Nash Bargaining Solution and Alternating Offer Games

MIT 14.126-Game Theory Paul Milgrom Muhament Yildiz

Nash Bargaining Model

- Formulation
- Axioms & Implications

Elements

- ♦ The bargaining set: S
 - Utility pairs achievable by agreement
 - When? Immediate agreement?
- ♦ Disagreement point: d∈R²
 - Result of infinitely delayed agreement?
 - Payoff during bargaining?
 - Outside option?
- ♦ Solution: f(S,d)∈R² is the predicted bargaining outcome

Impossibility of Ordinal Theory

2

Fix (S,d) as follows

 $d = (0,0), S = \{x \ge 0 \mid x_1 + x_2 \le 1\}$ Represent payoffs "equivalently" by (u_1, u_2) where $u_1 = x_1^5, u_2 = 1 - (1 - x_2)^5$

- Then, the bargaining set is: $d' = (0,0), S' = \{u \ge 0 \mid u_1 + u_2 \le 1\}$
- Ordinal preferences over bargaining outcomes contain too little information to identify a unique solution.

Nash's Axioms

 Independence of Irrelevant Alternatives (IIA) If f(S d) = T_S then f(T d) = f(S d) 	
 Independence of positive linear transformations (Let h(x)=ax+6, where a >0, for i=1.2 	(IPLT)
Suppose $a=f(S,d)$. Let $S'=h(S)$ and $d'=h(d)$. Then, f(S',d')=h(a).	
 Efficiency f(S,d) is on the Pareto frontier of S 	
Symmetry Suppose $d' = (d_2, d_1)$ and $x \in S \Leftrightarrow (x_2, x_1) \in S'$. Then,	
$f_1(S,d) = f_2(S',d')$ and $f_2(S,d) = f_1(S',d')$.	
	6

Independence of Irrelevant Alternatives (IIA) ♦ Statement of the IIA condition If f(S,d) ∈ T⊂S, then f(T,d) = f(S,d) ♦ Definitions. Vex(x,y,d) = convex hull of {x,y,d}. xP_dy means x=f(Vex(x,y,d),d). xPy means x=f(Vex(x,y,0),0) ♦ By IIA, these are equivalent x=f(S,d) xP_dy for all y in S

Symmetry Statement of the symmetry condition . Suppose d'=(d_2,d_1) and $x \in S \Leftrightarrow (x_2,x_1) \in S'$. Then, $f_1(S,d) = f_2(S',d')$ and $f_2(S,d) = f_1(S',d')$. Implication . When d=(0,0), (x_1,x_2) is indifferent to (x_2,x_1) . IPLT + Symmetry imply . $x_1x_2=1 \Rightarrow x$ is indifferent to (1,1). . $x_1x_2=y_1y_2 \Rightarrow x$ is indifferent to y.

A Nash Theorem

Theorem. The unique bargaining solution satisfying the four axioms is given by:

 $f(S,d) \in \operatorname{argmax}_{x \in S}(x_1 - d_1)(x_2 - d_2)$

Question: Did we need convexity for this argument?

Alternating Offer Bargaining

Two models

- Both models have two bargainers, feasible set S
- Multiple rounds: bargainer #1 makes offers at odd rounds, #2 at even rounds
- An offer may be
 - Accepted, ending the game
 - Rejected, leading to another round
 - Possible outcomes
 - No agreement is ever reached
 - Agreement is reached at round t

Model #1: Risk of Breakdown

- After each round with a rejection, there is some probability p that the game ends and players receive payoff pair d.
 - Best equilibrium outcome for player one when it moves first is a pair (x₁,x₂) on the frontier of S.
 - Worst equilibrium outcome for player two when it moves first is a pair (y₁,y₂) on the frontier of S.

13

- Relationships:
 - $x_{2} = (1-p)y_{2} + pd_{2}$ $y_{1} = (1-p)x_{1} + pd_{1}$

Main Result

♦ <u>Theorem</u>. As p→0, (x_1, x_2) and (y_1, y_2) (functions of p) converge to f(S,d).
♦ <u>Proof</u>. Note: $y_1 = (1-p)x_1$ and $x_2 = (1-p)y_2$ and...

 (x_1, x_2)

 (y_1, y_2) Nash bargaining solution

The Magical Nash Product

d=(0,0)

Outside Options

♦ Modify the model so that at any time t, either bargainer can quit and cause the outcome z∈S to occur.

Is z a suitable threat point?

Two cases:

- If z₁≤y₁ and z₂≤x₂, then the subgame perfect equilibrium outcome is unchanged.
- Otherwise, efficiency plus

 $x_2 = \max[z_2, (1-p)y_2]$

 $y_1 = \max[z_1, (1-p)x_1]$

17

Proof Exercise

Insight: Same axioms imply that preferences can be written as:

 $v(x)-t \ln(\delta)$

- Exercise: Interpret t as cash instead of time.
 - State similar axioms about preferences over (agreement, payment) pairs.
 - Use these to prove the quasi-linear representation that there exists a function v such that (x,0) is preferred to (y,t) if and only v(x)>v(y)+t.

Model #2: Time Preference An outcome consists of an agreement x and date t. Assumptions to model time preference A time indifferent agreement n exists Impatience: (x,0)P(n,0) and t<t' imply (x,t)P(x,t') Stationarity: (x,t)P(x',t') implies (x,t+s)P(x',t'+s).

Time matters (+continuity): (x,0)P(y,0)P(n,0) implies there

• <u>Theorem</u>. For all $\delta \in (0,1)$, there is a function u such that (x,t)P(x',t') if and only if $u(x)\delta^t > u(x')\delta^{t'}$. In

is some t such that (y,t)I(x,0).

particular, u(n)=0.

Representing Time Preference

Theorem. Suppose that u and v are positive functions with the property that v(x)=[u(x)]^A for some A>0. Then u(x)δ^t and v(x)ε^t represent the same preferences if and only if ε = δ^A.

Proof. Exercise.

18

Comparative Statics

- The following changes in preferences are equivalent
 - From u(x)δ^t to u(x)ε^t
 - From u(x)δ^t to v(x)δ^t, where v(x)=u(x)^A and A=ln(δ)/ln(ε).

Hence, for fixed δ, greater impatience is associated with "greater concavity" of u.

Bargaining with Time Preference

This model is identical in form to the risk preference model, but has a different interpretation.
♦ Fix $\delta \in (0,1)$ and corresponding utility functions u ₁ and u ₂ such that bargainer j's preferences over outcome (z,t) are represented by x _j = δ ^t u _j (z).
 Best equilibrium outcome for player one when it moves first is a pair (x₁,x₂) on the frontier of S.
 Worst equilibrium outcome for player two when it moves first is a pair (y₁,y₂) on the frontier of S. Relationships:
$\mathbf{x}_2 = \delta \mathbf{y}_2, \mathbf{y}_1 = \delta \mathbf{x}_1$ $\mathbf{x}_1 \mathbf{x}_2 = \mathbf{y}_1 \mathbf{y}_2$
22

General Conclusions

Cardinalization principle

 The proper way to cardinalize preferences depends on the source of bargaining losses that drives players to make a decision.

21

Outside option principle

 Outside options are not "disagreement points" and affect the outcome only if they are better for at least one party than the planned bargaining outcome.

