To state the major result of this section we need one more condition. A cost 
ailocation rule is homogeneous if for every cost function c and every positive scale 
factor 2, q~(2c) = 2~b(c). 

Theorem 3 [Sobolev (1975)]. The prenucleolus is the unique cost allocation 
method that is symmetric, invariant in direct costs, homogeneous, and consistent. 

We remark that it will not suffice here to assume pairwise consistency instead 
of consistency. Indeed, it can be shown that, for any cost function c, the set of all 
allocations that are pairwise consistent with the standard two-project solution 
constitutes the prekernel ofc [Peleg (1986)]. The prekernel contains the prenucleolus 
but possibly other points as well. Hence pairwise consistency with the standard 
solution does not identify a unique cost allocation. 

6. A Swedish municipal cost-sharing problem 

In this section we analyze an actual example that illustrates some of the practieal 
problems that arise when we apply the theory developed above. The Skäne region 
of southern Sweden consists of eighteen municipalities, the most populous of which 
is the city of Malmö (see Figure 4). In the 1940s several of them, including Malmö, 
banded together to form a regional water supply utility known as the Sydvatten 
(South Water) Company. As water demands have grown, the Company has been 
under inereasing pressure to increase long-run supply and incorporate outlying 
municipalities into the system. In the late 1970s a group from the International 
Institute for Applied Systems Analysis, including this author, were invited to 

6For an alternative definition of the reduced garne see Hart and Mas-Colell (1989). 
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Figure 4. The region of Skäne, Sweden and its partition into groups of municipalities. 
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analyze how the cost of expanding the system should be allocated among the 
various townships, We took the system as it existed in 1970 and asked how much 
it would cost to expand it in order to serve the water demands projected by 1980. 

In theory we should have estimated the system expansion cost for each of the 
218-- 262 144 possible subgroups, but this was clearly infeasible. To simplify the 
problem, we noted that the municipalities fall into natural groups based on past 
associations, geographieal proximity, and existing water transmission systems. This 
led us to group the eighteen municipalities into the six units shown in Figure 4. 
We treated these groups as single actors in developing the cost function. Of course, 
once a cost allocation among the six groups is determined, a second-stage allocation 
must be carried out within each subgroup. This raises some interesting modelling 
issues that will be discussed in Section 10 below. Here we shall eoncentrate on 
the problem of allocating costs among the six units in the aggregated cost-sharing 
garne. 

One of the first problems that arises in defining the cost function is how to 
distinguish between direct costs and joint costs. Within each municipality, for 
example, a local distribution network is required no matter  where the water comes 
from, so one might suppose that this is a direet cost. However, in some cases the 
water delivered by the regional supply network must first be pumped up to a 
reservoir before being distributed within the municipality. The cost of these 
pumping faeilities depends on the pressure at which the water is delivered by the 
regional system. Hence the cost of the local distribution facilities is n o t  completely 
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independen t  of the me thod  by which the water  is supplied.  This i l lustrates why 
the border l ine  between direct  and  jo in t  costs is somewha t  fuzzy, and  why it is 
i m p o r t a n t  to use a m e t h o d  tha t  does not  depend  on where the line is drawn,  i.e., 
to use a me thod  that  is invar ian t  in direct  costs. 

F o r  each subset  of  the six units, we es t imated  the cost  of  expand ing  the system 
to serve the members  of  this subset  using s t anda rd  engineering formulas,  and  the 
result  is shown in Table  4. [See Young  et al. (1982) for details .]  

No te  the fol lowing qual i ta t ive  features of the cost  function. Even though  L is 
close to the two ma jo r  sources of supply  (lakes Ringsjön and  Vombsjön) ,  it has 
a high s tand-a lone  cost  because it does not  have rights to wi thdraw from these 
sources. Hence we should  expect  L's charge to be fairly high. By contras t ,  H and  
M have relat ively low s tand-a lone  costs that  can be reduced even further  by 
including o ther  municipal i t ies  in the jo in t  scheme. However ,  the system owned  by 
H (Ringsjön) has a higher  incrementa l  capaci ty  than  the one owned  by  M 
(Vombsjön).  Hence the incrementa l  cost  of including o ther  municipal i t ies  in a 
coal i t ion  with M is higher  than  the incrementa l  cost  of including them in a coa l i t ion  
with H. In effect, H has more  to offer its par tners  than  M does, and  this should  
be reflected in the cost  a l locat ion.  

Table 4 
Costs of alternative supply systems, in millions of Swedish crowns. Coalitions are separated by commas 
if there are no economies of scale from integrating them into a single system, that is, we write S, S' if 

c(S) + c(S') = c(S u S') 

Group Total cost Group Total cost Group Total cost 

A 21.95 AHK 40.74 AHKL 48.95 
H 17.08 AHL 43.22 AHKM 60.25 
K 10.91 AH, M 55.50 AHK, T 62.72 
L 15.88 AH, T 56.67 AHL, M 64.03 
M 20.81 A, K, L 48.74 AHL, T 65.20 
T 21.98 A, KM 53.40 AH, MT 74.10 

A, K, T 54.84 A, K, LM 63.96 
AH 34.69 A, LM 53.05 A, K, L, T 70.72 
A, K 32.86 A, L, T 59.81 A, K, MT 72.27 
A, L 37.83 A, MT 51.36 A, LMT 73.41 
A, M 42.76 HKL 27.26 HKL, M 48.07 
A, T 43.93 HKM 42.55 HKL, T 49.24 
HK 22.96 HK, T 44.94 HKMT 59.35 
HL 25.00 HL, M 45.81 HLMT 64.41 
H, M 37.89 HL, T 46.98 KLMT 56.61 
H, T 39.06 H, MT 56.49 AHKL, T 70.93 
K, L 26.79 K, LM 42.01 AHKLM 69.76 
KM 31.45 K, L, T 48.77 AKHMT 77.42 
K, T 32.89 K, MT 50.32 AHLMT 83.00 
LM 31.10 LMT 51.46 AKLMT 73.97 
L, T 37.86 HKLMT 66.46 
MT 39.41 

AHKLMT 83.82 
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Table 5 
Cost allocation of 83.82 million Swedish crowns by four methods 
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A H K L M T 

Stand-alone cost 21.95 17.08 10.91 15.88 20.81 21.98 

Prop. to pop, 10.13 21.00 3.19 8.22 34.22 7.07 
Prop. to demand 13.07 16.01 7.30 6.87 28.48 12.08 
ACA 19.54 13.28 5.62 10.90 16.66 17.82 
Prenucleolus 20.35 12.06 5.00 8.61 18.32 19.49 

Table 5 shows cost allocations by four different methods. The first two are 
"naive" solutions that allocate costs in proportion to population and water 
demand respectively. The third is the standard engineering approach described in 
Section 4 (the ACA method), and the last is the prenucleolus. Note that both of the 
proportional methods charge some participant more than its stand-alone cost. 
Allocation by demand penalizes M, while allocation by population penalizes both 
H and M. These two units have large populations but they have ready access to 
the major sources of supply, hence their stand-alone costs are low. A and T, by 
contrast, are not very populous but are remote from the sources and have high 
stand-alone costs. Hence they are favored by the proportional methods. Indeed, 
neither of these methods charges A and T even the marginal cost ofincluding them. 

The ACA method is apparently more reasonable because it does not charge 
any unit more than its stand-alone cost. Nevertheless it fails to be in the core, 
which is nonempty. H, K, and L can provide water for themselves at a cost of 
27.26million Swedish crowns, but the ACA method charges t h e m a  total of 
29.80 million Swedish crowns. In effect they are subsidizing the other participants. 
The prenucleolus, by contrast, is in the core and is therefore subsidy-free. 

7. Monotonicity 

Up to this point we have implicitly assumed that all cost information is in hand, 
and the agents need only reach agreement on the final allocation. In practice, 
however, the parties may need to make an agreement before the actual costs are 
known. They may be able to estimate the total tost to be divided (and hence their 
prospective shares), but in reality they are committing themselves to a rule for 
allocating tost rather than to a single tost allocation. This has significant 
implications for the type of rule that they are likely to agree to. In particular, if 
total tost is higher than anticipated, it would be unreasonable for anyone's charge 
to go down. If cost is lower than anticipated, it would be unreasonable for anyone's 
charge to go up. Formally, an allocation rule ~b is monotonic in the a99regate if 
for any set of projects N, and any two cost functions c and c' on N 

c'(N) >1 c(N) and c'(S) = c(S) for all S « N 

implies ~bi(c' ) >~ ~b~(c) for all lEN. (19) 
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Table 6 
Allocation of a cost overrun of 5 million Swedish crowns by two methods 

H.P. Young 

A H K L M T 

Prenucleolus 0.41 1 .19  -0 .49  1.19 0.84 0.84 
ACA 1.88 0.91 - 0.16 0.07 0.65 0.65 

This concept was first formulated for cooperative games by Megiddo (1974). It is 
obvious that any method based on a proportional criterion is monotonic in the 
aggregate, but such methods fail to be in the core. The alternate cost avoided 
method is neither in the eore nor is it monotonic in the aggregate. For  example, 
if the total cost of the Swedish system increases by 5 million crowns to 87.82, the 
ACA method charges K less than before (see Table 6). The prenucleolus is in the 
core (when the core is nonempty) but it is also not monotonie in the aggregate, 
as Table 6 shows. 

The question naturally arises whether any core method is monotonie in the 
aggregate. The answer is affirmative. Consider the following variation of the 
prenucleolus. Given a cost function c and an allocation x, define the per capita 
savings of the proper subset S to be d(x,S)= (c(S)-x(S))/]S]. Order the 2 " - 2  
numbers d(x, S) from lowest to highest and let the resulting vector be 7(x). The 
per capita prenucleolus is the unique allocation that lexicographieally maximizes 
7(x) [-Grotte (1970)]. 7 It may be shown that the per capita prenucleolus is 
monotonie in the aggregate and in the core whenever the core is nonempty. 
Moreover, it allocates any inerease in total tost in a natural way: the increase is 
split equally among the participants [-Young et al. (1982)]. In these two respects 
the per capita prenucleolus performs bettet than the prenucleolus, although it is 
less satisfactory in that it fails to be consistent. 

There is a natural generalization of monotonicity, however, that both of these 
methods fail to satisfy. We say that the cost allocation method ~b is eoalitionally 
monotonie if an increase in the tost of any particular coalition implies, ceteris 
paribus, no deerease in the alloeation to any member of that coalition. That is, for 
every set of projeets N, every two tost  functions c, c' on N, and every T _c N, 

c'(T) >t c(T) and c'(S) = c(S) for all S # T 

implies ~b~(c')~> ~bi(c) for all i t  T. (20) 

It is readily verified that (20) is equivalent to the following definition: ~b is 
coalitionally monotonic if for every N, every two cost functions c' and c on N, and 
every i sN,  

if c'(S) >~ c(S) for all S eontaining i and c'(S) = c(S) for all S not eontaining i, 

then 4)i(c') >~ 4)i(c). 

7Grotte (1970) uses the term "normalized nucleolus" instead of "per capita nucleolus". 
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The following "impossibility" theorem shows that coalitional monotonicity is 
incompatible with staying in the core. 

Theorem 4 [Young (1985a)]. For INI >~ 5 there exists no core allocation method 
that is coalitionally monotonic. 

Proofi Consider the cost function c defined on N = { 1, 2, 3, 4, 5} as follows: 

c(sl) = c(3,  5) = 3, c(s2) = c(1,  2, 3) = 3, 

c($3) = c(1, 3,4) = 9, c($4) = c(2, 4, 5) = 9, 

c($5)=c(1,2,4,5)=9, c($6)=c(1,2,3,4,5)= 11. 

For S ~ $ 1 , . . ,  Ss, $6,4~, define 

c(S) = min {c(S,): S c Sc}. 
k 

If x is in the core of c, then 

X(Sk) <~ c(Sk) for 1 ~< k ~< 5. (21) 

Adding the five inequalities defined by (21) we deduce that 3x(N)~< 33, whence 
x(N) ~< 11. But x(N) = 11 because x is an allocation. Hence, all inequalities in (21) 
must be equalities. These have the unique solution x = (0, 1, 2, 7, 1), which constitutes 
the core of c. 

Now consider the garne c', which is identical to c except that c'($5) = c'($6) = 12. A 
similar argument shows that the unique core element of this garne is x' = (3, 0, 0, 6, 3). 
Thus the allocation to both 2 and 4 decreases even though the cost of some 
of the sets containing 2 and 4 monotonically increases. This shows that no core 
allocation procedure is monotonic for [ N I = 5, and by extension for I N I ~> 5. [] 

8. Decomposition into eost elements 

We now turn to a class of situations that calls for a different approach. Consider 
four homeowners who want to connect their houses to a trunk power line (see 
Figure 5). The cost of each segment of the line is proportional to its length, and 
a segment costs the same amount  whether it serves some or all of the houses. Thus 
the cost of segment OA is the same whether it carries power to house A alone or 
to A plus all of the houses more distant than A, and so forth. 

If the homeowners do not cooperate they can always build parallel lines along 
the routes shown, but this would clearly be wasteful. The efficient strategy is to 
construct exactly four segments OA, AB, BC, and BD and to share them. But 
what is a reasonable way to divide the cost? 



1212 H.P. Young 

500 Q 300 

9 

Figure 5. Cost of connecting four houses to an existing trunk power line. 

The answer is transparent.  Since everyone uses the segment OA, its cost should 
be divided equally among  all four homeowners.  Similarly, the cost of  segment AB 
would be divided equally among  B, C, D, the cost o f B C  should be borne exclusively 
by C and the cost of BD exclusively by D. The resulting cost allocation is shown 
in Table 7. 

Let us now generalize this idea. Suppose that  a project consists of  m distinct 
components  or  cost elements. Let C«/> 0 be the cost of componen t  «, « = 1, 2 . . . .  , m. 
Denote  the set of potential beneficiaries by N = {1, 2 . . . .  , n}. For  each cost element 
c~, let N« _ N be the set of  parties who use «. Thus the stand-alone cost of each 
subset S ~ N is 

c (S)=  ~ Co. (22) 
N«nS:~ q~ 

A cost function that  satisfies (22) decomposes into nonnegative tos t  elements. The 
decomposition principle states that when a cost function decomposes, the solution is 
to divide each cost element equally amon# those who use it and sum the results. 

It is wor th  not ing that  the decomposi t ion principle yields an allocation that 
is in the core. lndeed, c(S) is the sum of the cost elements used by members  of S, 
but the charge for any given element is divided equally among  all users, some of  

Table 7 
Decomposition of electrical line costs 

Cost Homes Segment 
elements cost 

A B C D 

OA 125 125 125 125 500 
AB 100 100 100 300 
BC 200 200 
BD 400 400 

Charge 125 225 425 625 1400 
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Table 8 
Aircraft landings, runway costs, and charges at Birmingham airport, 1968-69 
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Aircraft type No. landings Total cost* Shapley value 

Fokker Friendship 27 42 65 899 4.86 
Viscount 800 9555 76 725 5.66 
Hawker Siddeley Trident 288 95 200 10.30 
Britannia 303 97 200 10.85 
Caravelle VIR 151 97 436 10.92 
BAC 111 (500) 1315 98 142 11.13 
Vanguard 953 505 102 496 13.40 
Comet 4B 1128 104 849 15.07 
Britannia 300 151 113 322 44.80 
Corvair Corronado 112 115 440 60.61 
Boeing 707 22 117 676 162.24 

*Total cost of serving this type of plane and all smaller planes. 

which may not be in S. Hence the members of S are collectively not charged more  

than c(S). 

As a second application of the decomposition principle consider the problem 
of setting landing fees for different types of planes using an airport [Littlechild 
and Thompson (1977)]. Assume that the landing fees must cover the cost of building 
and maintaining the runways, and that runways must be longer (and therefore 
more expensive) the larger the planes are. To be specific, let there be m different 
types of aircraft that use the airport. Order them according to the length of runway 
that they need: type 1 needs a short runway, type 2 needs a somewhat longer 
runway, and so forth. Schematically we can think of the runway as being divided 
into m sections. The first section is used by all planes, the second is used by all 
but the smallest planes, the third by all but the smallest two types of planes, and 
so forth. 

Let the annualized cost of section Œ be e«, ct = 1, 2 . . . . .  m. Let n« be the number 
of landings by planes of type Œ in a given year, let N« be the set  of all such landings, 
and ler N = w Ne. Then the cost function takes the form 

«(s)= Z ««, 
N~nS~~ 

so it is decomposable. Table 8 shows tost and landing data for Birmingham airport 
in 1968/69, as reported by Littlechild and Thompson (1977), and the charges using 
the decomposition principle. 

9. The Shapley value 

The decomposition principle involves three distinct ideas. The first is that everyone 
who uses a given cost element should be charged equally for it. The second is that 
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those who do not use a cost element should not be charged for it. The third is 
that the results of different cost allocations can be added together. We shall now 
show how these ideas can be extended to tost  functions that do not necessarily 
decompose into nonnegative cost elements. 

Fix a set of projects N and let ¢ be a cost allocation rule defined for every cost 
function c on N. The notion that everyone who uses a cost element should be 
charged equally for it is captured by symmetry (see p. 1203). The idea that someone 
should not be charged for a cost element he does not use generalizes as follows. 
Say that project i is a dummy if c(S + i) = c(S) for every subset S not containing i. 
It is natural to require that the charge to a dummy is equal to zero. 

Finally, suppose that costs can be broken down into different categories, say 
operating cost and capital cost. In other words, suppose that there exist cost 
functions c' and c" such that 

c(S) = c'(S) + c"(S) for every S _ N. 

The rule ~b' is additive if 

4 ) ( c )  = ¢(c') + ¢(c"). 

Theorem 5. [Shapley (1953a, b)]. For each f ixed N there exists a unique cost 
allocation rule cp defined for all cost functions c on N that is symmetrie, charges 
dummies nothing, and is additive, namely the Shapley value 

¢,(c)= ~ Isl!(IN-S]-l)!Yc(S+i)_c(S)]. 
S=_N-I IN[! 

When the cost function decomposes into cost elements, it may be checked that 
the Shapley value gives the same answer as the decomposition principle. In the 
more general case the Shapley value may be calculated as follows. Think of the 
projects as being added one at a time in some arbitrary order R = i 1, i 2 , . . ,  iù. The 
tost  contribution of  project i = ik relative to the order R is 

Yi(R) = c(iD i2 . . . . .  ik) - -  C(il, i2 . . . . .  ik- 1)" 

It is straightforward to check that the Shapley value for i is just the average of 
71(R) over all n! orderings R. 

When the cost function decomposes into distinct cost elements, the Shapley 
value is in the core, as we have already noted. Even when the garne does not 
decompose, the Shapley value may be in the core provided that the core is large 
enough. In the TVA garne, for example, the Shapley value is (117 829, 100 756.5, 
193998.5), which is comfortably inside the core. There are perfectly plausible 
examples, however, where the cost function has a nonempty core and the Shapley 
value fails to be in it. If total cost for the TVA were 515000, for example (see 
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Figure 3) the Shapley value would be 

(151 9672/3, 134895 1/6, 228 137 1/6). 

This is not in the core because the total charges for projects 1 and 3 come to 
380 104 5/6, which exceeds the stand-alone cost c(1, 3) = 378 821. 

There is, however, a natural condition under which the Shapley value is in the 
core - namely, if the marginal cost of including any given project decreases the 
more projects there are. In other words, the Shapley value is in the core provide 
there are increasing (or at least not decreasing) returns to scale. To make this idea 
precise, consider a cost function c on N. For  each i ~ N  and S ~_ N, i's marginal 
cost contribution relative to S is 

S «(S)-- c(S - i), if iES, 
ci(S) (23) 

[ e(S + i) - c(S), if iq~S. 

The function c~(S) is called the derivative of c with respect to i. The cost function 
is concave if ci(S) is a nonincreasing function of S for every i, that is, if c~(S) >~ e~(S ') 
whenever S c S' ~ N.8 

Theorem 6 [Shapley (1971)]. The core of  every concave cost function is nonempty 
and contains the Shapley value. 

10. Weighted Shapley values 

Of all the properties that characterize the Shapley value, symmetry seems to be 
the most innocuous. Yet from a modelling point of view this assumption is perhaps 
the trickiest, because it calls for a judgment about what should be treated equally. 
Consider again the problem of allocating water supply costs among two towns 
A and B as discussed in Section 2. The Shapley value assigns the cost savings 
($3 million) equally between them. Yet if the towns have very different populations, 
this solution might be quite inappropriate. This example illustrates why the 
symmetry axiom is not plausible when the partners or projects differ in some 
respect other than cost that we feel has a bearing on the allocation. 

Let us define the eost objects to be the things we think deserve equal treatment 
provided that they contribute equally to cost. They are the "elementary particles" 
of the system. In the municipal cost-sharing case, for example, the objects might 
be the towns or the persons or (conceivably) the gallons of  water used. To apply 

SAn equivalent condition is that c be submodular, that is, for any S, S' ~_ N, c(S~S') + c(Sc~S') <~ c(S) 
+ c(S') for all S, S' _~ N. 
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the Shapley value we would then compute the cost function for all subsets of the 
cost objects. 

If the objects are very numerous, however, this approach is impractical. 
Simplifying assumptions taust be made. We could assume, for instance, that serving 
any part of a town costs the same amount as serving the whole town. Thus, if 
persons are the cost objects, and N* is the set of all 48 000 persons, we would 
define the cost function c* on N* as follows: 

c * ( S ) = 1 1 i f S ~ A ,  c* (S )=7 i fS~_B ,  c*(S)=15otherwise.  

This garne has the feature that it is composed of distinct "blocks" or "families." 
More generally, given a cost function c* defined on a set N*, a family of c* 
is a nonempty subset S ___ N* such that 

for everyT_~N,  Sc~T~(~ impliesc*(TuS)=c*(T). (24) 

In other words, S is a family if we incur the full cost of serving S whenever we 
have to serve at least orte member of S. 

Consider any partition of N* into families S» Sz ..... Sm, some or all of which 
may be singletons. Let wj be the number of persons in family j, 1 ~<j ~< m. Define 
the agoregated costfunction c on the index set M = {1, 2 , . . ,  m} as follows: 

c (T)=c*( jUTS~) ,  T~_M. 

Consider all m! orderings of the m families. For any such ordering R = (i(1), 
i(2) . . . . .  i(m)) define the probability õf R with respect to w to be 

Pw(R)= k~= l (Wi~k' / ~=~ Wi~~) )" 

One way of constructing such a probability distribution over orderings is as follows: 
Add one family at a time, where the probability that a family is chosen equals its 
weight divided by the weight of all partnerships remaining to be chosen. 

The Shapley value of c* may now be computed in two steps. First we compute 
the expected marginal contribution to cost of each family j over all orderings. In 
other words, for each ordering R, let 7j(R) be the difference between the cost 
of family j together with all its predecessors in R, and the cost of all j 's  
predecessors in R (excluding j). Define 

(49w)~(«) = ~ Pw(R)yj(R). (25) 
R 

The function ~b w is called the wei9hted Shapley value of c with weights w [see 
Loehman and Whinston (1976), Shapley (1981), Kalai and Samet (1987)]. It can 
be shown that the Shapley value of individual project i in the original cost function 
c* is just the weighted Shapley value of the family to which i belongs, divided 
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by the number  of members in that family, that is, 

for all i~Sj, 4)i(c*) = (4)w)j(c)/wj. 

The question now arises whether we can justify the weighted Shapley value from 
first principles without the symmetry axiom. Here is one such axiomatization. 
[-For alternative approaches see Loehman and Whinston (1976), Shapley (1981).] 
Fix the set N, and consider a cost allocation method 4) defined for all cost functions 
c on N. The method 4) is positive if whenever c is monotonic IS __ S' implies 
c(S) <~ c(S')] and contains no dummy players, then 4)i(c) > 0 for all i. 

For every S ~ N, let Us be the cost function such that us(T ) = 1 whenever 
Tc~S # ~Z~ and us(T ) = 0 whenever Tc~S = ~ .  The method 4) isfamily consistent 
if for any family S in c, 4)i(c)= 4)i(?Us), where ? = Zi~s Ói(c). Family consistency 
means that the total charge to any family is divided among its members just as 
it would be if this were the unique maximal family and all other players were 
dummies. 

Theorem 7 [Kalai and Samet (1987)]. A cost allocation method 4) on N is 
additive, positive, family consistent, and char9es dummies nothin9 if and only if there 
is a vector of weights wER++ such that 4) = 4)w. 

For a review of the literature on weighted Shapley values see Kalai and Samet 
(1988). 

11. Cost allocation in the firm 

We shift our attention now to firms that want to allocate common costs among 
various product lines or divisions. The reason for allocating such costs is to make 
division managers sensitive to the burden that they are placing on shared facilities. 
Ideally, therefore, the allocation should provide an incentive for managers to 
operate more efficiently, thereby reducing the incremental burden they place on 
these facilities. 

This problem can be modelled using cooperative garne theory as follows. [This 
approach was pioneered by Shubik (1962)]. Let N denote a set of n divisions or 
product lines in a firm, each of which is represented by a division manager. For  
each S ~ N, let c(S) represent the overhead cost that the divisions in S would incur 
if they were in business by themselves, that is, if the firm were stripped of the other 
divisions. Suppose, for example, that the firm consists of two divisions that share 
warehouse space for their products. We assume that the volume of business is 
fixed, and the issue is how to divide the cost of the warehouse among the divisions 
given the votume of business that they do. (The case where volume varies in 
response to price will be taken up in the next section.) The cost function might 
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be as follows: 

c (~)  = 0, c(1) = 40, c(2) = 60, c(1, 2) = 75. 

A customary solution under these circumstances is to divide total cost in proportion 
to some rough measure of each division's usage of the facility, such as stand-alone 
costs. In this case the allocation would be x 1 = 30, x2 -- 45. 

Suppose now that division manager 1 institutes a policy that reduces his demands 
on warehouse space, so that the cost of all coalitions containing 1 decreases. We 
would certainly want this change to be reflected in a reduced charge for division 
1, for otherwise there would be no incentive for the division manager to undertake 
the cost-cutting moves. This condition translates into the requirement that the 
cost allocation rule be coalitionally monotonie in the sense of (20). It is easy to see 
that allocating in proportion to stand-alone cost has this property (assuming that 
stand-alone costs are positive), as do a number of other natural methods, such as 
dividing cost savings equally. 

We know from Theorem 4, however, that coalitional monotonicity is inconsistent 
with staying in the core when I NI >~ 5. Thus in more complicated examples we are 
faced with a choice: we can adopt an allocation rule that gives managers appropriate 
incentives to cut costs, or that gives them an incentive to cooperate, but not both. 
One could argue that in the present context the incentives created by monotonicity 
are more compelling than the incentives embodied in the core. The reason is that 
a firm is not a voluntary association of divisions that must be given an incentive 
to remain together (which is the argument for a core allocation), rather, the problem 
for the firm is to send the right signals to divisions to get them to act efficiently. 

When we probe a bit deeper, however, we see that coalitional monotonicity is 
not sufficient to create the cost-cutting incentives that the firm would like. It 
encourages cost-cutting moves by some divisions provided that there are no 
offsetting cost increases by other divisions. Yet this is exactly what might happen 
in practice. Suppose, for example, that division 1 reduces the demands that it 
places on warehouse space by 1 unit, and simultaneously division 2 introduces 
wasteful policies that increase demands on space by 11 units. The new cost function 
is as follows: 

c ( ~ ) = 0 ,  c(1)=39,  c(2)=71, c(1,2)=85. 

The principle of coalitional monotonicity does not apply here because the efficiency 
losses due to division 2 offset the efficiency gains by division 1. Nevertheless it 
seems clear that division 1 should be charged less than before and that division 
2 should be charged more than before. The reason is that the marginal cost 
contribution of division 1 has decreased, whereas the marginal cost contribution 
of 2 has increased. Indeed, the partial derivative eX(S) has decreased by one unit 
for every coalition S, while c2(S) has increased by 11 units for every coalition. 
Allocation in proportion to stand-alone cost, however, yields the new charges 
xl = 30.1, xz = 54.9. In other words, division 1 is penalized for backsliding by 
division 2. This seems unreasonable. 
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To generalize these observations, fix a firm with a set of divisions N. We shall 
say that a cost allocation rule q~ is strongly monotonic (does not create perverse 
incentives) if for every two tost  functions c and C on N, and for every i~N, 

d(S) <~ U(S) for all S =__ N implies tk~(c) ~< ~b~(C). 

The reader may check that strong monotonicity implies coalitional monotonicity, 
but not vice versa. 

Theorem 8 [Young (1985a)]. For every set N the Shapley value is the unique 
cost allocation method that is symmetric and strongly monotonic. 

12. Cost allocation with variable output 

We turn now to the problem of allocating joint costs when output can vary. Let 
there be n goods that are jointly produced by a firm, and let C(q) be the joint cost 
of producing the bundle q = (ql . . . . .  qù), where qi >~ 0 is the quantity of good i. We 
shall assume that C(0)= 0 and that C has continuous first partial derivatives on 
the domain R+ (one-sided on the boundary). (The latter condition can be relaxed 
slightly as will be indicated below.) 

Given a target level of production q * > 0 ,  the goal is to find unit prices 
P = (Pl . . . . .  pù) such that costs are exactly covered: 

B piq* = C(q*). (26) 
i=1  

This condition is known as the break-even or zero-profit constraint. Normally, C 
is defined to include the cost of capital, so (26) means that there is no profit after 
stockholders are allowed a normal return on their investment. 

13. Ramsey prices 

The traditional approach to allocating costs in this setting is to consider how 
demands adjust in response to the cost of the goods. In other words, we inteipret 
the allocated cost of product i as a published price, and consumers demand any 
amount they wish at that price (there is no rationing). An example would be a 
publicly regulated utility that sets prices to cover total cost, and supplies whatever 
the market demands at these prices. 

To simplify matters; we shall assume that demands for the products are 
independent. Let ql = Qi(p~) be the amount demanded of product i when prices are 
set at p~. The inverse demand function Q~ is assumed to be strictly monotone 
decreasing in Pl and continuously differentiable. In a competitive setting the firm 
would produce quantities that clear the market~ and price would equal marginal 
cost. As we have already noted, however, this will not work in a regulated setting 
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because marginal cost pricing will not normally cause the firm to break even. 
Indeed, many public utilities have the property that marginal costs decrease as 
quantity increases, in which case marginal cost pricing does not even cover total 
cost. 

The solution proposed by Ramsey (1927) is to determine a price-quanti ty pair 
(p, q) that maximizes consumer surplus subject to the break-even constraint, that is, 
which maximizes 

fo' S(q)= ~ Q71(t)dt-C(q), subject to ~ plqi-C(q)=O. (27) 
i = l  i = 1  

This is a standard exercise in constrained optimization. Form the Lagrangian 

L(q) =S(q)+2(i~=lqiQTl(qi)-C(q)). 

Let pi = Q7 l(q~) and c~(q)= ~C(q)/~ql. A necessary condition that the pair (p, q) 
be optimal is that there exist a real number 2 such that for all i 

( ~Pi ci(q))=O. (28) pi--ci(q) + ~" Pi+qi~q i 

Let ~~ = -- (pJq~)(~q~/~pi) be the demand elasticity for i at q. Then (28) is equivalent 
to 

(Pi -- Ci)/Pi = )~/(1 h-/~)/t i. (29) 

This is the Ramseyformula and prices satisfying it are known as Ramsey prices. 9 
Their essential property is that the percentage difference between price and marginal 
cost for each good is inversely proportional to the elasticity of demand for that good. 
As W. Arthur Lewis (1949, p. 21) put it: 

The principle is . . .  that those who cannot escape must make the largest contri- 
bution to indivisible cost, and those to whom the commodity does not matter 
much may escape. The man who has to cross Dupuit 's bridge to see his dying 
father is mulcted thoroughly; the man who wishes only to see the scenery on 
the other side gets oft lightly. 

14. Aumann-Shapley prices 

A drawback of Ramsey pricing is that it is highly sensitive to demand elasticities, 
which in practice may not be known with much accuracy. In this section we 

9Ramsey first proposed this approach as a way of setting optimal tax rates on consumer goods 
(Ramsey, 1927). Later it was applied to public utility pricing by Manne (1952), Baumol and Bradford 
(1970), Boiteux (1971) and others. 
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examine an alternative approach that does not rely heavily on an analysis of 
demands. We posit instead that the quantities to be produced q* are given 
exogenously (perhaps as the result of a back-of-the-envelope demand analysis), 
and the object is to allocate the cost C(q*) fairly among the n products. In this 
set-up a cost allocation method is a function f(C, q*)= p where p is a nonnegative 
vector of prices satisfying ~ Piq* = C(q*). 

Many of the concepts introduced for discrete cost functions carry over to this 
case. Suppose, for example, that C is the sum of two cost functions, say capital 
cost C' and operating cost C". The cost allocation method f is additive if 

C(q) = C'(q) + C"(q) for all q ~< q* impliesf(C, q*) =f(C', q*) + f(C", q*). 

Let us now consider the analog of symmetry. We want to say that when two 
products look alike from the standpoint of costs, their prices should be equal. To 
see why this issue is not quite as straightforward as it first appears, consider a 
refinery that makes gasoline for the U.S. market (ql) and gasoline for the British 
market (q2). The quantity ql is expressed in U.S. gallons and the quantity q2 in 
Imperial gallons; otherwise they are the same. Thus the cost function takes the 
form C(ql, q2)= C'(q) where q = 0.833ql + q2 is the total quantity in Imperial 
gallons. Note that the cost function C is not symmetric in ql and q2; nevertheless 
1 and 2 are essentially the same products. In this situation it is natural to require 
that the prices satisfy Pl = 0.833p2. 

More generally, we say tha t f i s  weakly aggregation invariant I-Billera and Heath 
(1982)] if, for every C, C' and q*, 

C(ql, q2 . . . . .  qù) = C'(~2~ql) for all q ~< q* 

implies f i( C, q* ) = 2i f  ( C', S~ 2~ q* ). 

The example of U.S. and Imperial gallons may seem a bit contrived. Consider, 
however, the following situation. A refinery blends m grades of petroleum distillate 
to make n grades of gasoline for sale at the pump. Assume that the cost of blending 
is negligible. Let C(y» Y2 . . . . .  Ym) be the joint cost of producing the m refinery grades 
in amounts Y~,Y2 . . . . .  Ym. Suppose that 0ne unit of blend j uses aq units of grade 
i, 1 ~< i ~< m, 1 ~<j ~< n. Let x = (x 1, x 2 . . . .  , xù) be the amounts produced of the various 
blends. The joint cost of producing x is C(Ax). 

The cost allocation method f is aggregation invariant [Young (1985b)] if, for 
every m x n nonnegative matrix A, and every target level of production x* > 0 
such that Ax* > O, 

f(C(Ax*), x*) = f(C, Ax*) A. i° 

l°Several weaker forms of this axiom have been proposed in the literature. Suppose, for example, 
that A is a square diagonal matrix, that is, alj > 0 for all i and au = 0 for all i # j .  Thus each product 
is simply rescaled by a positive factor. Then the axiom says that the prices should be scaled accordingly. 
This is the rescaling axiom [Mirman and Tauman (1982a)]. Another variation is the following. Suppose 
that the n products can be divided into m disjoint, nonempty subgroups $1, $2 . . . . .  S,ù such that the 
products within any subgroup are equivalent for cost purposes. By this we mean that the cost of 
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A third natural  condit ion on the allocation rule is that, if costs are increasing (of 
at least nondecreasing) in every product ,  then all prices should be nonnegative. 
Formally,  we say that  the cost allocation m e t h o d f i s  nonnegative if, for every cost 
function C and target q* > 0, 

C(q) <<. C(q') for all 0 ~< q < q' ~< q* impl iesf(C,  q*)/> 0. (30) 

Theorem 9 [Billera and Heath (1982), Mi rman  and Tauman  (1982a)]. la There 
exists a unique cost allocation method f that is additive, weakly aggre9ation invariant, 
and nonnegative, namely 

Vi, p i=f i (C,q*)= (~C(tq*)/~qi)dt. (31) 

In other words, the price of each product  is its marginal  cost averaged over all 
vectors tq*:0~<t~< 1 that  define the ray from 0 to q*. These are known as 
Aumann Shapley (AS) prices and are based on the A u m a n n - S h a p l e y  value for 
nona tomic  garnes [Aum a nn  and Shapley (1974)]. 

We remark that marginal  cost pricing has all of these properties except that  it 
fails to satisfy the break-even requirement. (In the special case where the cost 
function exhibits constant  returns to scale, of  course, the two methods are identical.) 
Samet and Tauman  (1982) characterize marginal  cost pricing axiomatically by 
dropping the break-even requirement and strengthening nonnegat ivi ty to require 
that  f (C,  q*) >1 0 whenever C is nondecreasing in a ne ighborhood  of q*. 

Billera et al. (1978) describe how the AS method was used to price telephone calls 
at Cornell University. The university, like other large organizations, can buy 
telephone service in bulk from the telephone company  at reduced rates. Two types 
of contracts are offered for each class of  service. The first type of contract  requires 
that the university buy a large amoun t  of  calling time at a fixed price, and any 
amount  of time exceeding this quota  is charged at a small incremental cost. The 
second type of contract  calls for the university to buy a relatively small amoun t  
of time at a lower fixed price, and the incremental cost for calls over the quota  is 
higher. There are seven classes of service according to the destination of  the call: 
five classes of W A T S  lines, overseas (FX) lines, and ordinary direct distance dialing 
(DDD). The university buys contracts for each class of service based on its estimate 
of expected demand.  Calls are then broken down into types according to three 

producing any quantities x 1 ..... xù can be written in the form C(Y~i«slXl, Zi~s2X~ ..... Z~~smXi), for 
some cost function C defined on m variables. In this case the A-matrix consists of zeros and ones, and 
the sum of the rows is (1,1,.., 1). This version of aggregation invariance was proposed by Mirman 
and Neyman (1983), who dubbed it "consistency". (Note that this use of the term consistency is not 
the same as in Section 5). This condition is very natural, and says that splitting a product into several 
equivalent products does not effectively change their prices. When the A-matrix is a single row vector 
of ones, the condition is called weak consistency I-Mirman and Tauman (1982a)]. 

11Mirman and Tauman (1982a) prove this result under the assumptions of rescaling and weak 
consistency instead of weak aggregation invariance. 
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criteria: the time of day the call is placed, the day on which it is placed (business 
or nonbusiness), and the type of line along which it is routed (five types of WATS, 
FX, or DDD). Time of day is determined by the hour in which the call begins: 
midnight to 1 A.M., 1-2 A.M., and so forth. Thus there are n = 24 x 7 x 2 -- 338 
types of "products." Quantities are measured in minutes. For each combination 
of products demanded q = q 1, q2 . . . .  , qn, the least cost C(q) of meeting these demands 
can be computed using an optimization routine. The cost is then allocated using 
Aumann-Shapley prices, that is, for each demand vector q* the unit price is 
computed according to formula (31), which determines the rate for each type of 
call. 12 

15. Adjustment of supply and demand 

When a regulated firm uses Aumann-Shapley prices, it is natural to ask whether 
there exists a level of production q* such that supply equals demand, i.e., such 
that markets clear. The answer is affirmative under fairly innocuous assumptions 
on the demand and cost functions. Assume that: (i) there are m consumers 
j = 1, 2 , . . ,  m and that each has a utility uj(q) for bundles q = (ql, q2 . . . . .  qn) that is 
continuous, quasi-concave, and monotonically increasing in q; (ii) each consumer 
j has an initial money budget equal to bj > 0. The cost function is assumed to 
satisfy the following conditions: (iii) there are no fixed costs IC(0)= 0]; (iv) C(q) 
is continuous and nondecreasing; (v) ~C/~qi is continuously differentiable except 
for at most a finite number of points on the ray {tq: 0 <<. t <~ q*}; moreover, ~C/~qi is 
continuous for all q such that q~ = 0 except perhaps when q = 0. 

Theorem 10 [Mirman and Tauman (1982a, b)]. Under assumptions (i)-(v) there 
exists a level of output q* such that Aumann-Shapley prices clear the market, that 
is, there exists a distribution of q* among the m consumers ql, q2 . . . . .  qm such that, 
at the AS prices p, q~ maximizes uj(q) among all bundles q >1 0 such that p.q <~ bj. 

For related results see Mirman and Tauman (1981, 1982a, b) Boes and TiUmann 
(1983), Dierker et al. (1985), and Boehm (1985). An excellent survey of this literature 
is given by Tauman (1988). 

16. Monotonicity of Aumann-Shapley prices 

Aumann-Shapley prices have an important property that is analogous to strong 
monotonicity in discrete cost-sharing games. Consider a decentralized firm in which 

12The cost function computed in this manner is not differentiable, i.e., there may be abrupt changes 
in slope for neighboring configurations of demands. It may be proved, however, that the characterization 
of Aumann-Shapley prices in Theorem 9 also holds on the larger domain of cost functions for which 
the partial derivatives exist almost everywhere on the diagonal and are integrable. 
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each of the n product lines is supervised by a division manager. Corporate 
headquarters wants a cost accounting scheme that encourages managers to 
innovate and reduce costs. Suppose that the cost function in period 1 is C and 
the cost function in period 2 is C'. We can say that i's contribution to costs decreases 
if ~C'(q)/~qi<~~C(q)/~qi for all q<~q*. A cost allocation method f is strongly 
monotonic if whenever i's contribution to cost decreases, then i's unit price does 
not increase, that is, iffi(C', q*) <~f,(C, q*). 

Theorem 11 [Young (1985b)]. For every set N there is a unique cost allocation 
method that is aggregation invariant and strongly monotonic, namely, Aumann-Shapley 
pricing. 13 

17. Equity and competitive entry 

Cost allocation not only provides internal signals that guide the firm's operations, 
it may also be a response to external competitive pressures. As before, we consider 
a firm that produces n products and whose cost of production is given by C(q), 
where C(0) = 0 and C(q) is continuous and nondecreasing in q. The firm is said to 
be a natural monopoly if the cost function is subadditive: 

for all q, q' >1 O, C(q) + C(q') >~ C(q + q'). 

(This is the analog of condition (1) for discrete cost functions.) Typical examples 
are firms that rely on a fixed distribution network (subways, natural gas pipelines, 
electric power grids, telephone lines), and for this reason their prices are often 
regulated by the state. If such a firm is subjected to potential competition from 
firms that can enter its market, however, then it may be motivated to regulate its 
own prices in order to deter entry. Under certain conditions this leads to a price 
structure that can be justified on grounds of equity as well. This is the subject of 
contestable market theory. 14 

The core of the cost function C for a given level of production q* is the set of 
all price vectors p = Pl, P2, .. ,Ph such that 

~Piq* = C(q*) and p.q <~ C(q) whenever 0 ~< q ~< q*. 

Let q = Q(p) be the inverse demand function for the firm's products. A pfice vector 
p is anonymously equitable if p is in the core of C given q* -- Q(p). 

Consider a firm that is currently charging prices p* and is subject to competitive 
entry. For  the prices to be sustainable, revenue taust cover cost given the demand 
at these prices, that is, 

p*'q* >I C(q*) when q* = Q(p*). 

13 Monderer and Neyman (1988) show that the result holds if we replace aggregation invariance by 
the weaker conditions of rescaling and consistency (see footnote 10). 

14 See Baumol et al. (1977), Panzar and Willig (1977), Sharkey and Telser (1978), Baumol et al. (1982). 
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Ifp* is not in the core, then there exists some bundle q ~< q* such that p*.q > C(q). 
This means, however, that another firm can profitably enter the market. The new 
firm can undercut the old firm's prices and capture the portion q of the old firm's 
market; moreover it can choose these prices so that p.q >>. C(q). (We assume the 
new firm has the same production technology, and hence the same cost function, 
as the old firm.) Thus to deter entry the old firm must choose prices p* that are 
in the core. 

In fact, entry deterrence requires more than being in the core. To see why, 
consider a subset of products S, and let Qs(ps, P*-s)  be the inverse demand 
function for S when the entering firm charges prices Ps and the original firm charges 
prices P*-s  for the other products. The entering firm can undercut p* on some 
subset S and make a profit unless it is the case that 

for all S c_ N, Ps <~ P* and qs <~ Qs(Ps, PN-s) implies Psqs <~ C(qs, ON-s). (32) 

A vector of prices p* that satisfies (32) is said to be sustainable. Sustainable prices 
have the property that no entrant can anticipate positive profits by entering the 
market and undercutting these prices. This means, in particular, that sustainable 
prices yield zero profits, that is, costs are covered exactly. 

We now examine conditions under which AS prices are sustainable. The cost 
function C exhibits cost complementarity if it is twice differentiable and all 
second-order partial derivatives are nonincreasing functions of q: 

~2C(q) 
- - ~ < 0  for alli,  j. 

qi~ qj 

The inverse demand function Q(p) satisfies weak gross substitutability il, for every 
i, Qi is differentiable, and ~Qi/~pj >~ 0 for every distinct i and j. Q is inelastic below 
p* if 

~Qi(p)/Qi(p) >~ _ 1 for every i and all p ~< p*. 
~Pi/Pi 

Theorem 12 [Mirman, Tauman, and Zang (1985a)]. I f  C satisfies cost comple- 
mentarity and Q(p) is upper semicontinuous, then there exists an AS vector p* 
that is in the core of C given q * =  Q(p*). Moreover, if Q satisfies weak gross 
substitutability and is inelastic below p* then p* is sustainable. 

18. Incentives 

One of the reasons why firms allocate joint costs is to provide their divisions with 
incentives to operate more efficiently. This problem can be modelled in a variety 
of ways. On the one hand we may think of the cost allocation mechanism as an 
incentive to change the cost function itself (i.e., to innovate). This issue was discussed 
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in Section 16, where we showed that it leads to AS prices. In this section we take 
a somewhat different view of the problem. Let us think of the firm as being 
composed of n divisions that use inputs provided by the center. Suppose, for 
simplicity, that each division i uses one input, and that the cost ofjointly producing 
these inputs is C(q» q2 . . . .  , qù). Each division has a technology for converting ql 
into a marketable product, but this technology is unknown to the center and 
cannot even be observed ex post. Let ri(qi ) be the maximum revenue that division 
i can generate using the input qi and its most efficient technology. Assume that 
the revenue generated by each division is independent of the revenue generated 
by the other divisions. The f irm's objective is to maximize net profits 

max F(q) = ~ ri(qi ) - C(q). (33) 
« 

Since the true value of r, is known only to division i, the firm cannot solve the 
profit maximization problem posed by (33). Instead, it would like to design a cost 
allocation scheme that will give each division the incentive to "do the right thing'. 
Specifically we imagine the foUowing sequence of events. First each division sends 
a message m~(q,) to the center about what its revenue function is. The message 
may or may not be true. Based on the vector of messages m = (m 1, m2 , . .  , mn)  , the 
center determines the quantities of inputs q~(m) to provide and allocates the costs 
according to some scheme t = g(m, C), where t~ is the total amount that the division 
is assessed for using the input qi (i.e., ti/qi is its unit "transfer" price). The 
combination of choices (q(m), g(m, C)) is called a cost allocation mechanism. Note 
that the function g depends on the messages as well as on the cost function C, so 
it is more general than the cost allocation methods discussed in earlier sections. 
Note also that the cost assessment does not depend on the divisional revenues, 
which are assumed to be unobservable by the center. 

We impose the following requirements on the cost allocation mechanism. First, 
the assessments t = g(m, C) should exactly equal the center's costs: 

gi(m, C) = C(q(m)). (34) 

Second, the center chooses the quantities that would maximize profit assuming 
the reported revenue functions are accurate: 

q(m) = argmax ~ mi(qi ) - C(q). (35) 

Each division has an incentive to reveal its true revenue function provided that 
reporting some other message would never yield a higher profit, that is, if reporting 
the true revenue function is a dominant strategy. In this case the cost allocation 
mechanism (q(m), g(m, C)) is incentive-compatible: 

for every i and every m, ri(qi(ri, m_ i)) - gi((ri, m_ i), C) >1 ri(qi(m)) - gi(m, C). 
(36) 
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Theorem 13 [Green and Laffont (1977), Hurwicz (1981), Walker (1978)]. There 
exists no cost allocation mechanism (q(m), g(m, C)) that, for all cost functions C and 
all revenue functions ri, allocates costs exactly (34), is efficient (35), and incentive- 
compatible (36). 

One can obtain more positive results by weakening the conditions of the theorem. 
For example, we can devise mechanisms that are efficient and incentive-compatible, 
though they may not allocate costs exactly. A particularly simple example is the 
following. For  each vector of messages m let 

q(m_i) =- argmax ~ m•(qj)- C(q). (37) 
q j # i  

Thus q(m-i) is the production plan the center would adopt if i's message (and 
revenue) is ignored. Let 

Pi(m) = ~ mj(qj(m))- C(q(m)), 

where q(m) is defined as in (35), and let 

Pi(m-i) = ~ mj(qj(m-i))- C(q(m_i)). 
j:/: i 

P~(m) is the profit from adopting the optimal produetion plan based on all messages 
but not taking into account i's reported revenue, while P~(m_ ~) is the profit if we 
ignore both i's message and its revenue. Define the following cost allocation 
mechanism: q(m) maximizes Z m i ( q l ) -  C(q) and 

gi(m, C) = Pi(m_ i) - P,(m). (38) 

This is known as the Groves mechanism. 

Theorem 14 [Groves (1973, 1985)]. The Groves mechanism is incentive-compatible 
and efficient. 

It may be shown, moreover, that any mechanism that is incentive-compatible 
and efficient is equivalent to a eost alloeation mechanism such that q(m) maximizes 
~mi(ql)-C(q)  and gi(m,C)= Ai(m_i)-Pi(m), where Ai is any funetion of the 
messages that does not depend on i's message [Green and Laffont (1977)]. 

Under more specialized assumptions on the cost and revenue functions we can 
obtain more positive results. Consider the following situation. Each division is 
required to meet some exogenously given demand or target qO that is unknown 
to the center. The division can buy some or all of the required input from the 
center, say ql, and make up the deficit qO_qi by some other (perhaps more 
expensive) means. (Alternatively we may think of the division as incurring a penalty 
for not meeting the target.) 
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Let (qO _ qi)+ denote the larger of qO _ qi and 0. Assume that the cost of covering 
the shortfall is linear: 

ci(qi) = ai(q ° - qi)+ where a i > O. 

The division receives a fixed revenue r ° from selling the target amount qO~. Assume 
that the center knows each division's unit cost a~ but not the values of the 
targets. Consider the following mechanism. Each division i reports a target m~ ~> 0 
to the center. The center then chooses the efficient amount of inputs to supply 
assuming that the numbers mi are true. In other words, the center chooses q(m) 
to minimize total revealed cost: 

q(m) = argmin [ai(ml-  qi)+ + C(q)]. (39) 

Let the center assign a nonnegative weight 2~ to each division, where ~ 2~ = 1, and 
define the cost allocation scheme by 

gi(m, C) = aiqi(m ) -- 2 i [ ~  ajq j(m) - C( q(m) ) ]. (40) 

In other words, each division is charged the amount that it saves by receiving 
q,(m) from the center, minus the fraction 2 i of the joint savings. Notice that if 
q~(m) = 0, then division i's charge is zero or negative. This case arises when i's unit 
cost is lower than the center's marginal cost of producing q~. 

The cost allocation scheme g is individually rational if gi(m, C)<~ aiq ° for all i, 
that is, ifno division is charged more than the cost of providing the good on its own. 

Theorem 15 [Schmeidler and Tauman (1994)]. The mechanism described by (39) 
and (40) is efficient, incentive-compatible, individually rational, and allocates costs 
exactly. 

Generalizations of this result to nonlinear divisional cost functions are discussed 
by Schmeidler and Tauman (1994). It is also possible to implement cost allocations 
via mechanisms that rely on other notions of equilibrium, e.g., Nash equilibrium, 
strong equilibrium or dominance-solvable equilibrium. For  examples of this 
literature see Young (1980, 1985c, Ch. 1), Jackson and Moulin (1992), and Moulin 
and Schenker (1992). 

19. Conclusion 

In this chapter we have examined how cooperative game theory can be used to 
justify various methods for allocating common costs. As we have repeatedly 
emphasized, cost allocation is not merely an exercise in mathematics, but a practical 
problem that calls for translating institutional constraints and objectives into 
mathematical language. 
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Among the practical issues that need to be considered are the following. What 
are the relevant units on which costs are assessed- persons, aircraft landings, 
towns, divisions in a firm, quantities of product consumed? This is a nontrivial 
issue because it amounts to a decision about what is to be treated equally for 
purposes of the cost allocation. A second practical issue concerns the amount of 
available information. In allocating the cost of water service between two towns, 
for example, it is unrealistic to compute the cost of serving all possible subsets of 
individuals. Instead we would probably compute the cost of serving the two towns 
together and apart, and then allocate the cost savings by some method that is 
weighted by population. Another type of limited information concerns levels of 
demand. In theory, we might want to estimate the cost of different quantities of 
water supply, as weil as the demands for service as a function of price. Ramsey 
pricing requires such an analysis. Yet in most cases this approach is infeasible. 
Moreover, such an approach ignores a key institutional constraint, namely the 
need to allocate costs so that both towns have an incentive to accept. (Ramsey 
prices need not be in the core of the cost-sharing game.) 

This brings us to the third modelling problem, which is to identify the purpose 
of the cost allocation exercise. Broadly speaking there are three objectives: the 
allocation decision should be efficient, it should be equitable, and it should create 
appropriate incentives for various parts of the organization. These objectives are 
closely intertwined. Moreover, their interpretation depends on the institutional 
context. In allocating water supply costs among municipalities, for example, 
efficiency calls for meeting fixed demands at least cost. An efficient solution will 
not be voluntarily chosen, however, unless the cost allocation provides an incentive 
for all subgroups to participate. This implies that the allocation lie in the core. 
This condition is not sufficient for cooperation, however, because the parties still 
need to coordinate on a particular solution in the core. In this they are guided by 
principles of equity. In other words, equity promotes efficient solutions because it 
helps the participants realize the potential gains from cooperation. 

Cost allocation in the firm raises a somewhat different set of issues. Efficiency 
is still a central concern, of course, but creating voluntary cooperation among the 
various units or divisions is not, because they are already bound together in a 
single organization. Incentives are still important for two reasons, however. First, 
the cost allocation mechanism sends price signals within the firm that affects the 
decisions of its divisions, and therefore the efficiency of the outcome. Second, it 
creates external signals to potential competitors who may be poised to enter the 
market. For prices to be sustainable (i.e., to deter entry) they need to lie in the 
core; indeed that taust satisfy a somewhat stronger condition than being in the 
core. Thus incentive considerations prompted by external market forces are closely 
related to incentives that arise from the need for cooperation. 

If the firm has full information on both costs and demands, and is constrained 
to break even, then the efficient (second-best) solution is given by Ramsey pricing. 
This solution may or may not be sustainable. If demand data is not known but 
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the cost function is, there is a good case for using Aumann-Shapley pricing, since 
this is essentially the only method that rewards innovations that reduce marginal 
costs. Under certain conditions Aumann Shapley prices are also sustainable. If 
key aspects of the tost structure are known only to the divisions, however, then 
it is impossible to design a general cost allocation mechanism that implements an 
efficient outcome in dominant strategies and fully allocates costs. More positive 
results are attainable for particular classes of cost functions, and for mechanisms 
that rely on weaker forms of equilibrium. 

We conclude from this discussion is that there is no single, all-purpose solution 
to the cost allocation problem. Which method suits best depends on context, 
organizational goals, and the amount of information available. We also conclude, 
however, that cost allocation is a significant real-world problem that helps motivate 
the central concepts in cooperative garne theory~ and to which the theory brings 
important and unexpected insights. 
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