
The Kernel and Bargaining Set for Convex Games 1) 

By M. MASCHLER 2), B. PELEG 2), L. S. SHAPLEY 3) 

Abstract  : It is shown that for convex games the bargaining set J/g? (for the grand coalition) coincides 
with the core. Moreover, it is proved that the kernel (for the grand coalition) of convex games consists 
of a unique point which coincides with the nucleolus of the game. 

1. Introduction 
Convex games were introduced by SHAPLEY [19713, where it was shown that 

these are precisely the games for which the core has a certain "regular" struc- 
ture (see Section 5 below). It was also shown by SHAPLEY [19713 that convex 
games have a unique YON NEUMANN-MORGENSTERN solution which coincides 
with the core, and that their SHAPLEY value is essentially the center of gravity 
of the extreme points of the core. 

One purpose of this paper is to prove that the kernel (for the grand coalition) 
of convex games consists of a unique point (Section 7). As such, it coincides 
with the nucleolus of the game and therefore occupies a central position in the core 
(which is different, in general, from that of the SHAPLEY value). We also prove 
that the bargaining set M~ ) (for the grand coalition) coincides with the core (Section 
8). Thus, it appears that for convex games, many solution concepts either coincide 
with the core or occupy a central position within the core. 

The proofs of these results are quite elaborate and require many lemmas 
drawn from various topics of game theory (Sections 2-6) .  In particular, one 
requires a detailed analysis of the structure of the pre-kernel of a game. We develop 
this theory, which is interesting in its own sake, in Sections 2 -  4, before specializing 
our attention to convex games. The pre-kernel is related to the "pseudo-kernel" 
used in previous investigations [MASCHLER and PELEG, 1966 and 1967], but 
has the advantage of a somewhat simpler definition and is invariant under strategic 
equivalence. If the game is 0-monotonic, i.e., strategically equivalent to a 0- 
normalized monotonic game, then the pre-kernel and the kernel coincide (for 
the grand coalition). This is the case when the game is superadditive, and hence, 
in particular, when the game is convex. 
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2. The Pre-Kernel and its Relation to the Kernel and to the Pseudo-Kernel 

In this section we shall introduce an auxiliary solution concept, called the 

pre-kernel of a game and show that if the game satisfies certain monotonic i ty  

conditions this pre-kernel coincides with the pseudo-kernel  or the kernel of the 

game. 

We shall consider a cooperative 9ame with side payments, (N; v), where N = 

{1,2, ... ,n} is its set of players and v, its characteristic function, is an arbitrary 1) 

function from the subsets of N (called coalitions) to the real numbers.  

Given an n-tuple x = (xa ,xz  . . . . .  x,) of real numbers,  we define the excess of 

a coali t ion S with respect to x (in (N; v)) to be: 

e(S,x)  -- v(S) - x (S ) ,  (2.1) 

where x(S)  is a short  nota t ion for ~ xi whenever S 4: 0, and x@) = 0. 
~s 

An n-tuple x = (x l ,  xz . . . .  , x,) of real numbers  will be called a pre-imputation 

(in (N; v)) if it satisfies: 
x (N)  = v (N) .  t2.2) 

It will be called an imputation if it satisfies, in addition, the individual rationality 

condit ion:  
xi >_ v({i}), i =  1,2 . . . . .  n .  (2.3) 

It will be called a pseudo-imputation if it satisfies (2.2) and:  

xi >_ O, i =  1,2 . . . .  ,n .  (2.4) 

For  each n-tuple x = (Xx,X2, ... ,x,)  we define the maximum surplus of a player 

k against a player l, k 4: l, with respect to x, to be: 

sk,~(x) = Max e(S ,x ) .  (2.5) 
S:k~.S,Ir 

Definition 2.1 : 

A pre-imputat ion x is said to belong to the pre-kernel of a game F - (N;v) 

(for the grand coalition)2), if 

sk,t(x) = sz,k(x) fo ra l l  k, l ~ N,  k 4 : l .  (2.6) 

The pre-kernel of a game F (for the grand coalition) will be denoted by N r oU (F) 

or, shortly, by ~ r oU. 

Lemma 2.2: 

The per-kernel is a relative invariant under strateoic equivalence 3). 

The proof  is immediate. 

1) None of the traditional conditions are imposed on v at this point; in particular, v(9) need not 
be 0. 

2) The definition can be extended to cover situations in which coalition-structures other than the 
grand coalition are being considered. 

3) I.e., it undergoes the transformation x --+ c~x + a when v(S) is replaced by o~v(S) + a(S) for each 
coalition S. Here c~ is a real positive constant and a = (al,a2 ..... a,) is an n-tuple of real numbers. 
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Definition 2.3: 

A game (N;v) is called monotonic if 

v(S) <_ v(T)  whenever S C T. (2.7) 

It is called O-monotonic if it is strategically equivalent to a 0-normalized 1) mono ton ic  
game, i.e., if 

v(S) < v(T)  - ~, v({i}) whenever S C T. (2.8) 
i ~ T - S  

Note  that the relation (2.7), unlike (2.8), is not invariant under strategic equi- 
valence. In fact, every game is strategically equivalent to a mono ton ic  game 2). 

Theorem 2.4 : 

I f  F - (N;v) is a O-monotonic game and if x �9 ~ r c U ( F ) ,  then x is an imputation 
(see (2.3)). 

Proof: 

By Lemma 2.2, there is no loss of generality in assuming that F is already 
0-normalized. The theorem is obviously true for 1-person games. Assume that 
F has at least two players, and let x �9 ~ r~X# (F). It will be convenient  to denote  
by ~ (x) the set of all coalitions of max imum excess among the coalitions other 
than 0 and N:  

~ ( x )  = {S: S :~ 0, N and e(S,x)  > e ( e , x )  whenever e :~ 0 , g } .  (2.9) 

Suppose (2.3) is incorrect;  then there exists a player k such that Xk < 0. We 

shall first show that k �9 S whenever S �9 ~ (x). Indeed, if k ~ S for some coalition 
S and i fS  :p N - {k} then, by (2.1) and (2.7), 

e(S w {k},x) = v(S w {k}) - x(S) - Xk > v(S) - x(S) = e(S,x); 

consequently,  S q~ N(x). Also, N - {k} ~ N(x),  because, by (2.2) and (2.7): 

e (N  - {k},x) = v (N  - {k}) - x ( N  - {k}) _< v(U) - x (N)  + Xk = Xk, 

whereas, for example e({k}, x) = -Xk is larger. 

Let R be a coalit ion in ~ (x) and let l � 9  N - R. Since k belongs to each coali- 
t ion in ~(x) ,  it follows from (2.5) and (2.9) that Sk,l(X) > Sl,k(X), contrary  to (2.6). 
This contradict ion shows that (2.3) is correct, thereby complet ing the proof. 

Definition 2.5: 

An imputat ion x (see (2.3)) is said to belong to the kernel of a game F = (N;v) 
(for the grand coalition) a), if 

Sk,I(X)<--SI,k(X) or x z = v ( { l } )  fo ra l l  k, l e N ,  k: /=l .  (2.10) 

1) A game is called 0-normalized if the value of each single-person coalition is 0. 
z) This will be the case whenever the numbers al (see above) are sufficiently large. 
3) For extension of the definition to situations in which coalition-structures other than the grand 

coalition are considered see, e.g., DAVIS and MASCHLER [-1965]. 
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The kernel of a game F (for the grand coalition) will be denoted by f (F) or, 
shortly, by 2(.  

Lemma 2.6: 

The kernel is a relative invariant under strategic equivalence. 

The proof of this well known result (see, e.g., DAVIS and MASCHLER [1965]) 
is immediate. 

Theorem 2.7: 

The kernel and the pre-kernel coincide for O-monotonic games (and hence in 

particular for superadditive games). 

Proof  t): 

By Lemmas 2.2 and 2.6, we can limit the discussion to 0-normalized games. 
The theorem is obviously true for a 1-person game. Let F - (N;v) be an n-person 
0-normalized game, n >_ 2. By Theorem 2.4 and Definitions 2.1 and 2.5, N r  ~f'(F) C 
J~f(F). Let x e J~ff(F); we shall complete the proof if we show that x ~ Nr~ff(F).  
Denote (see (2.9)). 

M = ~ { S : S e ~ ( x ) } .  

Clearly, M 4: N. If M 4 0, let k s M and let 1 e N - M. Clearly, Sk,z(X) > St,k(X); 
hence, by (2.10), x~ = 0. Let So be an arbitrary coalition in N(x), then, by (2.1) 

and (2.7), 
e(So,x) = v(So) - x(So) = v(So) - x (N)  <_ v(N) - x (N)  = O. 

If l e  N - So then e({l},x) = 0 and consequently {l} e N(x). Thus, M = 0, since 
~(x)  contains both So and {l}; this contradicts the assumption M 4 0. It follows 
that, in fact, M = 0. Suppose x r N r ~ (F). Then players i and j exist such that 

si,j(x) > sj,i(x). (2.11) 

Consequently xj = 0 (see (2.10)). There exists a coalition $1 in N(x) which does 
not contain player i, because M = 0. Therefore, by (2.7), 

e(S1 ~ {j},x) = v(S~ w {j}) - x(St) - xj >_ v(S1) - x(S1) = e (S t , x ) .  

Thus, by (2.5) and (2.9) s~,i(x) cannot be smaller than si,j(x), contrary to (2.11). 
This contradiction shows that x ~ r  thereby completing the proof of 
the theorem. 

The following remarks are intended to orient the reader who is versed with 
the literature, especially MASCHLER and PELm [-1966 and 1967]. The proofs 
are similar to the proofs of Theorems 2.4 and 2.7 and will be omitted. 

1) This result follows from Theorem 2.4 and from known results stated by MASCHLER and PELEG 
[1967]; however, it is much more convenient to provide here an independent, shorter proof of this 
important result. 
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Remark 2.8: 

The pseudo-kernel (for the grand coalition) of a game F - (N;v) is denoted 
by N s ~ ( F )  and defined exactly as in Definition 2.5, except that x is assumed 
to be a pseudo-imputation (see (2.4)) and that xl = v({l}) in (2.10) is replaced by 
x~ -- 0. It is an auxiliary solution concept which is not a relative invariant under 
strategic equivalence. If F satisfies 

v ( S ) < v ( T )  whenever SC T, S v ~ , T ~ N  (2.12) 

(quasi-monotonicity), and 

v({ i} )  + v (N)  _ o ( N  - { i } ) ,  i = 1 ,2  . . . . .  n ,  (2.13) 

and if x e N r J f ( F ) ,  then x is a pseudo-imputation. Moreover, under the condi- 
tions (2.12)-(2.13), ~ r  X (F) = Cso f f  (F). 

Remark 2.9: 

We can interpret the pre-kernel of a game F as follows: Take a game F* which 
is monotonic, satisfies v(0) _> 0, and is strategically equivalent to F. The "inverse 
image" of the pseudo-kernel of F* under this equivalence is the pre-kernel of F. 
Thus, loosely speaking, up to strategic equivalence, the pre-kernel is one of 
many pseudo-kernels a game may have. 

Remark 2.10: 

Since the pseudo-kernel of a game is not empty if v(N) > 0 (see MASCHLER 
and PELEG [1966 and 1967], it follows that the pre-kernel of any cooperative 
game is not empty. 

3. The Structure of the Pre-Kern'el 

Let x be a pre-imputation in a game F - (N;v). We wish to find necessary 
and sufficient conditions that x e N r ~ ( F ) .  First, let us partition the set of all 
the coalitions into subsets gl(x), g2(x) . . . . .  gin(x) which are of highest excess, 
of the second highest excess, etc. Thus, 

~I(x)  ~ {S :e (S , x )  >_ e(T,x)al l  r } ,  (3.1) 

~i+l(x)  - S : e ( S , x )  >_ e(T,x) if and onlyif  ~h(x) ; (3.2) 

and m - re(x) is the highest index i for which Ni(x) =~ 0. Clearly, 1 _< m < 2". 
We shall refer to the coalitions in gi (x) as the i-th stage maximum excess coalitions. 

Their excess s i (x) will be called the i-th stage maximum excess: 

s i ( x )=  e(S,x)  where S E m i ( x ) .  (3.3) 

Denote: 
i(k,l ,x) - Min {i : 3 S ~ ~ (x ) ,  k ~ S, l ~ S} ; (3.4) 
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then, clearly (see (2.5)), 

sk,~(x) = si~k'~'X~(x). (3.5) 

The following lemma follows from Definition 2.1 and (3.5). 

Lemma 3.1 : 

A pre-imputation x belongs to ~ r off (F) if and only if i(k, l, x) = i(l, k, x) for each 
pair of  distinct players k and 1. 

We can now reverse the procedure. Consider an arbitrary ordered partition 1) 
(g l, g2 . . . . .  g" )  of the set of all coalitions which has the property: 

i(k,l) = i(l,k) forall  l , k ~ N , l  ~ k ,  (3.6) 
where 

i(k,l) - Min {i:3 S e g  i, k e S ,  lq~S}. (3.7) 

Every pre-imputation x satisfying 

gi(x) = g~, i = 1,2, . . . ,m,  (3.8) 

must belong to N r Y (F). 
Observe that the set of pre-imputations satisfying (3.8) for a fixed ordered 

partition is a (possibly empty) convex set determined by the linear inequalities: 

x (N) = v (N) ] 

e(S,x) > e(T,x) whenever S ~ g " ,  T e ~ , #  < v I (3.9) 

e(S,x) = e(T,x) whenever S, r e g  u. 

Our next object is to find conditions which assure us that an ordered partition 
satisfies (3.6). The following definition is helpful: 

Let g be a collection of subsets of N and let T be a non-empty subset of N. 
Let {T1, T2 . . . . .  T~} be the partition of T characterized by: 

k, l ~ Tj ~* (k, 1 e Tand k ~ A if and only if I e A for all A e g).  (3.10) 

Definition 3.2: 

The set {T1,T2 . . . . .  T~} defined by (3.10) will be called the partition of T into 
equivalence classes induced by g. 

Equivalence classes in this connection mean equivalence classes determined 
by the relation "occur simultaneously in the coalitions of g". 

Let E _= (g 1, d~2 . . . . .  gin) be an arbitrarY ordered partition of the set of coalitions. 
We shall now construct a sequence of successively finer partitions of N, called 

the profile P(E) generated by E. 
We start by denoting {N} as {T~}. Suppose that {T~,Ti2 . . . . .  T~,} has been 

1) It is important to distinguish the stages. Thus, for N = { 1, 2, 3}, we consider ({0, N}, {{ 1,2}, {1, 3}, 
{2,3}}, {{1}, {2}, {3}})to be different from ({0,N}, {{1}, {2}, {3}}, {{1,2}, {1,3}, {2,3}}). For this reason 
we use the vector notation and call the partition ordered. 
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defined, and is a partition of N. Let { T~I T 1 T ~ + ~ "r~ + 1/be the set of equivalence j , 2  , " "  , l j ,  a j  J 

" T i +  1 classes which are induced by @i on T], ] = 1,2 . . . . .  ui. Renumber "i,, lexico- 
graphically in the lower indices to from r,v~+l ~ri+~, Ti+~/ The collection \ ~ 1  ,z2 " " ,  ui+i J" 

P(E) = {Tit;T12, . . . ,  Tu 2",... ;T~ '+1, . . . ,  T.m+ 1/ ~,,+ ~, is the required profile. The term 
is suggested by the diagram below. 

7"11 - - N  

T 2 T2 2 

T? T,33 

T 1  m + l  T r a + l  
~Ura + I 

Clearly, 

{ Tr  + ~, T~ +', . . . ,  r m+l }.,,~+, = {{1), {2}, . . . ,  {n}} , (3.11) 

but in general the equivalence classes may all become 1-person sets at an earlier 
stage. The next three lemmas follow directly from the definitions. 

Lemma 3.3: 

I f  l < io < i~ <_ m + 1 then 

Tj~ c~ Tji 1 5~ ~ implies 

Lemma 3.4: 

I f  S ~ g i then S is a union of  sets Tji+ l's. 

Tj, ~ C Tj~. (3,12) 

Lemma 3.5: 

I f  S ~ ~i then S is a union o f  sets Tj~'s whenever i < i~ <_ m + 1. 

Henceforth, the profile P(E(x))  generated by the ordered partition E ( x ) -  
(gl (x), ~2 (x) . . . . .  gm (X)) will be called, shortly, the profile of  x. 

Lemmas 3.3-3.4 indicate that the profile can be described as a "partition 
tree"; namely, as a tree whose vertices are the sets T], with TI ~ = N the root, 
such that the vertices that follow a vertex Tj and are adjacent to it form a partition 
of Tj. 

One of the advantages of the profile is the fact that it enables one to describe 
condition (3.6) in a more visual fashion: 

Lemma 3.6: 

Let  P(E) be a profile generated by an ordered partition E =_ (gl,82 ... .  ,gin). 
The condition (3.6) is equivalent to the folIowin# separation condition: 

I f  Tk i + 1 C T], T/+ 1 C Tj and k -~ l, then there exists a coalition S in C i such 
thatTk i + l C S a n d T t  i + l c ~ S = ~ , i =  1,2,3 . . . . .  m. 
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Proof.' 

Name a player in Tk i+1 and a player in Tl ~+1 by k and l, respectively. Then 
by Lemma 3.3, k, l belong to the same equivalence class T~ for each i' _< i. They 
belong to disjoint equivalence classes Tk/+1 and Ti i+ 1. By Definition 3.2, 

(i) k ~ A  <:~ l ~ A w h e n e v e r A ~ g i ' a n d i ' _ < i -  1 
and either 

(ii) 3 S e gi such that k e S and l ~ S, 
or 

(iii) 3 S s C ~ such that l ~ S and k r S 
(or both). Now 

(i) and (ii) <:~ i(k, l) = i, 
(i) and (iii) <:~ i(l,k) -- i. 

It follows that condition (3.6) is equivalent to the validity of (i), (ii), and (iii) for 
i = 1 . . . .  , m and for all k, l ~ N, k + I. 

By Lemma 3.1 (see also (3.8)), and Lemma 3.6, we can now state: 

Theorem 3.7; 

Let  x be a pre-imputation in a 9ame F and let P(E~(X)) be the profile of  x. With 

this notation, x ~ ~ r  ~ff (F) if and only if the separation condition in Lemma 3.6 
is satisfied, with gi = gi(x), i = 1,2, ... ,m. 

4. The Stage Games 

From a visual point of view, a profile may contain smaller profiles. The figure 
below exhibits one profile within the original one. This suggests that smaller 
games can be constructed from the original game, which contain fewer players. 
Such games can serve for induction purposes. 

Theorem 3.7 indicates that the equivalence classes play a role at each stage, 
rather than the players. Even the maximum excess coalitions of the various 
stages are unions of such equivalence classes (Lemma 3.4). This suggests that 
it is possible under an appropriate interpretation to regard the equivalence 
classes themselves as players in some sense. In the present section we shall develop 
these heuristic ideas in a precise way. 
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Definition 4.1 : 

Let x be a pre-imputation in a game F =- (N;v) and let P(E(x))  = {TI~;T~, . . . ,  
T~;.. .  ;T~+l,...,Tum+~} be the profile of x. Let T * =  {Tjil,Tj2 . . . . .  Tj~} be a 
fixed nonempty set of equivalence classes belonging to a fixed stage i. The stage 

game generated by x and T* is a game (T*;v*) whose players are the members 
of T* and whose characteristic function is defined by 

v*(T*) = x(Tj,) + x(Tj2 ) + ... + x(Tj~) = x (T)  ) 

v*(S*) Max [v(S w Q) x(Q)], S* c T*, S* r T*. ~ (4.1) 
Q : Q ~ N -  T 

Here, T - T]I u Tj2 w ... u T]~ and if S* = {T~/~, T~2, .. . ,  T~,} C T*, then S = 

Remark 4.2: 

Note that (x (Tjl), x (Tj~) . . . . .  x(Tj~)) is a pre-imputation in the above stage game. 

Definition 4.3: 

A pre-imputation x in a game F is said to belong to the core of F if 

e(S,x)  <_ 0 all S. (4.2) 

The core will be denoted by C~(F) or, shortly, c~. 

Remark 4.4: 

I f  x ~ C~(F) then x is an imputation (see (2.3)). 

Proof: 

Individual rationality is nothing but (4.2) applied to single-person coalitions. 

Lemma 4.5: 

I f  F =- (N;v) is a monotonic game (see Definition 2.3) and i f  x ~ ~(F)  then the 
stage game (T*;v*) generated by x and T* (see Definition 4.1) is also a monotonic 
game. 

Proof: 

Quasi-monotonicity (see (2.12)) follows directly from (4.1) and the mono- 
tonicity ofF. (We even make no use of the fact that x ~ ~g(F).) Let S* C T*, S* 4: T*, 
then, by (4.1), there exists a subset Qo of N - T such that v*(S*) = v(S w Qo) - 

x(Qo). Thus, by (4.1) and (4.2), v*(S*) - v*(T*) = v(S w Qo) - x(Qo) - x (T )  < 
v ( T  w Qo) - x ( T  w Qo) < O, and this concludes the proof. 

We are now in a position to state the main theorem of this section: 

Theorem 4.6: 

I f  x ~ ~ r  f (F) and if F* =- (T*;v*) is a stage game generated by x and a set 
T*  = {7"], Tj~ . . . . .  Tj,} of  equivalence classes of  the i-th stage, 1 <_ i < m + 1, 
then the a-tuple x* - (x(Tj,),x(T]~) . . . . .  x(Tj,)) belongs to ~r~Y~(F*). 
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P r o o f  J 

We shall use stars to denote  entities related to F*. By Remark 4.2, x* is a 
pre- imputat ion in F*;  consequently,  there is nothing more  to prove if a = 1. 
Suppose ~ > 1. We have to show that x* satisfies the analogue of (2.6): 

Sr~. r~ (x ) * = ST~.r~ (X*) (4.3) 

for all "stage players" Tr T~ e T*, p 4= o. Here, 

�9 (x*)  -~ sT~.r~ Max{e* (S* , x* ) ' S*  C T * , T ~ S * , 7 ~ , ~ S * }  (4.4) 
and 

e*(S*,x*) - v*(S*) - x*(S*) = v*(S*) - x(S) (4.5) 

where, as in (4.1), S is defined as T/, u T, i2 w ... w T~ if S* = {T~,,T~,.. .  ,Tip} 
with {v~,va . . . . .  v~} C {J~,Ja . . . .  ,j~}. By (4.4), (4.5), and (4.1), 

sr~,~(x ) =  Max{ Max e(Su Q,x):S* C T*,T~eS*,T'~r 
Q:Qc N -  T 

If k is any player in T~ and I is any player in T~, we assert that in fact 

S*~.T$(X*) = M a x { e ( R , x ) : R  C N, k e R ,  I ~ R }  =- sk,i(X). (4.6) 

The argument  for this runs as follows: A priori, there should be an inequality <_, 
because the set of candidates for maximizat ion increases. It is known however 
that Sk,~(X) = S i(k'l'~) (X) (see (3.5)). Since T~ and T~ / are distinct equivalence classes 
of the i-th stage, it follows that  i(k,l,x) _< i - 1 (see (3.4)). Let  R ~ be a coalition 
containing k and not  l such that  Sk,L(X) ----- e(R~ then ROe gi(k'z'~(X) (see (3.5)). 
Since i(k,I,x) <_ i - 1, it follows fl'om Lemma 3.5 that  R ~ is a union of equivalence 

classes of the i-th stage and, moreover ,  R ~ 3 T~ and R ~ c~ T~ = 0. Thus, R ~ 
has the form T~ 1 w T~ w ... w T~ w Q, where {vl,v2, ... ,vp} is a subset of 
{J~,J2 . . . .  ,j,} containing p and not  a, and Q c N - T. It is therefore a member  
of the smaller set of candidates, which proves (4.6). In a similar fashion we prove 
that  S%.r~(X*)= s~,~(x). Since x ~ r O f ( r ) ,  (~.3) now follows from (2.6). 

Remark 4.7: 

A converse theorem stating that if x* s~r~Cf(F*)  for each stage game then 
x E~rYi"(F)  is trivially true, because the stage game (T*;v*) where T* is the 
set of all equivalence classes of the stage m + 1 is isomorphic  to F under the 

t ransformat ion {k} --* k, k = 1,2,  ... ,n (see (3A1)). 

Remark 4.8: 
Theorem 4.6 generalizes results of ~) MASCHLER and P~LEG [1967]. The  stage 

game in which T* consists of all the equivalence classes of a given stage is known 
as the intermediate qame. The stage game in which i = m + 1 and {Jt,ja . . . .  ,J~} 
are players of a given Tj is known as a reduced oame. 

1) The results of MASCHLER and PELEG [1967], however, refer to the wider class of pseudo-kernels 
(see Remark 2.9). 
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5. The Stage Games Resulting from an Imputation in the Core of a Convex Came 

A cooperative game (N; v) is called convex if its characteristic function v satisfies 

v(~) = 0, (5.1) 

v ( A ) + v ( B ) < _ v ( A ~ B ) + v ( A c ~ B )  all A, B C N .  (5.2) 

Convex games were introduced by SHAPELY [1971], where their properties 
and their importance in game theory were discussed. At present, all we need 
to know of their properties, beyond (5.1) and (5.2), is that they have nonempty 
c o r e s  1). 

The purpose of this section is to show that for an x in the core of a convex 
game, all the stage games are also convex. We shall also study some properties 
of these stage games. 

Convex games are super-additive but not necessarily monotonic. However, 
if the characteristic function satisfies 

v({i})_>0, i =  1,2 . . . . .  n, (5.3) 

then monotonicity follows from super-additivity. Since being a convex game is 
an invariant under strategic equivalence, it follows that convex games are 0- 
monotonic. In view of Theorem 2.7 and Remark 2.8, we can therefore state: 

Theorem 5.1 : 

I f  F is a convex game then 

~f(FI = ~," Xr(F). (5.4) 

I f  F is a convex game with a nonnegative characteristic function then 

X ( F )  = ~ s Y ( r ) .  (5.5) 

Note that (5.2) is equivalent to 

e(A,x) + e(B,x) <_ e(A w B,x) + e(A ~ B,x) (5.6) 

for all A,B C N and for any n-tuple x. 

Theorem 5.2: 

I f  F =- (N;v) is a convex game and if x belongs to its core, then each stage game 
generated by x is convex. 

Proof: 

Let (T*;v*) be a stage game generated by x and T* = {TS1, Tj2 , . . . ,  Tj~}. We 
shall show that 

v * ( S * ) + v * ( R * ) < _ v * ( S * u R * ) + v * ( S * ~ R * )  all S * , R * C T * .  (5.7) 

1) It is proved by SHAPLEY [1971] that they can be characterized by the fact that their core is, so 
called, regular - i.e., for each x in the core, the family 5~  = {S : x ( S )  = v(S)} is closed under union 
and intersection. (Compare Lemma 6.2 below.) 
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Relation (5.7) evidently holds if S* C R* or if R* C S*. We can therefore assume 
that S*, R* # T*. Let S and R be the unions of the members of S* and R*, 
respectively. By (4.1), there exists Q1 and Qz in N - T such that 

v*(S*) + v*(R*) = v(S to Q1) - x ( Q 1 )  + v(R to Q2) - x(Q2) 

< v((S to R) w (QI to Q2)) + v((S c~ R) to (Q1 n Q2)) 

- x ( O ~  to (J~) - x ( Q ~  ~ Q : )  

_< Max [v ( (SvR)  t o Q ) - x ( O ) ]  
Q ' : Q c N -  T 

+ Max [v((S c~ R) to Q) - x(Q)] 
Q:Qc N -  T 

= Max [v((S to R) to Q) - x(Q)] + v*(S* c~ R*). 
Q : Q = N -  T 

If S* to R* = T*, then 

Max [v((S to R) to Q) - x(Q)] < v*(T*) = v*(S* to R*), 
Q:Q=N-T 

because x e C~(F) (see Lemma 4.5). If S* to R* # T*, then, by (4.1), 

Max [v((S to R) to Q) - x(Q)] = v*(S* w R*). 
Q : Q ~ N -  T 

In any case (5.7) holds. 
The following lemma furnishes important information concerning the particular 

Q's for which the maxima in (4.1) are achieved, when the game is convex. 

Lemma 5.3: 

Let F =- (N;v) be a convex game and let x be an arbitrary n-tuple of real numbers. 
Let R be a coalition in # ( x )  and let Sa and $2 be subsets of R and N - R, re- 
spectively. Suppose Q1 and Q2 are subsets of N - R and R, respectively, such that 

Max e(S1 to Q,x) = e(S1 to Ql ,x) ,  (5.8) 
Q:Q~ N -  R 

and 
Max e(S2 ~ Q,x) = e(S2 to Q2,x). (5.9) 

Q:Qc R 

Let R w QI and Q2 belong to ~1  (x) and ~ 2  (x), respectively. Under these conditions: 

(i) ~ _< i,  
(ii) #2 < i, 

(iii) I f  e(S1 w Q~,x) # e(S~,x) then I~ < i, 

(iv) I f  e(S2 w Q2,x) # e(S2 to R,x) then I.t2 < i. 

Proof: 

By (5.6), 
e(Sl to Ql,x) + e(R,x) < e(R to Q1,x) + e(Sl ,x) .  (5.10) 

By (5.8), e(Sl to Ql,x) >_ e(Sl,x). Consequently, 

e(R,x) < e(R w Q~,x), (5.11) 
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and strict inequality holds if the hypothesis of (iii) is satisfied. This proves (i) 
and (iii) (see (3A), (3.2)). Similarly, by (5.6), 

e(S2 w Q2,x) + e(R,x) < e(S2 ~ R,x) + e(Qz,x). (5.12) 

By (5.9), e(S2 w Q2,x) >_ e(S2 k) R,x). Consequently, 

e(R,x) <_ e(Qz,x), (5.13) 

and strict inequality holds if the hypothesis of (iv) is satisfied. This proves (ii) 
and (iv). 

Corollary 5.4: 

Q~ and Q2 of Lemma 5.3 can be chosen to be unions of equivalence classes of 
stage i + 1 in the profile of x. 

Proof." 

Cases (i) and (ii) of Lemma 5.3 and Lemma 3.5. 

Corollary 5.5: 

I f  R ~ g~ (x) and F is convex then 

Max e(S w Q,x) = e(S,x) whenever S C R,  (5.14) 
Q:Q=N-R 

M a x e ( S w Q ,  x ) = e ( S w R ,  x) whenever S C N - R .  (5.15) 
QzQ~R 

Proof." 

Cases (iii) and (iv) of Lemma 5.3 (see (3.1)). 
Lemma 5.3 can be effectively used in devising computer programs for computing 

the kernels of convex games. Note that it can be applied to any stage game (T*;v*) 
of a stage greater than i, when the union of the members of T* is equal to R. 
We shall subsequently apply Lemma 5.3 for the particular cases i =  1,2 and 
the stage game being of stage m + 1. 

Lemma 5.6: 

Let x be a pre-imputation in a game F ~ (N;v) satisfyin9 v(~) = O. Under these 
conditions, exactly one of the followin9 relations holds: 

(i) @(x) = 81(x), 

(ii) ~(x)  u {O,N} = g l ( x ) ,  

(iii) @(x) = gZ(x) and d~(x) = {0,N}. 

I f  x ~ C~(F), case (i) holds, and if x ~ C~(F), case (ii) or case Off) holds. 

Proof: 

Compare (2.9) with (3A) and (3.2) and the definition of the core (4.2). 
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Lemma 5.7: 

I f  x belongs to the core of a convex game F =- (N;v), and it R ~ ( x ) ,  then 

Max e(S w Q,x) = Max [e(S,x), e(S w (N - R),x)] (5.16) 
Q : Q c N - R  

whenever S C R, and 

Max e(S w Q,x) = Max [e(S,x), e(S w R,x)] (5.17) 
Q:Qc R 

whenever S C N - R. 

Proof: 

Corollary 5.5, if ~ ( x )  C gl(x).  If this is not  the case then, by L emma  5.6, 
Nt(x) = {0,N} and ~ (x) -- N2 (x). The result now follows from L emma  5.3, 
cases (iii) and (iv). 

Corollary 5.8: 

Let x belong to the core of a convex game and let R be a coalition in N(x)  (see 

(2.9)). Consider the stage games (T*,v*) and (T*-R,V~r_R) of any stage i, such that 

the union of the members of T~ is equal to R and the union of the members of T~-R 
is equal to N - R. Under these conditions 

v~(T*) = x(R) } (5.I8) 

v~(S*) = Max Iv(S), v(S w (N - R)) - x ( X  - R)] 

whenever S* C T*, S* --/: T~, and 

�9 �9 } VN-R(T~-R) = x (N  - R) (5.19) 

V~-R(S*) ----- Max [v(S), v(S u R) - x(R)] 

whenever S* C r~_ R, S* ~ T~_ R. Here, as before, S is defined as T~,I u Ti~2 u ... u Ti,~ 

if S * =  {T~ , I ,T~ , . . . ,~ ) .  
In other words, the values of v* and V*-R are reduced to two possibilities 

when F is convex, x e qf(F), and R s ~(x) .  

6. Separating Near-Ring Collections and Balanced Collections 

Definition 6.1 : 

A collection E of subsets of a set N is called a near-ring 1) if: 

I 
A ~ B = N ,  or 

A, B e g ~  A c ~ B  0,  or (6.1) 
bo th  A w B ~ g  and A n B ~ g .  

Lemma 6.2: 

I f  F is a convex game and x is an arbitrary n-tuple of real numbers, then @(x) 

(see (2.9)) is a near-ring. 

1) We are grateful to J. R. ISBELL for suggesting this term. 
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Proof." 

Combine (5.6) with (2.9). 

Definition 6.3: 

A collection o ~ of subsets of a set N is said to be completely separatin9 (over N) 
if for each ordered pair (k,/) of distinct elements of N there exists a set in d ~ containing 
k and not 1. 

Definition 6.4 : 

A collection g of subsets of a set N is called separatin9 (over N) if for each 
ordered pair (k,/) of distinct elements of N, whenever a coalition exists in g that 
contains k and not l, another coalition exists in g that contains l and not k. 

Let E be a separating collection of subsets of N. Let T~, T2, ..., T, be the 
equivalence classes induced by g on N. Let N be a subsets of N containing exactly 
one member from each equivalence class. Clearly, the collection g - {S c~ N: 
S ~ ~} is completely separating over )V. 

The study of the separating and the completely separating collections has 
been quite useful to kernel theory (see, e.g., MASCnLER and PELE6 [196611)). 
In fact, the separation condition in Lemma 3.6 simply states that the set {S ~ Tj : 
S ~gi} is separating over the equivalence class Tj. A particular case of this 
observation is: 

Lemma 6.5: 

I f  x ~ ~r~,~ (F) then ~(x )  is a separatin9 collection. 

Proof: 

Theorem 3.7 and Lemma 5.6, in view of the fact that deleting the coalitions 
0 and N from a collection of coalitions does not change its being or not being 
separating. 

It will be convenient to associate with a subset S of N its characteristic vector 
Z s, where 

)~s = if i ~S .  (6.2) 

Definition 6.6: 

A collection d = {$I,$2 . . . . .  S~} of subsets of a set N is called balanced, if 
positive constants Cl,C2 ... .  ,ca exist, such that 

~, c~z s~ = Z N. (6.3) 
v- -1  

is called minimal balanced if it is balanced and none of its proper sub-collections 
is balanced, g is called weakly balanced if (6.3) is satisfied by nonnegative con- 
stants cl,c2, ... ,c~. These constants are called balancin9 coefficients or weights. 

1) See PELEG [1968] and SHALHEVET for additional properties of separating collections. 
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Balanced and minimal balanced collections were introduced t) and studied 

by BONDAREVA [1963] and SHAPLE'Z [1967]. They are useful to the study of various 
solution concepts such as the core (see BONDAR~VA, SCARF, SHAPLEV [1967], 
SHAPLEY and SHUmK), the bargaining set (see MASCHLER), and, as we shall see 
here, the kernel. See PELEG [-1965] for additional information concerning their 

structure. 

Lemma 6.7: 

A balanced collection is separating. 

The proof is straightforward. The converse statement, however, is not true. 
Indeed, any set of six minimal winning coalitions in the 7-person projective 
game (see, e.g., YON NEUMANN and MORGENSTERN [p. 470]) is completely separating 
and not even weakly balanced. It turns out, however, that imposing a near-ring 

requirement (see Definition 6.1) is a remedy: 

Theorem 6.8: 

Every separating near-ring collection g of subsets of a set N -- {1,2 . . . . .  n}, 

with the exception of g = {0}, is weakly balanced. 

Proof: 

There is no loss of generality in assuming that cg is completely separating. The 
theorem obviously holds for n = 1. Assume n > 2. Let d ~  { S : S e g ,  i r  S} 
and let ~ denote the set of elements of ~ which are maximal under inclusion. 
We shall show that ~i is a partition of N - {i}. Indeed, it follows from the complete 
separating property that each member of N - {i} belongs to at least one element 
of ~ ,  and by the near-ring property, the elements of ~ are disjoint. We next 
observe that the collection ~ - ~1 w ~2 w ... w ~,  is balanced; in fact, if c(S) 
is the number of elements i such that S ~ gi, then {c(S)/(n - 1) : S e ~} are balancing 
coefficients. Hence g 3 ~ is at least weakly balanced. This completes the woof. 

7. The Kernel of a Convex Game 

The purpose of this section is to show that the kernel of a convex game (for 

the grand coalition) consists of a single point. 

Lemma 7.1 : 

I f  F is a convex game then ~ r  :K (F) C Cd(F). 

1) BONDAREVA uses the term "(q -- 0)-covering" ["reduced (q - 0)-covering"] to denote the pair 
consisting of the set of weights and the set of characteristic vectors of a balanced [minimal balanced] 
collection. Sometimes, (e.g., SCARP) "balanced" means what we here call "weakly balanced", however, 
note that every weakly balanced collection contains a balanced collection. It was convenient in 
SHAPLEY [1967] to rule out the collection {N}; this exception is not needed here. 
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Proof: 

The theorem obviously holds if F is a l-person game. Assume that F is a multi- 
person game and let x e N r Y ( F ) ;  then, since ~(x)  is a separating collection 
(Lemma 6.5), it follows that 

~) S = N,  (7.1) 
S:Ss~(x) 

S = 0, (7.2) 
S:SsN(x) 

because ~(x) is not empty and its members are proper nonempty subsets of N. 
By applying Lemma 6.2 repeatedly to unions and intersections of members 

of ~(x), one concludes that either there exist two coalitions $1 and TI in N(x) 
such that $l c~ T1 = 0, or there exists two coalitions $2 and T 2 in ~(x) such that 
$2 ~ T2 = N. In view of the fact that e(N,x) = e(O,x) = 0, it follows from (2.9) 
and (5.6) that e(S, x) <_ 0 for every coalition in F. Consequently, x e C~(F) (Defini- 
tion 4.3). This concludes the proof. 

Theorem 7.2: 

The kernel (for the grand coalition) of a convex game consists of a single point. 

Proof: 

In view of Theorem 5.1 it is sufficient to prove that the pre-kernel of a convex 
game consists of a unique point. The theorem certainly holds for 1-person games. 
We shall proceed by induction, assuming that F is an n-person game, n > 2. 
Let x, y e ~ r W (F). Denote 

s(x) = e(X,x), S ~ ( x ) ,  

s(y) = e(R,y),  R ~ ~ (y). 

Without loss of generality we may assume that 

s(x) <_ s(y). (7.3) 

Since ~(y) is a separating near-ring collection (Lemmas 6.2 and 6.5) which 
contains a nonempty subset of N, it must contain a balanced collection .~ = 
{R1,R2 . . . . .  R~} (Theorem 6.8). If Rj ~ N(x) then e(Ri, x ) < s(x) < s(y) = e(Rj, y). 
Consequently, x ( R i ) >  y(R~). If R j e ~ ( x )  then we can at least conclude that 
x(Rj) >_ y(Rj). Multiplying these inequalities by the balancing coefficients and 
summing over j, we obtain x(N) > y(N), with equality occuring only if N C N(x) 
and s(x) = s(y). But equality must occur because x(N) = v(N) = y(N) (see (2.2)). 
All we need to conclude from this observation is that there exists a coalition R 
in ~ (x) m @ (y) and, moreover, 

x(R) = y(R),  x ( N  - R) = y(U - R).  (7.4) 

Now let re(x) + 1 be the last stage of the profile of x and re(y) + 1 the last 
stage of the profile of y. Consider the stage games (T~,v]) and (T~-R,V}-R) 
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as given in Corollary 5.8, with respect to x and i = re(x) + 1. Consider also the 
analogous stage games (T**,v**) and (TY-*R,V}*R) with respect to y and i =  
re(y) + 1. The players in all four of these stage games are 1-element sets (see 
(3.11)). 

Since x and y belong to ~r~f ' (F) ,  they afortiori belong to ~g(F) (Lemma 7.1). 
By Theorem 5.2, all the stage games are convex; therefore their kernels and 
pre-kernels coincide (Theorem 5.1). Rename the players, if necessary, so that 
R = {1,2 . . . . .  r}, then, by Theorem 4.6, we conclude that 

(x l ,x2 ,  ... ,xr) ~ ~ r  3 f  ( T~ ,VR) , 

(Xr+ t ,Xr+2,. . .  ,Xn) �9 ~ r  d ( r ~ -  R, O * - R ) ,  

(Yl,Y2, , Y r ) � 9  "t~r** "**~ " ' "  \ * R  , I / R  ! and 

e ~  S(T~_R,VN_R ) . (Y~+I,Y~+2 .. . .  ,Y,) " ** ** 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

Now, by (7.4) and Corollary 5.8, the games (T~ ,va) and (T**;v**) are the 
same game, because they have the same set of players and the same characteristic 
function. Similarly, (T*_ R, V*-R) and (T~*R,V**R) are the same game. Identical 
games possess the identical kernels. Since all of them have fewer than n players, 
then, by the induction hypothesis, their kernels (= pre-kernels) consist of single 
points. Consequently, by (7.5)-(7.8), we conclude that x = y. This completes the 
proof, in view of the fact that the kernel is known not be be empty (see MASCHLER 
a n d  PELEG [1966]). 

Theorem 7.2 brings to an end the main part in the study of the kernel for convex 
games. We know exactly its shape; namely - a point. There remains, however, 
the problem of locating this point; i.e., stating where it lies - preferably in geo- 
metrical terms. Fortunately, general theorems are available in the literature 
which enable us to complete this task: SCHMEIDLER introduced the nucleotus 
of a game and proved that it is a nonempty subset of the kernel, consisting of a 
unique point1). In a subsequent paper we shall present a characterization of 
the location of the nucleolus for a general cooperative game. It turns out that 
the nucleolus lies precisely at the, so called, lexicographic center of the game; 
a point which, for games with a nonempty core, lies in the relative interior a) of 
the core and occupies there a central position. Roughly speaking, the lexico- 
graphic center is obtained by "compressing" the core, pushing inward at equal 
/1-distances the hyperplanes x(S) = v(S), S ~ O,N, but stopping the push of each 

1) See atso KOItLBERG. 
2) In S~AVLEY [1971] it is shown that the core of  an indecomposable n-person convex game is (n - 1)- 

dimensional, and that the core of a decomposable n-person convex game is the (n - p)-dimensional 
cartesian product of the cores of its minimal (i.e., indecomposable) components,  which are themselves 

convex games. 
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of them just short of causing the inside to become empty. We summarize the 
results which are relevant  to the present  s tudy in: 

Corollary 7.3: 

For convex games, the kernel (Jor the grand coalition) and the nucIeolus (the 
Iexicographic center) coincide. 

8. The Bargaining Set dd~ ~ of a Convex Game 

Let x be an imputa t ion  in a game (N;v) (see (2.3)). An objection of a player k 
against a player l, with respect to x, is a pair 0 ~; C), where C is a coalit ion containing 
player k and not containing player l and .~ is a vector 1) whose indices are the 
members  of C, satisfying 9 (C) = v (C) and 3~i > xi for each i in C. A counter ob- 

jection to this object ion is a pair (2;D), where D is a coalit ion containing player l 
and not  containing player k and 2 is a vector whose indices are members  of D, 
satisfying ~(D) = v(D), zi >- )h for i ~ D c~ C and s >- xi for i ~ D - C. 

Definition 8.1: 

An imputat ion x is said to belong to the bargaining set Jg]O(F) (for the grand 
coalition) 2), if for any objection of one player against another  with respect to 
x, there exists a counter  objection. 

Clearly, J//~)(F) D Cd(F), because if x E ~(F),  no objections are possible. In this 
section we shall show that i fF  is convex then ~/~i)(F) = ~ ( r ) .  Since dg~ i~(F) D • (F) 

(see DAvis and MASCHLER [1965]), this result furnishes another  proof  of Lemma 
7.1. 

The proof  will make  use of a lemma concerning convex games which is of 
interest in itself. First a definition: the monotonic cover 3) of a game (N;v) is the 
game (N;t~) defined by 

~(S) = M a x v ( R ) ,  all S C N .  (8.1) 
R~S 

It is clear that for any game the monoton ic  cover is indeed monoton ic  (see (2.7)), 
and that ~(S) > v(S) for all S C N. The monoton ic  cover is of course not  invariant  
under  strategic equivalence. 

Lemma 8.2: 

The  monotonic cover o f  a convex game is convex. 

1) The circumflex reminds us that )) is not an n-tuple. 
2) The definition can be extended to cover situations in which coalition-structures other than the 

grand coalition are being considered (see, e.g., DAVIS and MASCHLae. [1963 and 1967], PIZLEG [1963 
and 1967]. For intuitive background and justification see AUMANN and MASCHLER). 

3) Called "monotonic closure" by MASCttLER and PELE~ [1967]. 
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Proof: 

Let (N;v) be convex, let $1,$2 C N, and let R 1 , R  2 be such that Ri C Si and 
v(Ri) = 6 (Si), i = 1,2. Then 

(;($1) + {:(S2) = v(R1) + v(R2) < v(R1 ~ R2) + v(R1 c~ R2) 

<- {J(R1 w Rz) + ~ (R1 c~ R2) <- (~($1 u S2) + 75 ($1 c~ S2). 

Since also ~ (0) = v(0) = 0, (N;~) is convex, as claimed. 

Theorem 8.3: 

The bargaining set Jtl~ ) (for the grand coalition) of a convex game coincides 
with the core of the game. 

Proof: 

Let F = (N;v) be a convex game, and let x be an imputat ion with x COg(F). 
We must show that  x r J/g'~)(F). Let C be a maximal element of N(x), so that 
(see Lemma 5.6) 

e(S,x) <_ e(C,x) for all S C N ,  (8.2) 
and 

e ( S , x ) < e ( C , x )  if C C S C N ,  $ 4 : C .  (8.3) 

Write e(S) for e(S,x); then (C;e) is a convex game, by (5.6). Its monotonic  cover 
(C;d) is also convex, by Lemma 8.2, and so has a nonempty  core (see SHAPLEY 
[1971]). Take ~ in that  core, then 

fi(C) = ~(C) = Max e(e,x)  = e(C,x) > 0 (8.4) 
R~C 

(see (2.2), (8.1) and (8.2)), and, for each R C C, 

fi(R) >_ k(R) >_ e(R) = e(R,x) (8.5) 

(see (4.2) and (8,1)), and also, for each i ~ C, 

fi, >_ d({i}) >_ d(O) = 0 (8.6) 

(see (4.2), (8.1), and (5.1)). To construct the objection, let k ~ C be such that fik > 0 
and let l ~ N - C be arbitrary. (This is possible because fi(C) > 0 and C ~: 0,N.) 
Define 

and ) 3 i = x i + f i ~ + e ,  for i ~ C ,  i 4 : k ,  
3~k = x~ + ~k - (c - 1)e, (8.7) 

where c is the number of elements in C and e satisfies e > 0 and (c - 1)e < Ok. 
Then it is clear, in view of (8.4) and (8.6), that  (f ;C) is an objection of k against 
l with respect to x. 

Now let D be any coalition containing l but not k. By (8.5), (5.6), and (8.3) 
we have 

~(D ~ C) > e(D ~ C,x) >_ e(D,x) + e(C,x) - e(D w C, x) > e(D,x) (8.8) 
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(strictinequality because l s ( D  w C) - C). 

v(D) = e(D,x) + 

< fi(D ~ C) 

~(D ~ C) 

= fi(D ~ C) 

Hence 

x(D) 

+ x(D) 

- x (O n C) + x(O) 

+ x(O - C), 

using (8.8) and (8.7) and the fact that k 6 D. The strict inequality shows that the 
coalition D is not strong enough to support a counter objection. Hence "the 
objection is sustained", and x r j//~i), as was to be shown. 
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