
The Ass ignment  G a m e  I: The Core  1) 

By L. S. SHAPLEY 2) and M. SHUBIr~ 3) 

Abstract :  The assignment game is a model for a two-sided market in which a product that comes in 
large, indivisible units (e.g., houses, cars, etc.) is exchanged for money, and in which each participant 
either supplies or demands exactly one unit. The units need not be alike, and the same unit may have 
different values to different participants. It is shown here that the outcomes in the core of such a game - 
i.e., those that cannot be improved upon by any subset of players - are the solutions of a certain 
linear programming problem dual to the optimal assignment problem, and that these outcomes 
correspond exactly to the price-lists that competitively balance supply and demand. The geometric 
structure of the core is then described and interpreted in economic terms, with explicit attention 
given to the special case (familiar in the classic literature) in which there is no product differentiation - 
i.e., in which the units are interchangeable. Finally, a critique of the core solution reveals an insensi- 
tivity to some of the bargaining possibilities inherent in the situation, and indicates that further ana- 
lysis would be desirable using other game-theoretic solution concepts. 

l. Introduction 

1.1. Two-Sided Market Games 

Two-sided market models are important, as COURNOT, EDGEWORTH, BOHM- 
BAWERK, and others have observed ~), not only for the insights they may give into 
more general economic situations with many types of traders, consumers, and 
producers, but also for the simple reason that in real life many markets and most 
actual transactions are in fact bilateral - i.e., bring together a buyer and a seller 
of a single commodity. Modern game-theoretic concepts, when applied to even 
the most elementary economic models, have  often yielded suggestive results, 
sometimes reinforcing and sometimes challenging the more traditional doctrines 
based on behavioristic theories of the individual 5). The present study, of which 
this paper is the first part, will concern a class of simple, two-sided market "games" 
whose distinctive feature is the indivisibility and the ability to satiate of the goods 
for sale, e.g. houses or automobiles, so that the primary object of the game is 
simply to find suitable "assignments" of buyers to sellers 6). 

1) Research supported in part by the Cowles Foundation for Research in Economics under Contract 
Nonr-3055(01) with the Office of Naval Research, in part by the United States Air Force under Pro- 
ject RAND-Contract F 44620-67-C-0045, and in part by The Rand Corporation. 

2) LLOYD S. SHAPLEu The Rand Corporation, Santa Monica, California, USA. 
3) MARTIN SHUBIK, Yale University, New Haven, Connecticut. 
r See references at the end of this paper. 
s) See e.g., DEBREU and SCARF; SHAPLEY 1959; SHAPLEY and SHUBIK 1959; SHAPLEY and SHUBIIr 

W. Y,; SHUBIK. 
6) This model was first treated by SHAPLEY in 1955; the present account has been extracted from 

the manuscript of a book in preparation. A short, nongame-theoric account will be found in GALE 
[pp. 160- 162]. 
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We intend to explore the properties of such assignment games from several 
different solutional viewpoints. In this first part we shall concentrate on the core 

of the game - i.e., the set of outcomes that no coalition can improve upon1). 

1.2. The Underlying Economic Assumptions 

The assumptions of our model, though restrictive in many respects, do permit 
considerable latitude in size and structure. There may be many or few traders 
on either side of the market, there may be product differentiation, and the traders 
themselves may be quite dissimilar in their likes and dislikes. Thus, a wide range 
of specific models, from a situation where, say, two or three firms are bidding 
for the same building site, to a large "noisy" milieu like the private-party market 
in used cars, are encompassed within the same framework and can be given a 
more or less uniform treatment. 

Let us list the main economic assumptions: 
1. Utility is identified with money. 
2. Side payments are permitted. 
3. The objects of trade are indivisible. 
4. Supply and demand functions are inflexible. 

This is not the place for extended comment on the first assumption 2). We do, 
however, stress one point. In the open marketplace, where there are many individ- 
uals buying and selling for money (often acting as fiduciaries or trustees - i.e., 
using other people's money), the full monetization of utility comes closest to a 
practical realization. Here if anywhere the assumption of "u-money" is defensible. 

The second assumption is largely one of convenience in modeling and analysis. 
By permitting free transfer of money among all participants we avoid the neces- 
sity of providing by special rules for the ordinary payments from a customer to 
his supplier. To be sure, we are also permitting payments to third parties, i.e., 
"side payments" in ordinary parlance. But it is worth noting that the avoidance 
of such payments, in situations where they are in fact avoided, is generally more 
a matter of custom or ethics than of hard and fast rules. The core solution, as it 
turns out, excludes third-party payments. We shall see latter that the value solu- 
tion usually requires third-party payments, for reasons related to the discussion 
in Sec. 5 below 3). The stable-set solutions, which are interpreted as "standards 
of behavior" in the yon  NeUMANN-MORGENSTERN theory, have it both ways; 
some standards of behavior allow third-party payments while others do not 4). 

The third assumption is rather unusual, since it is more often the opposite 

1) For treatments of other solution concepts in certain special cases of the assignment game see 
SHAPLEY [1955 and 1961] and SHAPLEY and SHUBIK [1969], also VON NEUMANN and MORGENSTERN 
[pp. 555 -- 586]. 

2) See for example SHAPLEY and SHUBIK [1966, pp. 8 0 7 -  808]. 
3) See also SHAI~LEY [1961]; SrlAI'LEY and SHUBm [1969]. 
6) See SHAPLEY [1959] and VON NEUMANN and MORGENSTERN ]oc. cit. 
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hypothesis (i. e., fungibility and perfect divisibility) that is imposed in the name of 
mathematical simplification. Indivisibility is usually considered an "imperfection" 
in the market - a technical and conceptual difficulty. Indeed, our present approach 
leads us towards combinatorics and linear programming, and away from the 
differential calculus methods that pervade so much of traditional economics. 
There is no dearth of economic applications under this assumption, however; a 
classic example is BOHM-BAWE~K's horse market (see Sec. 4)1). Our model is 
significantly more general, however, since it permits differentiation among the 
items in trade. 

Inflexibility, the fourth assumption, in a way includes the third. Having postu- 
lated indivisible commodities, we further assume that each producer has a supply 
of exactly one item, and each consumer a desire for exactly one item. One might 
achieve much the same effect in terms of perfectly divisible goods by assuming 
individual supply and demand functions of a step-function type, as illustrated below 
for the case of undifferentiated products. 

Our assumptions are admittedly restrictive, but they are not entirely unrealistic 
and we are not seeking wide generality for our model in any case. While excluding 
many important but secondary considerations, we wish to focus attention on 
what we consider the basic motive force of competitive economics, namely the 
profitable interaction between separately maximizing individuals. 

SUPPLY FUNCTION DEMAND FUNCTION 

I I 
I 2 

QuantHy Quantity 

Fig. 1 

2. Description of the Game 

2.1. A Real Estate Market 

We shall now formulate the market game in detail, motivating it in terms of 
a market in private homes. Another interpretation, less specific and hence more 
versatile, will be outlined in Sec. 2.3. 

Let there be m homeowners in the market, and n prospective purchasers. We 
shall refer to them simply as sellers and buyers, respectively. The i th seller values 
his house at c i dollars, while the jth buyer values the same house at hij dollars 2). 

1) For a modern treatment of the problem of indivisibilities in a competitive market, see HENRY. 
2) For a numerial example, see Table 1, in Sec. 3.4. 
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(These are meant to be actual utility valuations, not estimates of market price. 
But they might nevertheless be thought of as arising from the existence of other 
means of disposal or sources of supply, outside the model.) If hij > c~ then a price 
favorable to both parties exists. We do not, however, assume that this inequality 
holds in all cases, or indeed in any case at all. 

The possible moves in the game include the transfer of any house from its 
owner to any buyer, and the transfer of money from any player to any other. 
As we have pointed out before, we do not have to spell out the detailed scheduling 
of contacts, bids, offers, payments, etc., although such tactical features would be 
quite conspicuous in any account of the rules of the game in extensive form. All 
that we require, for our present purpose, can be summed up in the one simple 
observation: if i sells his house to j for p~ dollars, and if both avoid dealing with 
third parties, then i's final profit or gain is exactly 

P i -  ci, (2.1) 
and j's is exactly 

h~j - Pi" (2.2) 

We have no way at present of ascertaining the price p~, but we can postpone 
the question. Since sales prices are not formally distinguished from other side 
payments, they will drop out of our initial calculations, only to reappear, rather 

unexpectedly, when the solution of the game begins tO take shape. 

2.2. The Characteristic Function 

The characteristic function of the game, which states the worth v(S) of every 
coalition S, can now be determined. Let M denote the set of all sellers, and N the 
set of all buyers. To begin with, it is obvious that 

v ( S ) = O  if IS I = 0 o r l ,  (2.3) 

since no player, without help from another, can effect a profitable transaction. 
More generally, we see that all of the one-sided coalitions are "flat": 

v ( S ) = O  if S__.M or S s  (2.4) 

In other words, only a mixed coalition can ever hope to assure a profit. 
The simplest kind of mixed coalition consists of two players, one of each type. 

For  this case we have ~) 

v(i]) = m a x  (O,h iy  - ci)  if i e M and j e N.  (2.5) 

For brevity, we denote this number by aij. Note that it does not depend on the 
sales price Pi that appears in (2.1) and (2.2), since that is merely an internal transfer 
as far as the coalition/~ is concerned. 

~) We write "~" rather than the more awkward "{i,j}". 
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A moment's reflection reveals that these mixed pairs are the only essential 

coalitions in the game ~), The best that a larger coalition can do is to split up into 

separate trading pairs and pool the profit. Hence the m x n matrix (aij) suffices 
to determine v completely. In fact, v may be characterized as the smallest super- 
additive set function on M u N satisfying (2.3) and (2.5). 

In order actually to compute v for the larger mixed coalitions, we must pick 
out an optimal set of transactions, maximizing the coatition's total gain. Put 
symbolically, we have 

v(S) --- max [%Jl + ai2;2 + "" + aikj~], (2.6) 

the maximum to be taken over all arrangements of 2k distinct players i~ .. . .  , i k 
in S c~ M and j~ . . . . .  j~ in S c~ N, where k = rain (JS c~ MI,JS c~ NI). The evalua- 
tion of an expression such as (2.6) is commonly called the "optimal assignment 
problem" or simply "assignment problem"; accordingly we refer to games of 
this form as assignment games. 

For relatively small coalitions S (say, less than 10 players) the maximum in 
(2.6) can often be discovered by inspection; the reader may try his hand on the 
examples below. (In the first there are four optimal assignments, in the second 
there is just one; the respective values are 4 and 16.) 

S n N  S n N  

C 

0 2 0  
2 0 2  
0 2 0  

C 

5 8 2  
7 9 6  

2 3 0  

For  larger matrices, systematic methods are available for finding the optimal 
assignment z). 

For  the most part we shall be interested in evaiuating (2.6) only for the all- 
player coalition S = M u N. The number v(M u N) is obviously very important, 
since it determines the maximum total monetary payoff, and hence the Pareto 
set and imputation space of the game. The optimal assignments for the other large, 
nonessential coalitions have little effect on the analysis of the game. 

2.3. A Game of Monogamy 

It will be observed that the characteristic function of the assignment game, 
when defined in terms of the numbers %, is symmetric in its treatment of buyers 
and sellers, although the market model itself was not. The following alternative 

1) A coalition is "essential" if it has more than one member and exhibits strict superadditivity for 
every split-up into smaller coalitions, i.e., v(S) > v(S1) + v(S 2) for all $1, Sz with S 1 ~ 0, $2 ~ 0, 
SI~S 2 =S, andS lc~S 2 =0. 

2) See e.g., DANTZIG [Chapter 15]. 



116 L.S. SttAPLEY and M. SHUBIK 

interpretation of the game, in sidestepping the preliminaries that went into the 
"real estate" version, has the conceptual advantage of being symmetrical from 
the start 1). 

We may imagine an economic milieu in which two types of agents, say "pro- 
ducers" and "consumers" (or "men" and "women"), are constrained for some 
reason to conduct their business under exclusive, bilateral contracts. Thus, after 
an initial period of jockeying for position, a number of partnerships are formed, 
and any transfers of goods or services (but not money) are limited to exchanges 
between partners. In this model we do not care particularly about the nature of 
the goods or services; we only care that with every partnerships ij there is associ- 
ated a number a~j > O, denoting the potential for profit of that partnership if it 
forms. If we now regard the system as a cooperative game, it is apparent that its 
characteristic function is given by (2.4) and (2.6). 

A contract between players i and j would of course specify how the gain a~j is 
to be divided. A prudent, "economic" man playing this game would be loath to 
enter a partnership for a stated share of the proceeds until he had satisfied himself 
that more favorable terms could not be obtained elsewhere. We can imagine that 
each player would set a price on his participation, and that no contracts would 
be signed until the prices on both sides of each partnership formed are in harmony, 
i.e., satisfy each partner and add up to what the partnership is worth. One may 
well ask: does a set of such "harmonious" prices exist? 

Mathematically, this question may be put as follows: Do there exist numbers 
q~ > 0, rj > 0 such that 

{ q~ + rj = a~j if i and j are ultimately partners, 
q~ + rj > a~j if they are not? 

The answer is in the affirmative, as we shall presently demonstrate. This fact is 
of central importance throughout all the subsequent analysis of the assignment 
game. 

2.4. Complementarity 

Before proceeding to a study of the solutions of the assignment game, we shall 
digress briefly to describe an interesting property of the characteristic function. 

The superadditivity of v in (2.6) is obvious, since combining two coalitions only 
enlarges the set of possible assignments. Less obvious is the way in which the 
marginal  value of a player responds to changes in the make-up of the coalition 
to which he belongs. Intuitively, we should expect a player's value to a coalition 
to be small when there is an excess of players of his type, and large when there is 
an excess of players of the other type. In other words, similar players should appear 

1) Cf. GALE and SHAPLEY [1962]. 
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somewhat as substitutes in coalitiona! matters, and dissimilar players as comple- 

ments. The following theorem gives an expression to this intuitive idea. 
A special notation will be useful: S p will denote the coalition consisting of S 

and the added player p. (We shall use this notation only when p is not a member 
of S.) Then the marginal value of player p to the coalition S is given by 

m(p,S) = v(S p) - v(S).  

The following result is proved in SHAPLEY [1962]. 

Theorem 1: 

If p and q are of the same type (i. e., both in M or both in N), then 

m(p,S q)<m(p,S) ,  all S~p ,q .  

If they are of the opposite type, then 

m(p,S q)>m(p,S) ,  all S~p,q .  

It will be seen that this theorem is simply a statement about the sign of the 
"second difference" v(S pq) - v(S ~) - v(S q) + v(S). When this quantity is positive, 
the players are complementary inputs to the coalition-forming process; when it 
is negative, they are substitutes. 

3. The Core 

3.1. LP Form of the Model 

It will be useful at this point to recast the assignment problem (2.6) into linear 
programming (LP) terminology. 

Consider just the assignment problem for the coalition of all players - i.e., 
the problem of determining v ( M  ~ N). Introduce mn nonnegative real variables 
xi~, i~ M, j ~ N, and impose on them the m + n constraints 

xij =< Y.-, ij _-< (3.1) 
iEM j e N  

(We may interpret x~j in the real estate game as the fraction of thr i t~ house sold 
to player j, or, in the partnership game, as the probability that partnership/j will 
form.) The LP problem is then to maximize the following objective function: 

z = Z Y~aijxij . (3.2) 
ieM j s N  

It can be shown [see DANTZIG, p. 318] that the maximum value Zm~ x is attained 
with al! x~j = 0 or 1. Thus, the fractions or probabilities artificially introduced 
disappear from the solution, and the (continuous) LP problem is effectively equi- 
valent to the (discrete) assignment problem, so that we have 

Zma x = /)(M k-) N ) .  

As is well known, every LP problem can be tranposed into a dual form, and the 
solutions of the two problems are intimately bound up in each other. In the present 
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case, the dual has m + n nonnegative real variables, u 1 . . . . .  urn, Vl .. . .  , v,, subject 
to the m n constraints, 

u i + vj > aij, i ~ M ,  j ~ N ,  (3.3) 

and the objective is to minimize the sum: 

w =  ~ u i + ~ vj. (3.4) 
i~M j~N 

The fundamental duality theorem t) tells us that Wr.i, = Zmax. 
What meaning does the dual problem have in the present context ? Let (u, v) = 

(ut . . . . .  u , , ,v l ,  . . . ,v , )  be a vetcor that minimizes (3.4), subject to (3.3). Then we 
have 

2 U i  "~- 2 / ) j  : Wmi n = Zma x ~--- / ) (M k.) N ) .  (3.5) 
iEM j~N 

This means that (u,v) is an imputation z) of the assignment game. Moreover, 
(3.3) tells us that for every pair i e M, j ~ N, 

U i -I- I)j ~ a i j  : v(ij) .  

It follows, by (2.6), that for any coalition S 

ui + Z vj >= v(S). (3.6) 
ieSc~M j~SnN 

But (3.5) and (3.6) are exactly how the core of the game is defined: (3.5) ensures 
the feasibility of (u,v) and (3.6) ensures its non-improvability by any coalition. 
Conversely, any payoff vector in the core - i.e., satisfying (3.5) and (3.6) - clearly 
fulfills the conditions for a solution to the dual LP problem. Hence we conclude: 

Theorem 2: 
In core of an assignment game is precisely the set of solutions of the LP dual 

of the corresponding assignment problem. 

3.2. Prices 

Our venture into the field of linear programming has proved most fruitful. 
We have already garnered (1) a proof of the existence of the core, (2) a characteri- 
zation of the points in the core, and (3) an assurance of effective computational 
procedures for both the characteristic function and the core 3). 

1) See e. g., DANTZIG [p. 129]. The existence of feasible solutions to both primal and dual is apparent 
from an inspection of (3.1) and (3.3). 

2) I.e., a nonnegative, Pareto optimal payoff vector. 
~) It is interesting that the core can be found without solving the multitude of assignment problems 

arising from the proper submatrices of (aii li ~ M,  j ~ N). Because of this, the core in a large assignment 
game may be easier to compute than the characteristic function itself. The explanation of the paradox 
lies in the relatively small number of coalitions that are essential. 



The Assignment Game I: The Core 119 

The reader schooled in LP will now be expecting an attempt to connect the 
dual solutions to a price mechanism, and we shall not disappoint him. In fact, 
the connection is very simple. In order to ~chieve the profit ui promised by a given 
core vector (u,v), the owner of the i th house must sell it at the price 

Pi = ci + u i .  (3.7) 

If all the owners attach such price-tags p~ to their houses, then the typical buyer j 

will be confronted by a choice among the m possible net gains: 

h~j - p~, i e M.  (3.8) 

If these numbers are all negative, then j perforce stays out of the market, and ends 
the game with a profit of zero; otherwise he will seek to maximize (3.8). This is 
equivalent, in view of (3.7) and (2.5), to maximizing 

a i j  - ui  , i e M . 

We know by (3.3) that none of these numbers exceed vj. On the other hand, the 
minimization of the dual objective form (3.4) ensures that at least one of them is 
equal to vj, This means that buyer j 's maximum profit is precisely v j, and he is 
led to it by direct comparative shopping. 

For  an example with specific numerical values, the reader is now invited to 
look ahead to Sec. 3.4. 

What if several shoppers find that the same house is a "best buy"? Can this 
happen ? In the most common case, where the optimal assignment is unique and 
where the chosen vector (u, v) lies in the relative interior of the core (see the next 
section), the answer is no. The price schedule (3.7) leads the players unambiguously 
to a nonconflicting allocation of goods that maximizes the welfare of the group 
as a whole and obtains for each individual the specified amount u~ or v j .  

In exceptional, "degenerate" cases there may be ties in the buyers' preferences, 
and care must be taken to resolve the ties without assigning the same house to 
more than one buyer. This is always possible, as can be demonstrated by a simple 
perturbation argument. 

3.3. Structure of the Core 

The core of the assignment game only rarely consists of just a single imputa- 
tion 1). Consequently, the price structure just described is seldom unique. In this 
section we shall attempt to account for the multiplicity of solutions and discuss 
what it means in the market context. 

1) The first matrix shown in Sec. 2.2 provides an example: the core of the associated 6-person 
game contains just the imputation (0, 2, 0; 0, 2, 0). The other matrix shown there is more typical, 
however. 
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In general, if numbers aij > 0 are chosen "at random", the optimal assignment is 
unique t). This implies that a dual solution (u,v) exists in which the strict ine- 
quality: 

U i "]- Vj > aij 

holds for all pairs ~-that are not involved in the optimal assignment. Let i 'f be 
one of the min (m, n) pairs in the optimal assignment. Then a small amount can 
be shifted from u i, to v j, without spoiling any of the conditions for a dual solution. 
It follows that there are at least rain (m, n) "degrees of freedom" in the core. On 
the other hand, the dimensionality of the core is certainly never greater than 
rain (re,n), because if the u-components of a core vector are given, then the v- 
components are completely determined, and vice versa. 

A picture of the core is beginning to take shape: it is a closed, convex poly- 
hedral set whose dimension is typically equal to min (m,n), but may be less in 
the presence of degeneracies - i.e., special arithmetical relations among the aij. 
Note that the dimension of the imputation space, in which the core is situated, 
is m + n - 1, which is considerably larger than rain (m, n). 

We next show that the core tends to be elongated, with its long axis oriented 
in the direction of market-wide price trends. There is a "high-price corner" of 
the core, at which every seller gets his top profit and every buyer his bottom. 
There is also a "low-price corner", where the reverse is true. These points are poles 
of a diameter; they prove to be at least as far apart as any other two points in 
the core. Thus, to a considerable extent, the fortunes of all players of the same 
type rise and fall together. 

Let us try to make this intuitively plausible. For simplicity assume m = n. 
Suppose that we have a Core vector at which all players show a positive profit. 
Then a small constant can be subtracted from all of the sales prices without 
upsetting the core conditions. Each buyer-seller pair makes the same profit as 
before, and no individual is forced to take a loss. This price-cutting can continue 
until some seller is priced out of the market, his profit going to zero. The process 
can of course be reversed, raising all prices by equal amounts until one of the 
buyers is driven out. Thus there is a natural "degree of freedom" within the core 
that corresponds to market-wide price movement a). 

This phenomenon is often encountered in the cooperative solutions to market 

1) If the original data of the real estate version of the game are chosen "at random" - more precisely, 
from continuous probability distributions that give zero weight to any particular numerical value - 
then the value 0 may be favored over other values in the assignment matrix, and nonuniqueness  in 
the optimal assignment may occur with positive probability. But this merely reflects indeterminacy 
in the choice of inactive buyer-seller pairs, involving players who are actually "priced out of the market". 
The u~ or vj for such players are identically zero in the core, and the dimension of the core is reduced 

accordingly. 
2) This will be illustrated in Sec. 3.4. If m ~ n a similar discu:~ion applies, except that it may no 

longer be possible to drive any of the players of  the less numerous  type down to zero. 
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games 1). The heuristic principle may be stated as follows: intergroup allocations 
are relatively indeterminate, intragroup allocations are relatively precise. 

Theorem 3: 
Over all imputations in the core, let u* and u,i denote the highest and lowest 

payoffs, respectively, to player i~ M; similarly define v* and v,j  for player j e N. 
Then the payoff vectors 

(u,,v*) and (u*,v,) 

are themselves in the core. Moreover, no two imputations in the core are further 
apart than these two 2). 

Figure 3, in w 3.4 below, may help the reader to visualize this theorem. The heart 
of the proof is in the following lemma: 

Lemma : 
Let (u',v') and (u",v") be any two imputations in the core. Define 

__u i = min(u'i,u'~'), vj = min(v~,v~'), 

ui = max (u'i, u'i'), ~ = max (v}, 4 ) .  

Then the vectors (_u,~) and (~,_v) are in the core. 

u i + ~j = min (u'i + ~j, u~' + ?)j) 

Proof: 
For any i, j we have 

r r !  > min (u'i + v~, ui + v~) 

)" a i j  

using (3.3). Hence (u,~) is undominated. It remains to show that it is an imputa- 
tion. It is obviously nonnegative; we must therefore show only that its compo- 
nents add up to v ( M  u N). For convenience, label the players so that the pairs 
11,22 . . . . .  kk  describe an optimal assignment. (Here k < min (m,n).) Then: 

! l !  I u_i = min  (ui,ui) = min ( a . -  vi ,a .  - v'i') 
= a .  - max (v'i, v'[) = a . -  r) i 

for i < k. Also, for i , j  > k (if any) we have u i = ~j = 0. Hence 

k 

i~M j s N  i= l 

This completes the proof of the lemma. 

5) For  stable sets cf. SHAPLEY [1959]; for cores cf. the '~ treatment" principle as expressed e. g. 
in Theorem 2 of  DEBREU and SCARF; for kernels cf. SHAPLEY and SHUBIK [W. Y.]. 

2) A similar theorem is proved in GALE and SHAPLEY [1962]. 
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To prove the theorem, simply take a finite collection of core vectors that 
includes all the extreme values going into the definitions of u*, u,~, v*, v,j, and 
apply the lemma repeatedly to construct additional core vectors, until (u*,v,) 
and (u,,v*) are reached. For the last statement of the theorem, note that any 
two points (u',v'), (u",v") in the core necessarily satisfy the inequalities: 

[u' i -  u'i' [ <= u* u, i ,  all i e M ,  
and 

[v ) -  v}'[ < v* - v , j ,  all j e N .  

Thus the stated result holds not only for euclidean distance but for any distance 
function based on a linear norm, i.e., that depends only upon the absolute values 
of the coordinate differences. 

3.4. A Numerical Example 

Let there be three sellers (1,2, 3) and three byers (1',2', Y), as follows: 

Table 1 

Houses Sellers' basis Buyers' valuations 
(i) (ci) (h,1) (h~2) (h,a) 

1 $18,000 $ 23,000 $ 26,000 $ 20,000 
2 15,000 22,000 24,000 21,000 
3 19,000 21,000 22,000 17,000 

These data lead at once to the following (a 0 matrix, already considered in Sec. 
2.2: 

(buyers N) 

1' 2' 3' u: 

(sellers M) 
1 5 (8) 2 
2 7 9 ~) 
3 @ 3 0  

4 
5.5 (units of $1000) 
0 

v: 2 4 0.5 

The unique optimal assignment is shown circled, the total gain being $16,000. 
One of the core vectors (u,v) is also shown. The reader can verify that the matrix 
(Ui + v j) majorizes (aij), with equality only on the circled entries. The prices 
corresponding to this core vector are $ 22,000, $ 20,500, and $19,000 respectively. 
Given these prices, the first buyer clearly prefers the third house, as his gain is 
$ 2000 rather than $ 1000 or $ 1500. Similarly, the second buyer prefers the 
$ 4000 gain at house 1 to the gain of $ 3500 or $ 3000 at house 2 or 3. Finally, 
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house 2 is the only one that the third buyer would even consider, at the stated 
prices. 

The nonuniqueness of this solution is evident, since none of the buyers' compari- 
sons were closer than $ 500, and only one seller (the third) is at, or even close to, 
his cost. Thus, any one price could be raised by $ 500, or either of the first two 
prices lowered by $ 500, without moving the outcome out of the core. Or all three 
prices could be increased together, in a market-wide price movement, until the 
"weakest" buyer (the third) is driven out. 

The geometry of the core is shown in Fig. 2. Since optimality demands the uni- 
que set of assignments {~',2-3',~'}, we have depicted just the rectangular, 3- 
dimensional region in the (5-dimensional) imputation space in which the equa- 
tions ul + v2, = 8, u 2 + v3, = 6, u3 + vl, = 2 are satisfied. (The imputations 
outside this region cannot be attained without the aid of "third party" side pay- 
ments.) The core is a five-sided polyhedron situated within this region, touching 
the boundaries u 3 = 0 and vv = 0. The solution point discussed above happens 
to lie in the bottom face, as shown by the open dot "o" in Fig. 3. The doubleheaded 
arrow indicates the direction of market-wide price changes. The tow-price corner 
(u.,v*), where all sellers get their minimum gains, is at the lower left; the high- 
price corner (u*,v.) is at the upper right. The (euclidean) distance between them 
is x ~  times $1000, or $ 2449; the distance measured in terms of the total effect 
on the sellers as a class is $ 4000. 

f 
u 3 ( = 2 - v  I ) 

i ~ / ~ =  6 _v3 ) - . . . . .  i - -  "/'] . . . . . . .  

u 1 : 8-v2) . 

Fig. 2 

f u *  = ( 5 , 6 , 1 )  ~ ~v, =(I ,  3,0) 

/ ~ ~ u : ( 4 ,  5.5, o) 
u, =(3, 5, O)f ~ ' _v_ . . . . . . .  " Iv =(2, 4, 0.5 ) 
v* : (2, 5, I) 

Fig. 3 
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4. A Special Case 

4.1. The Horse Market of BOHM-BAWERK 1) 

Discussions of price theory in economics have been enlivened by allusions to 
"B6HM-BAWERr~'S horses," the central figures in a microcosmic market detailed 
in that author's Positive Theory of Capital, first published in 1891. Since this 
imaginary but numerically specific market model translates directly into an 
18-person cooperative game, it makes an inviting target for the "big game hunter" 
anxious to try out his techniques. (Eighteen may be a small number in economics, 
but it is a large number in game theory !) Apart from the test of techniques, there 
is the prospect of an instructive confrontation among the various game solutions 
- cores, stable sets, values, etc. - and the classical solution as put forward by 
BOHM-BAWERK. 

The basic data of the market are shown in Table 22). Eight individuals each 
have one horse for sale. Ten other individuals each wish to buy one horse. The 
horses themselves are all alike, but the traders have different "subjective valua- 
tions", ranging between $10 and $ 30, of what it is worth to own a horsea). No 
restrictions are placed on communication, on transfers of money, or on transfers 
of horses. The basic game problem, informally stated, is to decide how the inherent 
profitability of the market, arising from the differences in subjective valuation, 
is to be shared among the horse-traders. This is also, of course, the basic economic 
problem. 

Table 2 

Sellers Buyers 

A1 values a horse at $10 

A 2 values a horse at $11 

A 3 values a horse at $15 

A 4 values a horse at $17 

A s values a horse at $ 20 

A6 values a horse at $ 21.50 

A 7 values a horse at $ 25 

As values a horse at $ 26 

B1 values a horse at $ 30 

B 2 values a horse at $ 28 

B 3 values a horse at $ 26 

B4 values a horse at $ 24 

Bs values a horse at $ 22 

B6 values a horse at $ 21 

B7 values a horse at $ 20 

B s values a horse at $18 

B 9 values a horse at $17 

B10 values a horse at $15 

4.2. The Characteristic Function 

The reader will recognize that the present example, and the class of markets 
it exemplifies, is a decided simplification of our general model in one important 

1) Much of the following is drawn from SHAPLEY [1961]. 
2) See B6HM-BAWERK [p. 203]. We have arbitrarily replaced pounds by dollars. 
3) To own a second horse, however, is worth nothing more. 
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respect: the absence of  product differentiation. The matrix of input data (hi j) can 
accordingly be reduced to a vector (hi). As a result, the assignment matrix (a~j), 
now defined by 

aij = max (O, hj - ci), (4.1) 

enjoys the following special property: in each 2 x 2 submatrix with nonzero 

entries, the sums of  the diagonals are equal. This means that any set of assignments 
involving actual trades can be switched around, without loss or gain to anyone, 
since it only matters who buys and who sells, and not how they pair up. Hence 
the optimal assignment problem is rather trivial, and we shall be able to express 
the characteristic function in a very simple way. 

Let S be an arbitrary coalition, and let its members be denoted by A~I, . . . .  A~, 
Bj~ . . . . .  Bjm, where the sellers A~ are arranged in order of increasing c~ and the 
buyers Bj in order of decreasing hj. Then it is easy to see that 

v(S) = al,j~ + ai2j2 + "'" + aikjk, (4.2) 

where k = rain (l,m). In other words, for computational purposes we can assume 
that the "strongest" buyer in any coalition buys from the "strongest" seller, and 
so on down the line, until either the players of one type are exhausted or a pair 
is reached that cannot trade at a profit. 

Applying these remarks to the data in Table 2, we find that 

v ( M w N ) = $ 2 0 +  $17  + $ 1 1 +  $7  + $2  + O + O + O = $ 5 7 .  (4.3) 

This is the total amount of profit inherent in the market, and it is achieved when- 
ever the first five buyers acquire the horses of the first five sellers, and only then. 

4.3. The Core 

The core, too, is easy to determine, since the absence of product differentiation 
leads to a uniform market price. To see this let (u,v) be a typical imputation in 
the core. Suppose the amount of money received by some active seller i, which 
is ui + % happens to be less than the amount of money paid by some active 
buyer j, which is hj - vj. Then an improvement for ~ would obviously be possible, 
since 

ui + vj < hj - ci = a i j ,  

and (u, v) would not be in the core after all. 
In short, each active seller must receive at least as much as each active buyer 

pays out. But no money enters the system; hence in any given core imputation 
all transactions take place at the same price. 

Thus, the core can be described by means of a single parameter p. A vector 
(u, v) is in the core if and only if, for p in some specified range, we have 

ui = max (0,p - c 0 , all i e M ,  ) 
v j = m a x ( 0 , h j - p ) ,  all j e N .  ; (4.4) 
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The range over which p can vary is given by the requirement that ~ ui + ~ vj = 
v(M u N). This can only be satisfied if the same number of players of each type 
are active - more precisely, if the number of i such that p - ci > 0 does not ex- 
ceed the number of j  such that h i - p > 0, and vice versa. Geometrically the core 
is a straight line segment, and in its interior exactly the same number of traders 
of each type make a positive profit. 

In the numerical example (Table 2), a price in the interval $ 21.00 < p < $ 21.50 
permits exactly five players of each type to trade at a profit. If the price were to 
exceed the upper limit, the sixth seller would put up his horse for sale and an 
imbalance would be created that would tend to drive the price down again. 
Similarly, a price less than $ 21 would find six (or more) buyers competing for 
five (or fewer) horses. The endpoints of the core are therefore 

(11.5, 10.5, 6.5, 4.5, 1.5, 0, 0, 0; 8.5, 6.5, 4.5, 2.5, 0.5, 0, 0, 0, 0, 0) 

and 
(11, 10,6,4, 1, 0, 0, 0; 9,7, 5, 3, 1, 0, 0, 0, 0, 0). 

These are of course the extremal imputations (u*, v,) and (u,, v*) of Theorem 3 in 

Sec. 3.3. 

4.4. Discussion 

The core that we have determined in the preceding section is precisely the 
classical solution as given by B6HM-BAWERr~. A uniform market-wide price is 
established at a level which, though not precisely determined, is constrained 
within fairly narrow limits. If the consumers and suppliers in the market are suf- 
ficiently numerous, and if the tastes of the former and the costs of the latter are 
sufficiently variegated, then something close to a determinate outcome can be 
predicted. It is the classical balance of supply and demand. (See Sec. 5). 

The one-dimensionality of the core represents the most extreme form of the 
elongation described in Theorem 3; this is a consequence of the lack of differentia- 
tion among the objects of trade t). If a small "random" perturbation were applied 
to the model, giving the buyers slightly different subjective valuations for different 
horses, then although the dimension of the core might jump from 1 to 5 it would 
nonetheless remain very slender 2). If the buyers should become more dissimilar 
in their tastes, however, the core would grow fatter. The ultimate in this direction 
would be a game in which each buyer has only one horse that he would accept 
at any price. Since the bargaining for each horse would then be independent of 

1) A technical explanation may be found in the large number of optimal assignments that are pos- 
sible. Multiplicity in the primal solutions of an LP problem is commonly accompanied by reduced 
dimensionality of the dual solutions, 

z) It can be shown generally that the core varies continuously as a function of the characteristic- 
function values; see B6HM [1972]. 



The Assignment Game I: The Core 127 

the others, the game would decompose  into smaller games, and the core would 

take the form of a rectangular  parallelepiped (i. e., a p roduc t  of  intervals). 

5. The Core and the Competitive Equilibrium 

5.1. Convergence of the Core 

An extensive literature a) now exists on the relation betwccn the ct)rc of a market  

game and the not ion of  a competi t ive price equilibrium. Three basic features of 

this relationship are (1) that  every competi t ive ou tcome 2) is in the core, (2) that  

the core will generally contain other outcomes,  and indeed may  exist in situations 

where no competit ive ou tcome exists, and (3) that  under  suitable condit ions 
involving the number,  size, or similarity of  the economic  agents, the core ap- 

proaches or  even coincides with the set of  competi t ive outcomes. 

The reader familiar with these ideas will already have recognized that  in the 

assignment game 3) every core ou tcome is competi t ive and vice versa. (See the 

discussion of  prices in Sec. 3.2.) There is no doubt ,  then, as to the convergence of  
the two solution concepts;  even if there are only a handful  of  players they coincide 

exactly. The reason for this lies in the special nature of  the supply and demand  

functions (see Fig. 1), and the underlying preferences and indivisibilities that  they 

reflect. The "lumpiness" of  the commodi ty  causes essentially the same nonuni-  

queness in the competit ive prices as it does in the allocations that  all coalitions 
will tolerate. 

There is, however, another  sort of convergence of interest, already suggested 

in Sec. 4.4. We shall describe it in general terms, having no actual theorems to 

offer. If the number  of  traders is increased, on both  sides of  the market,  in such 

a way that  their valuations for the products  b rought  to market  become more  and 
more  diverse (but remain bounded  in a suitable sense), then the core will tend 

to shrink i.n size. The presence of a larye variety of traders or  products  can in 

effect smooth  out  the supply and demand  functions, and lead to more  tightly 

determined competit ive prices. In the BOHM-BAWERK model,  where there is no 

1) Much of it, to be sure, has appeared since SHAPLEY [1955], our first treatment of the core of 
the assignment game. The basic paper of DEBREU and SCARF remains an excellent introduction; for 
a recent contribution to the subject (with a good bibliography) see SHITOVITZ. 

z) A final distribution of goods and money, or the corresponding vector of utilities, is called "com- 
petitive" if it can result from a behavioristic process in which all decisions concerning production, 
trade, and consumption are made noncollusively and in strict accordance with a set of prices that have 
been specified ex machina in such a way that the supply and demand of each commodity will be in 
balance. 

a) More precisely, in the market models exemplified by houses or horses that we have been using 
to motivate the abstract assignment game. In the less specific "partnership" model of Sec. 2.3, the 
notion of competitive outcome must be reconstrued. 

Incidentally, the indivisibilities and product differentiation in our model put it outside the scope 
of most of the general existence and convergence theorems in the literature. 
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product differentiation, this sharpening of the solution is a simple matter of 
narrowing the range of prices that will draw an equal number  of buyers and sellers 
into the active market. In the more general model, however, the increasing dimen- 

sionality of the solution and the space in which it is defined makes a precise 
discussion of the shrinkage phenomenon more difficult 1). 

5 . 2 .  S o m e  W e a k n e s s e s  

From both the economic and game-theoretic viewpoint, certain weaknesses 

in the core ( =  competitive) solution soon become apparent. For  one thing, the 

core gives no consideration to the ability of individuals or coalitions to obstruct 
outcomes, though this is often a powerful lever in bargaining Z). For  example, 
the coalition M of all sellers can certainly block any trade 3), yet the core gives 

them no credit for this. Indeed, the inequality condition (3.6) for S = M (or for 
S = N for that matter) has no "bite" at all, and does not eliminate any individually 
rational outcomes from the solution. The core is based on what a coalition can 

do, not what it can prevent. The core is therefore not a really satisfactory basis 

for a bargaining theory. 
There is a more subtle bargaining tactic, not of an obstructive nature, that also 

fails to be reflected in the core or competitive equilibrium. It can be illustrated 

in terms of the horse market  of Table 2. Consider the "weak" players in the game 

- i.e., A6, AT, As and B6-Blo. They get nothing in the core. Although not 

technically dummies, they are quite unable to prevent the others from obtaining 
the full $ 57 profit, or to interfere in any other way with the imputations in the 

core. Nevertheless, the marginal weak buyer B6 (for example) has an important  
role: it is his valuation of $ 21 that establishes the price floor in the core. Were 

he to quit the scene, the floor would drop to $ 20, and the sellers as a group would 
very likely suffer. By his very presence - i.e., his willingness to pay any amount  
up to $ 21 for a horse - he performs a service to some of the players (and a dis- 

service to others). What  is it worth ? 
A similar capability exists for the marginal weak seller A6, who sets the ceiling 

of $ 21.50 in the solution. In lesser measure, the other weak players also have some 

bargaining power of this kind. The seventh buyer BT, for example, might argue 
that his participation in the bidding tends to limit the sixth buyer's "'leverage", 

since if B 7 should quit the scene, then B 6 might be able to command a larger bribe 
from the active sellers for remaining on hand to protect the $ 21 floor. 

1) Even in the B6HM-BAWERK case, if the price range does not narrow fast enough, the (euclidean) 
distance between the endpoints of the core may actually increase as the price interval goes to zero. 

2) The core is sometimes described as "the set of outcomes that no coalition can block" ; this un- 
fortunate and misleading description stems from a counterintuitive use of the term "block" in the 
mathematical terminology used by some writers. A better rendering is "the set of outcomes that no 
coalition can improve upon". 

~) As shown by the fact that v (N) = 0. 
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The marginal strong players, As and Bs, also help to determine the price range. 
Since their expected profits in any case are rather small, their threats to behave 
"irrationally" could also carry some weight. In our example, the departure of 
B5 would decrease the total social profit from $ 57 to $ 56 (see Table 2), but it 
would also cause the price range to shift downwards from $ 2 1 - $  21.50 to 
$ 2 0 - $  21. Would the other four buyers be willing to pay, say fifty cents each 
to bring this about 1)? 

To complete the picture, we should note that the top or "strongest" players 
of each type are in an extremely poor bargaining position. They are vulnerable 
to all the threats we have been describing, and they have no very credible counter- 
threats: they have too much to lose. A man who is desperately in need of a horse 
(like Shakespeare's Richard III !) is obviously at a disadvantage in haggling over 
the price, if his need is known. His situation practically invites collusion among 
the horse-merchants. But the classical solution (core) gives no hint of this. 

We are not arguing against the classical solution as such 2). It may not be pos- 
sible to realize the bargaining potentials described above within a 9iven institu- 
tional form. Sanctions against collusion or compensation, physical barriers to 
communication, or simply the cost and time of bargaining, may be sufficient to 
vitiate the bargaining tactics we have been describing. The correct solution con- 
cept to apply in a given situation depends on the larger "social" context from 
which the mathematical model was abstracted. It also depends, of course, on the 
purpose of the application - on the type of questions one wishes the theory to 
answer. A corollary is that when we are conducting a general analysis of the ab- 
stract model, as here, then it behooves us to explore and correlate a number of 
different solution concepts. This we hope to do in subsequent papers. 
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