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Nash Bargaining Model

Formulation
Axioms & Implications
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Elements

The bargaining set: S
! Utility pairs achievable by agreement
! When? Immediate agreement?

Disagreement point: d∈R2

! Result of infinitely delayed agreement?
! Payoff during bargaining?
! Outside option?

Solution: f(S,d)∈R2 is the predicted 
bargaining outcome
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Impossibility of Ordinal Theory

Fix (S,d) as follows

Represent payoffs “equivalently” by (u1,u2) 
where

Then, the bargaining set is:

Ordinal preferences over bargaining 
outcomes contain too little information to 
identify a unique solution.
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Nash’s Initial Assumptions

Cardinalization by risk preference
! Why? 
! What alternatives are there?

Assume bargaining set S is convex
! Why?
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Nash’s Axioms

Independence of Irrelevant Alternatives (IIA)
! If f(S,d)∈T⊂S, then f(T,d)=f(S,d)

Independence of positive linear transformations (IPLT)
! Let hi(xi)=αixi+βi, where αi>0, for i=1,2.
! Suppose a=f(S,d). Let S’=h(S) and d’=h(d). Then, 

f(S’,d’)=h(a).
Efficiency
! f(S,d) is on the Pareto frontier of S

Symmetry
! Suppose d’=(d2,d1) and x∈S ⇔ (x2,x1)∈S’. Then, 

f1(S,d)=f2(S’,d’) and f2(S,d)=f1(S’,d’).
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Independence of Irrelevant 
Alternatives (IIA)

Statement of the IIA condition
! If f(S,d)∈T⊂S, then f(T,d)=f(S,d)

Definitions.
! Vex(x,y,d) = convex hull of {x,y,d}.
! xPdy means x=f(Vex(x,y,d),d).
! xPy means x=f(Vex(x,y,0),0)

By IIA, these are equivalent
! x=f(S,d) 
! xPdy for all y in S
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Efficiency

Statement of the efficiency condition
! f(S,d) is on the Pareto frontier of S

Implications
! The preference relations Pd are “increasing”
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Positive Linear Transformations

Statement of the IPLT condition
! Let hi(xi)=αixi+βi, where αi>0, for i=1,2.
! Suppose a=f(S,d). Let S’=h(S) and d’=h(d). Then, 

f(S’,d’)=h(a).

Implications
! xPdy if and only if (x-d)P(y-d)
! Suppose d=0 and x1x2=1.

" If (x1,x2)P(1,1) then (1,1)P(1/x1,1/x2)=(x2,x1)
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Symmetry

Statement of the symmetry condition
! Suppose d’=(d2,d1) and x∈S ⇔ (x2,x1)∈S’. Then, 

f1(S,d)=f2(S’,d’) and f2(S,d)=f1(S’,d’).

Implication
! When d=(0,0), (x1,x2) is indifferent to (x2,x1).

IPLT + Symmetry imply
! x1x2=1 ⇒ x is indifferent to (1,1).
! x1x2=y1y2 ⇒ x is indifferent to y.
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A Nash Theorem

Theorem. The unique bargaining 
solution satisfying the four axioms is 
given by:

Question: Did we need convexity for 
this argument?

∈
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Alternating Offer Bargaining

Two models
! Both models have two bargainers, feasible set S
! Multiple rounds: bargainer #1 makes offers at odd 

rounds, #2 at even rounds
! An offer may be

" Accepted, ending the game
" Rejected, leading to another round
" Possible outcomes

! No agreement is ever reached
! Agreement is reached at round t
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Model #1: Risk of Breakdown

After each round with a rejection, there is 
some probability p that the game ends and 
players receive payoff pair d.
! Best equilibrium outcome for player one when it 

moves first is a pair (x1,x2) on the frontier of S.
! Worst equilibrium outcome for player two when it 

moves first is a pair (y1,y2) on the frontier of S.
! Relationships: 
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The Magical Nash Product

Manipulating the equations:

Taking d=(0,0), a solution is a 4-tuple (x1,y1, x2,y2) 
such that x1y1=x2y2, as follows:
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Main Result

Theorem. As p#0, (x1,x2) and (y1,y2) 
(functions of p) converge to f(S,d).
Proof. Note: y1=(1-p)x1 and x2=(1-p)y2
and…

(x1,x2)

(y1,y2) Nash bargaining solution

d=(0,0)
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Commentary

Facts and representations
! Cardinal utility enters because risk is 

present
! The risk is that the disagreement point d

may be the outcome. 
! Comparative statics (risk aversion hurts a 

bargainer) is interpretable in these terms.
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Outside Options

Modify the model so that at any time t, either 
bargainer can quit and cause the outcome 
z∈S to occur. 
! Is z a suitable threat point?

Two cases:
! If z1≤y1 and z2≤x2, then the subgame perfect 

equilibrium outcome is unchanged.
! Otherwise, efficiency plus

= −

= −
2 2 2

1 1 1

max[ ,(1 ) ]
max[ ,(1 ) ]

x z p y
y z p x
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Model #2: Time Preference

An outcome consists of an agreement x and date t.
Assumptions to model time preference 
! A time indifferent agreement n exists
! Impatience: (x,0)P(n,0) and t<t’ imply (x,t)P(x,t’)
! Stationarity: (x,t)P(x’,t’) implies (x,t+s)P(x’,t’+s).
! Time matters (+continuity): (x,0)P(y,0)P(n,0) implies there 

is some t such that (y,t)I(x,0).

Theorem. For all δ∈(0,1), there is a function u such 
that (x,t)P(x’,t’) if and only if u(x)δt>u(x’)δt’. In 
particular, u(n)=0.
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Proof Exercise 

Insight: Same axioms imply that preferences 
can be written as:

v(x)-t.ln(δ)
Exercise: Interpret t as cash instead of time. 
! State similar axioms about preferences over 

(agreement, payment) pairs. 
! Use these to prove the quasi-linear representation 

that there exists a function v such that (x,0) is 
preferred to (y,t) if and only v(x)>v(y)+t.
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Representing Time Preference

Theorem. Suppose that u and v are positive 
functions with the property that v(x)=[u(x)]A

for some A>0. Then u(x)δt and v(x)εt

represent the same preferences if and only if 
ε= δA.

Proof. Exercise.
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Comparative Statics

The following changes in preferences 
are equivalent
! From u(x)δt to u(x)εt

! From u(x)δt to v(x)δt, where v(x)=u(x)A and 
A=ln(δ)/ln(ε). 

Hence, for fixed δ, greater impatience is 
associated with “greater concavity” of u.
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Bargaining with Time Preference

This model is identical in form to the risk preference 
model, but has a different interpretation.
Fix δ∈(0,1) and corresponding utility functions u1 and 
u2 such that bargainer j’s preferences over outcome 
(z,t) are represented by xj= δtuj(z). 
! Best equilibrium outcome for player one when it moves first 

is a pair (x1,x2) on the frontier of S.
! Worst equilibrium outcome for player two when it moves 

first is a pair (y1,y2) on the frontier of S.
! Relationships: 

δ δ= =
=

2 2 1 1

1 2 1 2

,x y y x
x x y y

23

General Conclusions

Cardinalization principle
! The proper way to cardinalize preferences 

depends on the source of bargaining losses 
that drives players to make a decision. 

Outside option principle
! Outside options are not “disagreement 

points” and affect the outcome only if they 
are better for at least one party than the 
planned bargaining outcome.
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