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Abstract

We consider the problem of software agents being used as proxies for the procurement of computational and
network resources. Mechanisms such as single-good auctions and combinatorial auctions are not applicable for
the management of these services, as assigning an entire resource to a single agent is often undesirable and ap-
propriate bundle sizes are difficult to determine. We investigate a divisible auction that is proportionally fair. By
introducing the notion of price and demand functions that characterize optimal response functions of the bid-
ders, we are able to prove that this mechanism has a unique Nash equilibrium for an arbitrary number of agents
with heterogeneous quasilinear utilities. We also describe decentralized negotiation strategies which, with ap-
propriate relaxation, converge locally to the equilibrium point. Given an agent with a sequence of jobs, we show
how our analysis holds for a wide variety of objectives.

1. Introduction

We consider the information economy which is described by Kephart et al. (2000), as the
merging of traditional markets, the Internet and autonomous agents to form a new market-
place where agents serve as proxies for buyers, sellers and intermediaries. Evidence of this
can already be seen on the Internet. Prominent web sites such as Yahoo!, Amazon.com and
Ebay are hosts to auctions where participants have the ability to give simple agents infor-
mation about their valuations and have them bid incrementally for items of interest. Soft-
ware agents facilitate the gathering of information in a low-cost and timely fashion in
addition to assisting with other aspects of markets such as negotiation and payment. Kasbah
(Chavez and Maes 1996) is an agent-mediated marketplace where the process of buying
and selling is automated by the creation of autonomous software agents. The WALRAS
algorithm is another development that calculates competitive equilibrium for agents who
submit demand functions for single goods (Cheng and Wellman 1998).

Markets are important not only because they are the mechanisms for the exchange of
many traditional goods but they have also emerged as a new paradigm for managing and
allocating resources in complex systems. Among the many features that make them attrac-
tive is the establishment of currency, which allows for a common valuation of heterogene-
ous resources. This gives managers or agents the ability to specify preferences or establish
priority. Markets are appropriate for decentralized systems because once a currency ex-
change protocol is established, negotiations can occur simultaneously at various nodes
without the necessity of a central authority. Scalability is another advantage as new resources
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and new resource users can be added simply by establishing the ability to receive or give
currency. Also, prices serve as useful low-dimensional feedback for control. Market-based
control has been applied to factory scheduling, manufacturing systems, energy distribu-
tion and pollution management (Clearwater 1996).

We focus on markets for network bandwidth and computational resources such as proc-
essor share allocation. Mackie-Mason and Varian have advocated the application of eco-
nomic mechanisms for networks, proposing usage-based pricing of the Internet using “smart
markets” (MacKie-Mason and Varian 1993). They examined pricing as a mechanism for
managing congestion in resources such as routers, ftp servers and the Web (MacKie-Ma-
son and Varian 1995). This has led to the idea of packet marking and charging small amounts
for marked packets (Gibbens and Kelly 1999), which has motivated a large body of work
in modeling packets streams in an economic context as agents with utility functions. This
trend of treating networks as markets has led to alternate methods of provisioning band-
width. Companies such as Arbinet, RateXchange and Band-X.com have introduced ex-
change markets and bandwidth trading via auctions. A current push is to move toward
dynamic real-time bandwidth trading. Invisible Hand Networks has created a product that
allows for distributed real-time auctioning of Internet bandwidth.

Similar methods have been suggested for allocation of computational resources. Gagliano
et al. have simulated auction-based allocations for scheduling tasks requiring processing
(1995). POPCORN (Regev and Nisan 1998) and Spawn (Waldspurger et al. 1992) are two
often referenced systems that use markets for computational resource allocation. This was
extended to lottery based scheduling where tickets that were purchased determined the
proportional share of processor allocated to a particular job (Waldspurger and Weihl 1995).

If auctions are to be used to dynamically allocate network bandwidth and computational
resources, we must decide which mechanisms are appropriate. To find a meaningful auc-
tion mechanism, we must first classify the good for sale. Clearly, mechanisms for the sale
of a single good do not apply to computational resources and network bandwidth. It is rare
that these resources are allocated totally to a single user. Even if an agent chooses to pur-
chase an entire resource, we expect at some point that the resource will be partitioned, and
it is that exchange that we are interested in analyzing. There has been a lot of research in
analyzing combinatorial auctions for multi-unit goods (de Vries and Vohra, to be published;
Sandholm 1999; Wellman et al. 2001). However, these methods are inappropriate for the
goods we are considering because network and computational resources are rarely parti-
tioned into well-defined bundles that can be bid for in discrete quantities. Thus, we con-
sider divisible or share auctions as a market mechanism. Though network bandwidth and
computational resources are not continuously divisible, they are usually available in such
high quantities (Mb, GHz) that the approximation is valid.

First, we must decide on what fairness principle our allocation must satisfy. One meas-
ure of fairness that existed early in network literature is the notion of max-min fairness
(Bertsekas and Gallager 1991), where an allocation is chosen so that no agent could im-
prove without simultaneously reducing an agent allocated at a lower level. This leads to
equal shares in a single resource, and it has been argued that it is not an appropriate meas-
ure for networks. Kelly has introduced a notion of (weighted) proportional fairness where
an allocation is made such that the sum of (weighted) proportional gains cannot be increased
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(Kelly 1997; Kelly, Mauloo, and Tan 1998). This notion has generated momentum and work
has been done to show that proportional fairness can be achieved within current protocols
with the use of both fixed window and dynamic window adjustment schemes (La and
Anantharam 2000; Massoulie and Roberts 1999). In computational resources, this notion
of proportional allocation also exists as the lottery scheduling mechanisms partition re-
sources in direct proportion to the tickets owned, where the tickets are analogous to weights.
Because of the ease of implementability, proportional share systems are often advocated
for resource allocation (Maheshwari 1995; Stoica et al. 1996). Thus, we wish to incorpo-
rate proportional allocation in our mechanism.

Another issue we choose to address is the cost of computation. As an agent economy
for our network and computational resources evolves, large numbers of agents will be
migrating throughout our resources at a rapid pace, with allocations that may have to be
recomputed on the order of microseconds. Thus, the signaling load and the computation
required to perform the allocation will have a significant impact on the implementability
of the allocation scheme. We seek to design an auction that minimizes these effects. We
address this by choosing single dimensional bids, which minimizes the signaling load. Par-
titioning the resource proportionally with respect to bid requires a computational load on
the order of the number of agents present.

Another concern that we wish to address is the possibility of the lying auctioneer (Sandholm
1996). In a Vickrey auction, the buyer must trust that the second price is reported accu-
rately, unless preferences of other agents are made public. The revelations of all bids might
not be desired by the agents and can also be infeasible for rapid auctions with large num-
bers of participants. We desire a mechanism where an agent can verify an accurate alloca-
tion for its bid without additional signaling or unnecessary violation of private information.
We show that for the proportionally fair auction, the network feedback is verifiable.

Inherent in the settings we are considering is the competition among agents attempting
to gain access to limited computational and network resources. With the use of auction
mechanisms, the performance of each agent is affected by the actions of all other agents.
The autonomy of agents creates an environment where each agent is acting to better its own
utility. The nature of this negotiation and the attempt to find an operating point calls for
game theory (BaÃar and Olsder 1999; Owen 1995; Petrosjan and Zenkevich 1996). The
rationality that game theory assumes of all its players, which may not always hold true with
humans, is particularly fitting in the realm of electronic technology as software agents or
network protocols do not deviate from the functionality they are given. To reach an equi-
librium, agents must exchange information about their preferences with the resource. Re-
quiring agents to transmit entire preference functions would yield an information revelation
cost that has an unreasonably high signaling load. Typically, neither the resource nor agents
have access to other participants’ private information. Therefore, iterative algorithms based
on network feedback that converge to stable operating points are often needed, which is
what we pursue here. Our main contributions are a game-theoretic analysis of the propor-
tionally fair auction for which we obtain a unique Nash equilibrium and decentralized up-
date schemes that converge to the equilibrium point. We also show that this analysis holds
for a wide variety of agent objectives.
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The paper is organized as follows. In Section 2, we describe the allocation mechanism,
model agent utilities and obtain optimal responses. In Section 3, we introduce the notion
of a price function as a useful characterization of agent responses. In Section 4, we prove
there is a unique Nash equilibrium for the mechanism. In Section 5, we introduce decen-
tralized negotiation protocols and derive the conditions under which these update schemes
converge locally. In Section 6, we show how one can obtain quasilinear utilities for agents
whose utilities are alternatively defined. In Section 7, we introduce a scenario where each
agent has a sequence of tasks, and we analyze it when agents want to minimize both the
cost and time to complete the itinerary. In Section 8, we investigate the scenario where the
itinerary has to be completed as fast as possible with a finite total budget. In Section 9, we
investigate the case where agents have a time deadline and want to meet it with the lowest
cost. Finally, in Section 10, we present some concluding thoughts and discuss some areas
for further investigation.

2. Allocation mechanism and agent utility

We begin with N agents competing for a resource with fixed finite capacity. The resource
is allocated using a market mechanism, where the partitions depend on the relative signals
or bids sent by the agents. We assume that each agent submits a signal s

i
 to the resource.

Then, s = [s
1
 . . . s

N
] represents all bids of competing agents. If s

i
 ∈ R, then s is a vector of

N elements. If s
i
 is of higher dimension, then s is an M × N matrix where M is the dimen-

sion of the column vector s
i
. Because minimizing cost of communication is of interest to

us, we restrict our analysis to one-dimensional signals. A divisible auction consists of two
mappings. The first is from the bids, s, to a partition, x(s), where x

i
(s) ∈ [0, 1] is the re-

source share allocated to the i-th bidding agent. The second is from the bids, s, to a cost
vector, c(s,x) where c

i
(s,x) is the cost associated with the i-th agent obtaining x

i
(s). The

choices of x and c define the auction mechanism.
We want our allocations to be proportionally fair by weight. This holds if the allocation

x* satisfies:

N x
i 
– x*

i∑ s
i

≤ 0
i=1 x*

i

for any x where ∑
Ν

i=1
 x

i
 = 1 where s

i
’s denote the weights. This can be achieved with the fol-

lowing allocation rule:

  s
ix

i
(s)

 
= . (1)
  ∑

j
 s

j

We note that this not only satisfies the proportionally fair criterion for allocation in net-
works, but it also matches the proportional share allocations in many of the systems pro-
posed for computational resources.
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In terms of cost of computation, we note that it takes O(N) operations to perform the
allocation presented in (Equation 1), which is the minimal cost for making variable alloca-
tions to N agents. The cost for each agent is

c
i
( s, x ) = s

i
.

In this auction, if the feedback from the resource is the sum of all bids, an agent can imme-
diately verify if it has been given an accurate allocation. If an agent knows the received
allocation x

i
 and its own bid s

i
, any bid total suggested by the auctioneer other than s

i
/x

i
 can

be immediately identified as a signal of an inaccurate allocation or a lying auctioneer. Fur-
thermore, under this cost structure, each agent pays the same price per unit resource re-
ceived.

We assume that each agent has a valuation v
i
(x

i
) for receiving an allocation x

i
. This valu-

ation may be a characterization of the estimated performance as a function of a given share
of the resource. For example, it could be the time to complete the processing of a job in a
computational market, or the time to transmit data given a particular share of network band-
width obtained. Each performance measure is translated into an equivalent value that can
be compared with cost. Another derivation of the valuation could come from the estimated
value of the sales that could be generated by obtaining a given share of the resource. This
could be the case where agents act as brokers for computational resource and network
bandwidth. We make the following assumptions about agents’ valuations:

Assumption 1. For all i ∈ {1, . . ., N}

– v
i
(x

i
) is continuously differentiable

– v′
i
(x

i
) > 0 ∀ x

i
 ∈ (0, 1)

– v′′
i
(x

i
) ≤ 0 ∀i x

i
 ∈ (0, 1).

The first of these captures the fact that an agent’s performance or marginal valuation of
performance should not change dramatically given a miniscule change in allocation. The
second one is intuitive as an agent’s valuation should increase with allocation, and the third
one captures the effect of diminishing returns. Each agent’s utility is the difference between
the valuation of the allocation it received and cost of its bid:

U
i
(s) = v

i
(x

i
(s)) – c

i
(s, x).

Substituting from Equations (1) and (2), we have:

where s
–i
 = ∑ N–

j=1

1 s
j
 – s

i
 is the sum of the bids of all agents excluding the i-th agent and s

N

= ∈ is a bid made by an agent representing the resource. By bidding ∈, the resource has a
way of declaring a reservation value for its resource and prevents the possibility of agents

s
iU

i
(s) = U

i
(s

i
;s

–i
) = v

i
 – s

i 
, (3)

s
i
 + s

–i
 +∈



 



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colluding to purchase the resource for an arbitrarily small amount of money. Each agent
wishes to choose the bid that maximizes its utility. Given that all other agents bid s

–i
, we

want to find the best response s
i
 = f

i
(s

–i
). The first-order necessary condition for a maxi-

mizing interior solution is:

This can be rewritten as follows:

s
i

(s
i
 + s

–i
 + ∈)2

v′
i

    = 0.
s

i
 + s

–i
 + ∈ s

–i
 + ∈

The LHS of the above equation is a decreasing function of s
i
 as v′

i
(·) is decreasing in its

argument, s
i 
/(s

i
 + s

–i
 + ∈) is an increasing function of s

i
 and the second term has s

i
 only in

the numerator. Thus, an interior solution exists if and only if the LHS is positive when s
i
 =

0. An agent will participate in the auction (submit a nonzero bid), if and only if:

v′
i
(0) > s

–i
 + ∈. (4)

Looking at the second-order condition, we have:

U′′
i
 (s

i
; s

–i
) = v′′

i

s
i

(s
–i
 + ∈)2

s
i
 + s

–i
 + ∈ (s

i
 + s

–i
 + ∈)4

which is negative due to Assumption 1, the nonnegativity of the bids, and the assumption
that  ∈ > 0. If (Equation 4) is satisfied, any s

i
 that solves (Equation 4) uniquely maximizes

the agent’s utility and is the agent’s unique response when the total of all other agents’ bids
is s

–i
 and the resource bids ∈. If (Equation 4) is not satisfied for a particular s

–i
, the i-th

agent will bid zero. Thus, any agent with quasilinear utilities will have a unique optimal
response to a fixed bid total from all the other agents. In the remainder of this chapter, for
notational simplicity, we will assume that the resource’s bid is captured in the term s

–i
.

3. Price functions

Even though the resource allocation is accomplished via an auction mechanism, we note
that ultimately each agent pays the same price per unit resource obtained. The auction can
then be interpreted as a resource sold at a uniform price where the price is determined by



 






 




s
i

s
–i
 + ∈

U′
i
(s

i
;s

–i
) = v′

i
(x

i 
(s))x′

i 
(s) – 1 = v

i
′     – 1 = 0.

s
i
 + s

–i
 + ∈ (s

i
 + s

–i
 + ∈)2



 




            s
i
           –2(s

–i
 + ∈)

+ v′
i
      

        
s

i
 + s

–i
 + ∈ (s

i
 + s

–i
 + ∈)3





 (5)
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the agents. The price per unit of the resource is Σ
i
 s

i
, and each agent receives an allocation

that is the ratio of its bid to that price. We can then define the price of a resource as the sum
of all the bids, p : = Σ

i
 s

i
, including the resource’s bid, for that resource.

Next we define a price function, p
i
(x

i
): R → R as the price at which the agent would

choose an allocation of x
i
. The price function represents the set of cost-allocation pairs which

are the unique optimal responses of a given agent over a range of bids of other agents, i.e.,
s

i
 = p

i
(x

i
) x

i
 is the unique optimal response to s

–i
 = p

i
(x

i
)(1 – x

i
). The inverse of the price

function is the demand function, d
i
(p): R → R, which is defined as the quantity of resource

that the agent would desire if the price was p. This is again generated by an agent’s unique
optimal response in a way such that s

i 
= d

i
(p)p is the agent’s reaction to s

–i
 = (1 – d

i
(p))p.

The price and demand functions are expected to be differentiable decreasing functions of
their argument and the existence of one implies the existence of a well-defined inverse.
One way to obtain these functions is to take the optimal response s

i 
= f

i 
(s

–i
), substitute s

–i
 =

p – s
i
, and solve the fixed-point equation s

i
 = f

i
(p – s

i
). If a solution exists, one has s

i
 as a

function of p. Then, making the substitution s
i
 = p x

i
, one can obtain an equation in terms

of x
i
 and p from which the price and demand functions can be obtained. However, due to

the nature of our auction, we can obtain the price function directly from an agent’s valua-
tion.

Proposition 1. Given a valuation v
i
(x

i
) that satisfies Assumption 1, there exists a correspond-

ing differentiable decreasing price function characterized by p
i
(x

i
) = v′

i
(x

i
)(1 – x

i
).

Proof. Let f
i
(s

i
) be the i-th agent’s unique optimal response. By the first-order necessary

condition, we have:

f
i
(s

–i
) + s

–i
 = v′

i
  

f
i
(s

i
) s

–i

f
i
(s

–i
) + s

–i
 f

i
(s–

i
) + s

–i

= v′
i

f
i
(s

i
)     

    1 –
s

i

f
i
(s

–i
) + s

–i
     (f

i
(s

–i
) + s

–i

By the definition of price, p
i
= f

i
(s

–i
) + s

–i
, and the allocation rule states x

i
 = s

i
/(f

i
(s

–i
) + s

–i
).

Substituting this above, we have:

p
i
(x

i
) = v′

i
(x

i
)(1 – x

i
).

We see that p
i
 is differentiable, with derivative:

p′
i
(x

i
) = v′′

i
(x

i
)(1 – x

i
) – v′

i
(x

i
)

which is strictly negative given Assumption 1. Thus, the price function is decreasing. �
This property of the auction lets us go directly from knowing an agent’s valuation to the

price function which is a transformation of its optimal response. We can obtain the optimal

.



 






 





 



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s
i
 = f

i
(s

–i
) = f

i
(s

–i
)

f
i
(s

–i
) + s

–i
 
 = x

i 
p

i
(x

i
) = v′

i
(x

i
) (1 – x

i
)x

i 
.f

i
(s

–i
) + s

–i

bid from the price function as follows:

We see that p
i
(0) = v′

i
(0) which states that if the price is greater than its largest marginal

valuation, the agent will choose not to participate. This reflects the condition stated in
Equation 4 derived from the first-order necessary conditions. We also see that p

i
(1) = 0,

which states that the agent will purchase the entire resource if only the price is zero. This
is equivalent to saying that the agent will demand the entire resource if the price was zero.
This is a result of the structure of the auction where the only way an agent can obtain the
entire resource is to be the only bidder, in which case the agent would make an arbitrarily
small bid. This can never happen with the resource itself bidding ∈. If the allocation was
at equilibrium, the price per unit resource that the agent would be paying is less than its
marginal utility by a factor of (1 – x

i
). This is the benefit gained by the agent for knowing

its own effect on the price of the resource. Agents with larger allocations at equilibrium are
able to scale their costs away from their marginal utility to a larger degree. In the case where
there are many agents and each agent receives a small portion of the resource, i.e, x

i
 << 1,

the prices being paid will be very close to the marginal valuations. The form of the price
function also reflects the fact that shifting the valuation function by a constant will not
change the optimal response, as the price function (and hence the agent’s reaction func-
tion) depends only on the marginal valuation and not on the absolute valuation.

Example 1. We derive the price and demand functions for an agent with quasilinear utility
and v

i
(x

i
) = 2 x

i
.

The utility function for this agent is U
i
(s

i
;s

–i
) = v

i
(x

i
(s)) – s

i
 = 2s

i
/(s

i
 + s

–i
) – s

i
. The marginal

utility is U′
i
(s

i
;s

–i
) = 2s

–i
/(s

i
 + s

–i
)2 – 1. To have a non-zero bid, we need U′

i
(0;s

–i
) > 0, which

is equivalent to v
i
(0) = 2 > s

–i
. If this condition is met, we can solve U′

i
(s

i
;s

–i
) = 0 to obtain

the optimal response s
i 
= f

i
(s

–i
) = √


2s

–i


 – s


–i
. This means that if all other agents bid a total of

1, the i-th agent would bid √2 – 1 ≈ 0.4142. Letting p be the sum of the bids or “price”, we
can equivalently state that the price-allocation pair p = 1.4142, x

i 
= 0.4142/1.4142 = 0.2929

is an optimal state for the i-th agent. For every optimal bid pair (s
–i
, f

i
(s

–i
)) there is an equiva-

lent price-allocation pair and vice-versa. The first-order condition U′
i
(s

i
;s

–i
) = 0 ⇒ 2s

–i
 = (s

i

+ s
–i
)2. By making the substitutions p = s

i
 + s

–i
 and s

–i
 = p(1 – x

i
), we obtain the price func-

tion p = 2(1 – x
i
) = v′

i
(x

i
) (1 – x

i
). The demand function is x

i
 = 1 – p/2. Both these functions

capture all the price-allocation pairs that are optimal for the i-th agent. —
Other sample valuation functions that satisfy Assumption 1 along with price and demand

functions that display the optimal price-allocation pairs are given in Table 1. The valuation
functions are plotted in Figure 1, the price functions are shown in Figure 2, and the de-
mand functions are shown in Figure 3.
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Table 1. Valuation, Price and Demand Function Equivalence

Agent v
i
(x

i
) p

i
(x

i
) d

i
(p)

1 log(x
i
)/10 (1 – x

i
)/(10 x

i
) 1/(1 + 10p)

2 log(1 + x
i
) (1 – x

i
)/(1 + x

i
) (1 – p)/(1 + p)

3 x
i

1 – x
i

1 – p
4 –1/(1 + x

i
) (1 – x

i
)/(1 + x

i
)2 (–2p – 1 + √

1 + 


 8p)/(2p)
5 –1/(10 x

i
) (1 – x

i
)/(10x

i
2) (–1 + √

1 + 

40


p)/(20p)

4. Nash equilibrium

An immediate question is whether there is an allocation of the resource at a price where all
agents participating in the auction are satisfied. In the language of game theory, we ask
whether there is a set of bids {s*

i
}N

i=1
, where N is the number of agents competing for the

desired resource, such that no single agent wishes to deviate from its bid given that the other
agents remain the same. This state, a Nash equilibrium, occurs if no agent can improve its
quality by changing its bid under current market conditions, i.e.,

s*
i
 = arg max 

s
i

 U
i
 (s

i
; s*

–i
) ∀ i ∈ {1, . . ., N},

where s*
–i
 implies s

j
 = s*

j
, ∀ j ≠ i. Because every agent’s optimal response is captured in its

price and demand functions, we can use these as tools to evaluate the existence of a Nash
equilibrium.

We find it useful to work in the space of demand functions. Due to the structure of our
auction, the total of the allocated resources will always be one. Given a particular price p,
if the sum of all agent demands at that price, Σ

i
 d

i
(p), is not equal to one, then there is no

Figure 1. Sample Valuation Functions.
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way to partition the resource without giving at least one agent an allocation such that x
i
 ≠

d
i
(p). This implies that s

i
 ≠ arg max

t
 U

i
(t;s

–i
) and the agent would gain by unilaterally chang-

ing its bid. Thus, to find a Nash equilibrium, it is equivalent to ask whether there is a price
(or bid total) where the total demand of all the agents at that price is equal to one. Valid
demand functions for elastic agents are assumed to be decreasing functions of price that
go to zero as the price tends to infinity. We know that this holds for quasilinear utility func-
tions with valuations that satisfy Assumption 1.

Figure 2. Sample Price Functions.

Figure 3. Sample Demand Functions
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Proposition 2. Given any set of demand functions {d
i
(θ)}N

i=1
, where ΣN

i=1
 d

i
(0) > 1, limθ→∝

d
i
(θ) = 0,∀ i, and d

i
(θ

1
) > d

i
(θ

2
) ∀ θ

1
, θ

2
 such that θ

1 
< θ

2
 for i = 1, . . ., N, there exists a

unique value θ* such that ΣN
i=1

 d
i
(θ*) = 1.

Proof.  Let d
–

(θ) = ΣN
i=1

 d
i
(θ). Then d

–
(θ) is a continuously decreasing function, whose maxi-

mum is d
–
(θ) > 1. We also have limθ→∝ d

–
(θ) = 0, which implies that for some d

–θ sufficiently
large, d

–
(θ

–
)  < 1. Applying the Intermediate Value Theorem for d

–
(θ) on [0,θ–], we know that

there exists at least one θ* such that d
–

(θ*) = ΣN
i=1

 d
i
(θ*) = 1. Let us assume that there are at

least two values of θ where d
–

(θ) = 1. Let us choose two of these values as θ*
1
 and θ*

2
, where

θ*
1
 < θ*

2
. Then, we have d

i
(θ*

1
) > d

i
(θ*

2
) ∀ i = 1,. . ., N, which implies that d

–
(θ*

1
) > d

–
(θ*

2
). But

we have d
–

(θ*
1
) = d

–
(θ*

2
) = 1, which is a contradiction and thus we can have only one θ where

d
–

(θ) = ΣΚ
i=1

 d
i
(θ) = 1. �

The individual demand functions for agents described in Table 1, their total demand and
the resulting equilibrium price are shown in Figure 4. By working in the space of demand
functions, we can use the property that the demands are decreasing to easily see that there
is a unique Nash equilibrium. Uniqueness of the Nash equilibrium is significant as we have
a single desired operating point. Thus, given any set of agents there is a unique set of bids
that yield an allocation where each agent is satisfied. This set of bids can be characterized
in terms of the demand functions and a Nash equilibrium price, θ*, as follows:

{s
i
 : s

i
 = d

i
(θ*) θ*}N

i=1
.

The condition ΣΝ
i=1

 d
i
(0) > 1 is satisfied for almost all agents as (for price function p), p(1)

= 0 ⇒ d(0) = 1 unless the marginal valuation at one is infinite which will not occur for any
reasonable valuation. This also requires that N > 2, and this is always satisfied as we have

Figure 4. Nash Equilibrium for Agents described in Table 1.
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the bids of the resource and at least one agent requesting service. Clearly, θ* determines
which agents receive service as any agent with d(θ*) = 0 will have a zero bid as its optimal
response.

5. Decentralized bidding algorithm

Knowing that there is a unique Nash equilibrium, the natural question that follows is how
to arrive at that allocation. If the demand functions of all the agents, d

i
(θ)N

i=1
, were com-

municated to the resource, it could calculate the equilibrium allocation by a binary search
over θ and enforce it immediately. However, this would add a significant signaling load
which we want to avoid. Also, if the resource is operating as a profit maker as opposed
to a mediator, agents would not want to reveal their private information. Thus, it would
be desirable if the agents could reach the Nash equilibrium allocation in a decentralized
manner.

For agents to make decentralized updates, they require some information. We assume
that each agent is aware of the share of the resource that it currently receives. Also, the
resource can provide the current price (or equivalently, the total of all bids) for the resource.
If, at time slot n, the i-th agent bids sn

i
, then the price would be ΣN

i=1
 s

i
n and the i-th agent would

receive s
i
n / ΣN

i=1
 s

i
n of the resource. This feedback from the resource prevents the possibility

of the lying auctioneer that exists in second price auctions. Any agent can verify the price
being announced by the resource as being valid by comparing it to the ratio of its bid to its
allocation, which are both known to the agent. To obtain a viable decentralized algorithm,
we seek a set of update policies {f

i
}N

i=1
 such that if s

i
n+1 = f

i
(sn), where sn = [s

1
n s

2
n . . . s

N
n], then

lim
n–∝ s

i
n = s

i
* = d

i
(θ*) θ*, i = 1,. . ., N, where θ* is a Nash equilibrium price. After bids are

made by all the agents, the i-th agent will receive a feedback pair

which denotes the congestion for that current time slot and the service rate received. The
agent knows that if this pair does not lie on the curve (θ, d

i
(θ)) or equivalently (p

i
(x

i
), x

i
),

the current price-allocation pair is not optimal. Thus, any viable update algorithm must
project the feedback pair to a point on the demand or price curve. If a user receives alloca-
tion x

i
 for some bid, it would project to the point (p

i
(x

i
), x

i
) on the price curve and the cor-

responding bid would be s = p
i
(x

i
) x

i
.

We propose an update algorithm where each agent projects the feedback point vertically
onto the price function, as shown in Figure 5. This method has the advantage that the agent
does not even require the feedback of the current price of the resource. Each agent projects
its allocation to the price it would desire for the current allocation and makes the appropri-
ate bid. This further reduces the signaling load required by the auction. It also eliminates
the need to worry about the truthfulness of the auctioneer. This leads to the following de-
centralized update scheme:

N s
j

(θ, x
j
) = ∑  s

j
,

j=1 ΣK
j=1

 s
j



 



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s
i
n+1 = (sn

i
 / s–n) p

i
 (sn

i
 / s– n) (6)

where n and n + 1 denote the two consecutive iteration stages and s–n : = ΣK
i=1

 sn
i
. Simulations

have shown that the above update scheme does not converge for all price functions. An
alternative then is the following relaxed version of the update scheme:

s
i
n+1 = α

i
 (sn

i
 / s–n) p

i
(sn

i 
/ s–n) + (1 – α

i
) sn

i
(7)

where α
i
 ∈ (0, 1], which also covers the unrelaxed case (α

i 
= 1). A graphical interpretation

of the relaxed update scheme can be seen in Figure 6. This update scheme depends on know-
ing only the received allocation, sn

i
 / s–n

i
, and the previous bid sn

i
. The relaxed version of the

update scheme requires no additional signaling and only requires that each agent store its
last bid in memory. As α

i
 approaches zero, the time to convergence will delay as bids change

more slowly. Thus, we desire to find the largest α
i
 that the i-th agent should use that will

make the algorithm stable.
To investigate local stability, we linearize the update algorithm around the equilibrium

bids {s*
i
} to get

N   ∂s
i
n+1

s
i
n+1 – s*

i
 = ∑ (sn

j
 – s*

i
)

j=1 ∂sn
j
        s=s*

∂g
i

          p
i
(x*

i 
) + x*

i 
p′

i
(x*

i 
)

           = αi
  (1 – x*

i
)                          + (1 – αi)

∂s
i
  

s=s*
θ*






 







∂g
i

(– s
i
) s

i
  s

i
s

i
(– s

i
)

= α
i

p
i

     +     p′
i∂s

i
s–2 s–   s– s– s–2












 








∂g
i

p
i
(x*

i 
) + x*

i 
p′

i
(x*

i 
)

             = αi (– x*
i
)

∂s
j
  

s=s*
θ*






 







p
i
(x*

i 
) + x*

i 
p′

i
(x*

i 
)

q
i
 : =

θ

∂g
i

(s– – s
i
) s

i
  s

i
s

i
(s– – s

i
)

= α
i

p
i

     +     p′
i

+ (1 – α
i
)

∂s
i

s–2 s–   s– s– s–2












 








where

Let us define ∈n
i
 : = sn

i
 – s*

i
, and
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where x*
i
 is the equilibrium allocation for the i-th agent, p′

i
(·) is the derivative of the price

function p
i
(·), and θ* is the equilibrium bid total. We have p

i
(x

i
*) ≤ θ*, as any agent that

receives a positive equilibrium allocation will have a price function that yields the equilib-
rium price at its allocation and any agent that receives a zero allocation must have p

i
(0) ≤

θ*. Furthermore, we have p
i
′(x

i
*) < 0, which implies q

i
 ≤ 1. We assume that all agents are

restricted to those whose price or demand functions ensure that the agents are neither infi-
nitely sensitive nor completely insensitive to the price at equilibrium. This will be satisfied
if q

i
 ≠ – ∝ and q

i
 ≠ 1. The linearized system is ∈n+1 = J~ ∈n where

J~ = AJ + (I – A),     J = (I – X)Q, X = xT1
N
,     x = [x*

1
 x*

2
 . . . x*

N
],    1

N
 = [1 1. . .1],

Figure 5. Projection of Allocation x on Price Function p(x).

Proposition 3. If α
i
 is chosen such that α

i
 < 2/(1– q

i
), ∀

i
, then all the eigenvalues of J~ are in

the unit circle and the update scheme described by Equation 7 is locally stable.

Proof. Let λ be an eigenvalue of J~, and y a corresponding eigenvector. We have

J~x = (A(I – X)Q + (I – A))y = λ y.
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Multiplying from the left by Q, we have

(QA(I – X)Q + Q(I– A))y = λ Qy.

Since I,Q and A are diagonal matrices, we have the following relations

QA = AQ,     Q(I – A) = (I – A)Q

and thus,

[AQ(I – X) + (I – A) Qy = λ Qy          [AQ – AQX + I – A] r = λr

where r = Qy. Let r– : = 1
N
r. Then,

Thus, for every λ that is an eigenvalue of J~, we have:

α
1
q

1
r

1
α

1
q

1
x*

1
1

N
             α

1
q

1
x*

1

AQr =                   ,   AQXr =                      r =                    r–.
α

N
q

N
r

N
α

N
q

N
x*

N
1

N
             α

N
q

N
x*

N



















...
...

...

α
i
q

i
r

i
 – α

i
q

i
x*

i
 r– + (1 – α

i
) r

i
 = λr

i
 ∀

i

If we assume that the candidate λ has an eigenvector such that r– = 0, for every r
i
 ≠ 0 we have

λ = α
i
q

i
 + (1 – α

i
) =: q~

i
(8)

Thus, we will have a stable system if we choose α
i
 ∈ (0, 1] such that

α
i
 < 2/(1 – q

i
) (9)

If, on the other hand, the candidate eigenvalue λ has an eigenvector such that r– ≠ 0, we have

(α
i
q

i 
+ (1 – α

i
) – λ) r

i
 = α

i
q

i
x*

i
r–

α
i
q

i
x*

i
    r

i      = 
α

i
q

i 
+ (1 – α

i
) – λ   r  –

Summing over i, we have

N   α
i
q

i∑ x*
i
     = 1

i=1    αi
q

i
 + (1 – α

i
) – λ

N   α
i
q

i∑ x*
i
     = 1

i=1   q
~

i
 – λ

N
∑ x*

i
z

i
 = 1 (10)

i=1
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where z
i 
= (α

i
q

i
)/(q~

i
 – λ) =: z

i
R + jz

i
I is complex.

If we can choose α
i
 such that zR

i
 < 1 for all i, for some candidate eigenvalue λ, then we

know that λ cannot be an eigenvalue for J~, because ΣΝ
i=1

 x*
i 
zR

i
 < ΣN

i=1
x*

i   
= 1. We now investi-

gate how to choose α
i
 in a way such that zR

i
 < 1 for all candidate eigenvalues on or outside

the unit circle. If we can do this, we know the resulting system is locally stable as the only
valid eigenvalues for J~ must lie inside the unit circle. Let λ = σ + jω. Then,

z
i
 =

 α
i
 q

i
      
     (q~

i
 – λ)

=
 α

i
 q

i
        

(q~
i
 – (σ + jω))

α
i
q

i
= 

((q~
i
 – σ) – jω)

α
i
q

i
((q~

i
 – σ) + jω)

= 
((q~

i
 – σ)2 + ω2)

from which we get

         α
i
q

i
(q~

i
 – σ)

zR
i
 =  

         ((q
~

i
 – σ)2 + ω2)

We assume that α
i
 has been chosen to satisfy (Equation 9), implying –1 < q~

i 
< 1.

Figure 6. Graphical Interpretation of Relaxed Update Scheme.
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Case 1. Let us assume that q
i
 ≥ 0. Then, σ ≥ q

i
 ⇒ zR

i
 ≤ 0 so we assume σ < q~

i
. If |σ| ≥ 1, q

i

≥ 0, then

     α
i
q

i
(q~

i
 – σ)

zR
i 
 = 

    (q
~

i
 – σ)2

α
i
q

i
=   

(q~
i
 – σ)

α
i
q~

i≤ 
q~

i
 – σ)

≤ 1,

where the final inequality is due to the fact that σ < q
i
 < 1 and σ | ≥ 1 imply σ < 0. For any

nonzero candidate λ, at least one of the first or last inequalities will be strict.
If |σ| < 1, |λ| ≥ 1 ⇒ ω2 ≥ 1 – σ2. Then,

α
i
q

i
(q~

i
 – σ)

zR
i
 ≤       

(q~
i
 – σ)2 + (1 – σ2)

α
1
q

i
(q~

i
 – σ)

=   
q~

i
2 – 2σq~

i 
+ σ2 + 1 – σ2

α
1
q

i
(q~

i
 – σ)

= 
q~

i
(q~

i
 – σ) + (1 – σq~

i
)

α
1
q~

i
(q~

i
 – σ)

≤  
q~

i
(q~

i
 – σ) + (1 – σq~

i
)

< 1,

where the final inequality is due to the fact that |σ| < 1 and |q~
i
| < 1 imply 1 – σ q~

i
 > 0.

Case 2. Let us now consider q
i
 < 0. If σ ≤ q~

i
, then zR

i
  ≤ 0, so we assume σ > q~

i
. Consider σ

≥ 1 > q~
i
. Then, we have

          α
i
q~

i
(q~

i
 – σ)

zR
i
 ≤   

(q~
i
 – σ)2

α
i
q

i
      =   

(q~
i
 – σ)

α
i
q

i
=  

α
i
q

i
 + 1 – σ – α

i

≤ 1.
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because σ ≥ 1 implies 1 – σ – α
i
 < 0. For any nonzero candidate λ, at least one of the first

of last inequalities will be strict.
If q~

i
 σ < 1, |λ| ≥ 1 ⇒ ω2 ≥ 1 – σ2. Then, we have

q~ – σ
zR

i
 ≤ α

i
q

i 
    =: α

i
q

i
f (σ)

(q~
i
 – σ)2 + 1 – σ2)

where

∂f(σ) q~2
i
 – 1

  =   < 0
∂σ        [(q~

i
 – σ)2 + (1 – σ)2]2

because |q~i| < 1. Thus, f (σ) is minimized and the bound on zR
i
 is maximized as σ → 1. This

implies

α
i
q

i
(q~

i
 – 1)

zR
i
 < 

(q~
i
 – 1)2 + (1 – 12)

α
i
q

i
=  

q~
i
 – 1

α
i
q

i
=  

α
i
q

i
 + 1 – α

i
 – 1

α
i
q

i
=  

α
i
(q

i
 – 1)

q
i

=  
q

i
 – 1

< 1.

Thus, if α
i
 is chosen to satisfy (Equation 9), any candidate λ outside the unit circle will not

be a viable eigenvalue of J~. �

Corollary 1. If |qi| < 1, ∀
i
, then the unrelaxed algorithm described in (Equation 6) is locally

stable.

Proof. The proof of local stability depends on |q~i| < 1. If α
i
 = 1 (the unrelaxed case), q~

i
 =

q
i
 and thus we require |qi| < 1 for local stability. �

We can interpret q
i
 as an indicator of the price sensitivity of the i-th agent at equilib-

rium. Thus, the basic algorithm will converge unless an agent’s sensitivity is higher than a
particular threshold. The condition that |qi| < 1 ∀

i
 restricts the set of price functions that can

be guaranteed to be locally stable as those agents with valuations that lead to greater price
sensitivities risk not converging to an operating point. The relaxation changes the sensitiv-
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ity parameter q
i
 to q~

i
, moving it inside the unit circle if q

i
 is too negative. By reducing the

magnitude of the reactions of the agent, relaxation makes the agent less aggressive and
effectively dampens the price sensitivity of the agent.

We note that q
i
 is determined from the allocation at equilibrium, which is not known a

priori to the agent. Each agent must take into account all possible equilibrium allocations
when choosing its relaxation parameter. If the agent minimizes the function

q
i
(x

i
) = (p

i
(x

i
) + x

i
p′

i 
(x

i
)) / p

i 
(x

i
)

over the domain x
i
 ∈ (0,d

i 
(∈)), let q̂

i
 = arg min

xi ∈ (0,di(∈))
q

i
(x

i
). If all agents choose α̂

i
 < 2/(1

– q̂
i
), then α̂

i
 < 2/(1 – q̂

i
) ∀q

i
 and the update scheme will converge regardless of the equilib-

rium allocation. In effect, each agent is choosing a relaxation parameter that will be able to
dampen the allocation at which the price sensitivity is highest.

We note that if x*
i
 > 0 and p′

i
(x*

i
) ∈ (– ∝, 0), then q

i
 ∈ (– ∝, 1) and we will be able to find

an appropriate relaxation parameter. If x*
i
 = 0, then q

i
 = p

i
(0)/θ*. In this case we will have

q
i
 < 1 unless p

i
(0) = θ* where q

i
 = 1. In this case, relaxation will not help and it will be

possible to have an eigenvalue of one. This situation occurs only when an agent’s maxi-
mum marginal valuation is exactly the price of the resource. If the valuations of agents are
drawn from a set of functions where the maximum marginal distribution is a continuous
random variable, then the situation where p

i
(0) = θ* is a zero probability event. Simulations

have shown that if this case occurs, the algorithm converges to a point close to the optimal
equilibrium allocation. Though we have only done a local analysis, simulations have shown
that the relaxed update scheme converges globally for all cases where it converges locally.
Proof of global convergence and and alternate update schemes are areas for further inves-
tigation. Simulations of the algorithm can be seen in Figures 7, 8 and 9.

6. Equivalent valuations

We modeled our agents with quasilinear utilities and valuation functions satisfying Assump-
tion 1. As we will see in following sections, there are alternate ways to define agent utili-
ties. To apply the decentralized bidding algorithms, all we require is the existence of price
functions (or equivalently, demand functions) that characterize the agents’ optimal re-
sponses. Given a price function with certain properties, we show that we can produce a
quasilinear utility function that yields the same optimal response. In addition to justifying
our model of quasilinear utilities, this enables us to gain insight into alternatively defined
agent utilities. The quasilinear utility yields an instantaneous valuation even though the
original agent utility might have had complementarities over time or cost. With equivalent
instantaneous valuations, we have a common base for comparing agent utilities and under-
standing qualitative behavior in their responses.

Proposition 4. Let p(x) be a positive continuous decreasing function of x ∈ (0, 1) where
p(1) = 0 and p(0) = lim

x↘0
 p(x). If and only if q(x) := p(x)/(1 – x) is differentiable, and dq/

dx ≤ 0 ∀ x ∈ (0, 1), then the valuation function,
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Figure 7. Iterations of 5 Agents Using Relaxed Update.

⌠

⌡

   1  p(y)
v(x) = –             dy (11)

  x  1 – y

satisfies Assumption 1, and produces the same optimal response characterized by p(x).

Proof. This is straightforward to see as v(x) is differentiable with v′(x) = q(x) = p(x)/(1 – x)
which is continuous as p(x) is a continuous function. It is also straightforward to see that
the price function generated by that valuation function is the same as the price function
used in generating the valuation function, thus the optimal response that each character-
izes will be the same. Because p(x) is positive and (1 – x) is positive for x ∈ (0, 1), we have
v′(x) > 0 for x ∈ (0, 1). We also have v′′(x) = dq/dx ≤ 0 for x ∈ (0, 1); thus we have satisfied
the conditions of Assumption 1. The “only if” part results from the fact that if either q(x) is
not differentiable or dq/dx > 0 for some x ∈ (0, 1), then either v′′(x) will not exist or will be
positive for some x ∈ (0, 1), violating the assumed properties of v(x). �

We defined p(0) as the limit of p(x) as x ↘ 0 to allow for the possibility that p(0) might
be infinite. From Proposition 4, we note that the main factor in whether a price function
has an equivalent utility is whether p(x)/(1 – x) is a decreasing function as all the other
conditions of Assumption 1 are satisfied through construction or by natural properties of
p(x). Looking at this we can find more intuitive necessary and sufficient conditions for
equivalence to hold.
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Figure 9. Iterations of 100 Agents Using Relaxed Update.

Figure 8. Iterations of 20 Agents Using Relaxed Update.
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Corollary 2. For a given price function, p(x), with p(0) < ∝, to have an equivalent instan-
taneous valuation function satisfying Assumption 1, it is necessary that p(x) ≤ p(0) (1 – x)
∀ x ∈ (0, 1).

Proof. Let f(x) = p(x) – p(0) (1 – x). Then, we have

d    p(x)     d                f(x)         f′(x) (1 – x) + f(x)
  =    p(0) +    =     ≤ 0 ∀ x ∈ (0, 1)
dx  1 – x    dx               1 – x       (1 – x)2

as a necessary condition from Proposition 4. This implies that it is necessary that f′(x)(1 –
x) + f(x) ≤ 0. Let us assume that f(x

0
) > 0 for some x

0
 ∈ (0, 1). Let x

1
 = max {x : f(x) = 0, x

< x
0
}. We know that the set is non-empty since f(0) = 0. By the continuity of p(x), and hence

of f(x), we know that f(x) > 0 ∀ x ∈ (x
1
, x

0
). By the Mean Value Theorem, there exists x

2
 ∈

(x
1
,x

0
) such that f′(x

2
) = (f(x

0
)  – f(x

1
)) / (x

0
 – x

1
) > 0. But since f(x

2
) > 0, we have f ′(x

2
)(1 –

x
2
) + f(x

2
) > 0, which violates the necessary condition. Thus, we must have f(x) ≤ 0 ⇒ p(x)

≤ p(0)(1 – x) ∀ x ∈ (0, 1). �
Intuitively, this means that a bounded price function must lie below the line segment

connecting p(0) and p(1) for it to have an equivalent instantaneous valuation. It can be fur-
ther shown that any viable price curve cannot go above and come back below any line with
negative slope that intersects (x,p(x)) = (1, 0). This can be shown by using a modified ver-
sion of the previous proof. If the price function is strictly convex, we have the following
sufficiency condition.

Corollary 3. If a given price function, p(x), is strictly convex, having p′′(x) > 0 ∀ x ∈ (0, 1),
and p(1) = 0, then the price function has an equivalent instantaneous valuation.

Proof. To have an equivalent instantaneous valuation, from Proposition 4 it is sufficient
if

d    p(x)      p′(x) (1 – x) + p(x)
    =   ≤ 0 (12)
dx   1 – x     (1 – x)2

From Taylor’s theorem, we have p(1) = p(x) + p′(x)(1 – x) + p′′(y)(1 – x)2/2 for some y ∈ (x,
1). Rearranging the terms, we have p′(x)(1 – x) + p(x) = p(1)  – p′′(y)(1 – x)2/2. Because
p(1) = 0 and p′′(y) > 0, the expression is negative and Eq. 12 is satisfied. Thus, p(x) has an
equivalent instantaneous valuation. �

The previous two corollaries give us easy visual clues as to whether we can extract a
concave valuation function from a price function. If the price curve is not sublinear, we
know we cannot. If the price curve is convex, we know we can. We apply the previous re-
sults to specific agent tasks with various utilities in the following sections.



 



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Jobs in series

We now consider a scenario where agents are generated at some subset of nodes in a net-
work with a sequence of jobs to complete. The jobs require access to resources available at
various nodes throughout the network. Based on some budget constraints, each agent at-
tempts to purchase resources throughout the network to complete its set of jobs according
to a given performance measure or utility function. For now, we will assume that the agents
have perfect knowledge about the states of demand (or equivalently, the prices) of various
resources in the network. In a network of resources being managed by electronic markets,
it is reasonable to assume that there will be a mechanism to provide price information to
agents. From this, an agent will choose a sequence of resources that it will attempt to pur-
chase service from to complete its tasks. Let us assume that the i-th agent has a sequence
of jobs with K

i
 tasks, where q

i
k is the size of the job of the k-th task. Let Ck

i
 be the capacity

of the resource providing the service needed by the k-th task of the i-th agent. We assume
that every resource allocates its services using the proportionally fair auction character-
ized by Eqs 1 and 2. In this context, the bid will constitute a payment that the agent is will-
ing to make per unit of time that it uses the resource. Let s

i
k be the bid of the i-th agent for

resource chosen for the k-th task on its itinerary and s
–i
k  be the sum of the bids of other agents

competing for that resource (which includes the bid ∈k made by the k-th resource). Then,
the rate of service obtained by the i-th agent for its k-th task is

                sk
i

xk
i
 = Ck

i
         .

                s
k
i
 + sk

–i

Then, the time taken to complete that job will be

        qk
i
 (sk

i
 + sk

–i 
)

tk
i
 =   .

        Ck
i
 sk

i

The expense to the agent is the bid times the duration of service, which yields

                 qk
i
 (sk

i
 + sk

–i 
)

ek
i
 = sk

i
 tk

i
 =   .

                 Ck
i

The decision that faces the agent is how to balance its performance as measured by the time
taken to complete its jobs and the cost of obtaining service. We first consider the following
criterion:

           K
i
                          K

i

min  ∑   ek
i
 + αk

i
   ∑ tk

i

           k=1                       k=1



 






 



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where αk
i
 represents the relative value to the i-th agent of the time taken to complete the k-

th job relative to its cost. The agent is minimizing a weighted combination of the total cost
and the total time taken to complete all its jobs. Substituting for t

i
k and e

i
k, and taking the

derivative with respect to sk
i
, we have

qk
i
      αk

i
 qk

i
 sk

–i –   = 0
Ck

i
     Ck

i
 (sk

i 
)2

     (sk
i 
)2 = αk

i
 sk

–i
.

It can be seen that the minimization is a convex function of sk
i
 and the preceding equation

represents the optimal response in terms of the other agents’ bid total. Let pk
i
  be the price

of the resource chosen by the i-th agent to complete its k-th task. The price is equivalent to
the sum of all the bids made at that resource, so pk

i
 = s

i
k + s

–i
k. Substituting this, we have

        (s
i
k)2 = α

i
k (pk

i
 – s

i
k)

        (s
i
k)2 + α

i
k s

i
k – α

i
k p

i
k

        – α
i
k + √(α

i
k)2 + 4 α

i
k p

i
k

sk
i
 =  

        2

which is the optimal response in terms of the price of the resource. We choose the greater
root of the quadratic as it is the only positive solution which is required of all bids. Divid-
ing the optimal bid by pk

i
  gives us the demand function associated with this optimal re-

sponse as d
i
k(p

i
k) = s

i
k (p

i
k) / pk

i
. By substituting s

i
k = p

i
k x

i
k into the  quadratic above, we get

(p
i
k)2 (x

i
k)2 + α

i
k p

i
k x

i
k – α

i
k p

i
k = 0

which we can solve to obtain the following price function:

         ak
i
 (1 – xk

i 
)

pk
i
 =   .

        (xk
i 
)2

We note that

d       pk
i
          d      αk

i
          –2αk

i        =        =    < 0
dxk

i
   1 – xk

i
      dxk

i
     (xk

i 
)2        (xk

i 
)3

so we can apply the results of Proposition 4 to find the equivalent valuation function:

              –αk
i

vk
i
 (xk

i
) =   .

              xk
i

 =0
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We have thus shown that agents are able to extract a price function and a valuation function
even though their objectives were not maximizations of quasilinear utilities. Here, the mini-
mization problem can be decoupled with respect to each job. Then for each job, the problem
can be interpreted as a minimization problem for a job broken into several pieces (of arbitrar-
ily small size) to be completed in series with the same objective. In the limit, the problem
tends to an instantaneous optimization and thus, an instantaneous valuation of service.

8. Finite budget

We now consider the situation where an agent is given an endowment, E
i
, which it may not

exceed as it attempts to minimize the total time taken to complete its jobs. There is no ben-
efit for returning any of the endowment, so E

i
 can also be interpreted as a hard cap on spend-

ing. This can be expressed as the following optimization problem:

            K
i
                                       K

i

min ∑  tk
i
   such that   ∑  ek

i
 ≤ E

i
.

           
k=1  

                           
         k=1

We solve this problem using Lagrangian methods. We first introduce the Lagrangian

           K
i
                        K

i

L = ∑  tk
i
 + λ    ∑  ek

i
 – E

i   
.

           
k=1                     k=1

Substituting for t
i
k and e

i
k and taking partial derivatives with respect to s

i
k, we have

∂L     – qk
i
 sk

–i
          qk

i
                              sk

–i  =   + λ   = 0      ⇒     λ =  .∂sk
i
     Ck

i
 (sk

i 
)2          Ck

i
                             (sk

i 
)2

We know that s
–i
k ≥ ∈

i
k > 0 where ∈

i
k is the bid made by the resource providing the service

needed by the k-th task on the i-th agent’s itinerary, which implies λ > 0. Because λ is iden-
tical for all tasks, we have the following relationships between optimal bids:

               sk
–isk

i
 = sk

i
(13)

               s
j
–i

The optimal assignments of bids is then proportional to the square root of the demand by
other agents. Incorporating the constraint, we get

   ∂L        Ki
   qk

i
 (sk

i
 + sk

–i
)

λ  = λ  ∑     – E
i
 = 0.

   ∂y         k=1 Ck
i



 






 




 √
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Since λ > 0, we know that the second factor must be zero. Substituting for {s
i
k}Ki

k=2
 in terms

of s
i
1 using Eq. 13, we have

 √q1
i

                      qk
i
      sk

–i
               qk

i   (s1
i
 + s1

–i
) + ∑          s1

i
 + ∑     sk

–i
 – E

i
 = 0.

C1                   k≠1  Ck
i   

   s1
–i
          k≠1  Ck

i

Solving this for s
i
1, we get

which is the optimal bid for the first or current job of the i-th agent in terms of the demand
of the resources for the jobs in its itinerary. For an agent to implement this strategy, it must
have estimates of the demand at resources that it plans to visit in the future. This fits with
the notion of a finite budget as one has to have an idea of how much money one will need
in the future to know how much one can reasonably spend now. The reaction function is
parameterized by the agent’s beliefs about the future regardless of their accuracy. In this
analysis, we will not address the effects of accuracy. Instead we focus on the competition
among agents, and thus we can assume that the estimates are accurate. We can rewrite the
optimal response as follows

                     αi – βi s1
–is1

i
 = f

i
(s1

–i
) :=  ,

                      β
i + γi

                             s1
–i√



where

                    qk
iα

i
 := E

i
 – ∑       sk

–i 
,

                
k≠1

 C
k
i

        q1
iβ

i
 :=     ,

        C
1

            qk
iγ

i
 := ∑          sk

–i 
.

        k≠1 Ck
i √



Intuitively, α
i
 represents the estimate of the maximum money available for the current job.

If that amount is less than zero, the agent cannot afford to purchase service under the cur-

                       qk
i
       q1

i

        Ei
 – ∑

k≠1  ck
i sk

–i  C1  s
1
–i

s1
i
 =

            q
1
i
               qk

i
     sk

–i

            C1   
+ ∑

k≠1
 
 Ck

i       
s1

–i

√



387NASH EQUILIBRIUM AND DECENTRALIZED NEGOTIATION

rent state of the network. This is reflected in the optimal response, as a negative α
i
 would

yield a negative s
i
k since β

i
 and s

–i
1 are positive and agents are required to submit non-nega-

tive bids. In fact, we see that the optimal response will yield a negative bid whenever s
–i

1 >
α

i 
/ β

i
. There is intuition behind this as well. Because β

i
 represents the minimum time re-

quired to complete the current job, and α
i
 is the maximum money available for the current

job, α
i
 / β

i
 is the largest amount of money per unit time that the i-th agent could spend or

bid for this resource. If the other agents’ total bids, s
–i
1  , create a price that is greater than the

i-th agent’s spending limit, it will choose not to participate. The third parameter, γ
i
, is a factor

that when divided by √

s1

–i
 gives an estimate of the excess time (time above the minimum

time to complete a job) necessary to complete the remaining tasks. Thus, the optimal re-
sponse is the ratio of the excess money for all the jobs to the estimated excess time for all
the jobs. We note that when an agent is completing its last task, γ

i
 = 0. This yields an opti-

mal response of s
i
k = α

i
 / β

i
 – s

–i
k. This again matches intuition as an agent unconcerned with

future tasks will want to bid at the highest rate possible (to minimize time) while spending
every bit of money available to it. The budget constraint can be rewritten as β

i
 sk

i 
+ β

i
 sk

–i
 ≤

α
i
. When the i-th agent maximizes its bid under that constraint, we get the same equation

as the optimal response. If the price is larger than α
i
 / β

i
, the agent will not be able to par-

ticipate and if the price is less than that quantity, the agent will bid until the price reaches
that limit. We drop the superscript, with the knowledge that the bids are in reference to the
current resource. Making the substitution, s

–i
 = p

i
 – s

i
, yields

       α
i
 – β

i
  (p

i
 – s

i
)

s
i
 =     ,

       β
i
 +  γ

i            
             p

i
 – √


s

i

from which we obtain the following quadratic in s
i
,

(γ
i
)2 (s

i
)2 + (α

i
 – β

i
 p

i
)2 s

i
 – (α

i
 – β

i
 p

i
)2 p

i
 = 0.

We can rewrite the quadratic as follows

         s
i
2                               s

i
(γ

i
)2

   p
i
   (pi

)2 + α
i
 – β

i 
p

i
)2

   p
i
   pi

 – (α
i
 – β

i 
p

i
)2 p

i
 = 0,

and by dividing by p
i
 which we know to be positive, and making the substitution, x

i
 = s

i
 /

p
i
, we have

(γ
i
)2 (x

i
)2 p

i
 + (α

i
 – β

i
 p

i
)2 (x

i
 – 1) = 0,

which we can solve for x
i
 to obtain the demand function:

        – (α
i
 – β

i
p

i
)2 + √(α

i
 – β

i 
p

i
)4 + 4p

i 
γ

i
2 (α

i
 – β

i 
p

i
)2

x
i
 =  

2γ2
i 
p

i



 










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We choose the greater root because we need x
i
 ≥ 0. Rearranging the quadratic with respect

to p
i
, we have

                           γ
i
2x2

iβ
i
2p

i
2 –   2α

i
β

i
 +              p

i
 + α2

i
 = 0

                           1 – x
i

which we solve to obtain the following price function.

       α
i
          1

p
i
 =  +     γ

i
2x2

i
 – √γ4

i
x4

i
 + 4α

i
β

i
γ2

i
x2

i
 (1 – x

i
)

       βi
     2β2

i
 (1 – x

i
)

We choose the lesser root because the price function must reflect the fact that the agent
cannot participate if the price is greater than α

i
 / β

i
.

An economy of agents with budget limits has been simulated in Bredin et al. (2000). In
the following figures, we can see how the price functions change as we vary parameters of
the agent with jobs in series with a finite budget. We simplify the scenario and consider an
agent with two jobs. Let E

i
 be the endowment, q1

i
 be the size of the first job, q2

i
 be the size

of the second job, and s2
–i
 be the demand of other agents for the second job. For Figure 10,

q1
i
 = 0.1302, q2

i 
= 0.6638, s2

–i
 = 0.2544. For Figure 11, E

i
 = 0.6375, q2

i 
= 0.7927, s2

–i
 = 0.4787.

For Figure 12, E
i
 = 0.8336, q1

i 
= 0.0579, s2

–i
 = 0.3529. For Figure 13, E

i
 = 1.1791, q1

i 
= 0.3764,

q2
i 
= 0.5936.



 












Figure 10. Price Functions for E
i
 ∈ {0.3, 0.4, . . ., 1.8}.
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Figure 11. Price Functions for q1
i
 ∈ {0.1, 0.2, . . ., 1.9}.

Figure 12. Price Functions for q2
i
 ∈ {0.1, 0.2, . . ., 0.9}.
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We can see that as these parameters vary, the price curves uniformly increase or decrease
and also change from convex (which by Corollary 3, we know has an equivalent instanta-
neous valuation) to concave (which by Corollary 2, we know does not have an equivalent
instantaneous valuation that satisfies Assumption 1). To gain an intuitive understanding of
these figures, we must understand what it means when a price curve does not have a valu-
ation that satisfies Assumption 1.

Modifying, the second-order condition presented in Eq. 5, we see that if

v′′(x)(1 – x) < 2v′(x),

then x is a unique maximizing allocation if it meets the first-order necessary condition
p(x) = v′(x)(1 – x). We note that for all decreasing price functions, we have

p′(x) = v′′(x)(1 – x) – v′(x) < 0,

which implies that the modified second-order condition is met. Furthermore, given a de-
creasing price function, if we substitute the valuation function generated by Eq. 11 into the
modified second-order condition, we have

p′(x) (1 – x) + p(x)                 2p(x)
    (1 – x) < 
         (1 – x)2                                           1 – x
                                   p(x)
                  ⇒ p′(x) <  .
                                   1 – x

Figure 13. Price Functions for s2
–i
 ∈ {0.1, 0.2, . . ., 1.4}.
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Since the LHS is negative and the RHS is positive, we know this is satisfied. The preced-
ing thus shows that a valuation function does not necessarily have to be concave for a unique
maximizing response to exist, though the convexity has limits. If a valuation is strictly con-
vex, the effect is to push the agent into higher equilibrium allocations and higher equilib-
rium costs. This is counter to the concept of diminishing returns but the complementarities
induced by the coupling of the jobs with the same finite budget forces the agent to deviate
from a concave valuation. This gives us some intuition into the changes in the price func-
tions as parameters vary.

As E
i
 increases, the agent has more money to spend and therefore can accept a higher

price for each allocation. Thus, the price curves are uniformly higher as the endowment
increases. Also, as an agent has more money to spend it is encouraged to purchase higher
allocations, which would explain why the curves become more concave (implying a con-
vex valuation) as the endowment increases. As the current job size, q

i
1, increases and the

budget remains the same, the agent cannot afford to spend as much on the current job; thus
the price curves become uniformly lower. However, as the current job size increases with
respect to the future jobs, its effect on overall performance increases as well, and even though
the agent cannot spend as much money, it is encouraged to seek a higher allocation, and
thus the price curve becomes more concave as q

i
1 increases. Increasing future job sizes q

i
k

and future demands s
–i
k for k > 1, both have the effect of increasing the importance of the

future jobs and minimizing the importance of the first job. This is why we see that the price
functions get uniformly lower and progressively convex as we want the agent to spend less
money and settle for lower allocations as it is necessary to save more of the finite endow-
ment for the future.

This scenario shows the robustness of looking at an optimal response in the form of a
price function. It is important that the price functions are associated with valuations so that

we can find a direct relation between motivation and action. By limiting ourselves to
strictly concave valuations (and strictly convex valuations that satisfy the modified sec-
ond-order condition), we assure ourselves of unique responses. Investigating more com-
plex forms of valuations is an open area for further research.

9. Finite time

We consider here another agent task where a sequence of jobs needs to be completed in a
specified amount of time, T

i
, while minimizing the cost accrued. This can be expressed as

the following optimization problem:

min ∑
K

k=1
 ek

i
  such that  ∑

K

k=1
 tk

i
 ≤ T

i
.

We introduce the following Lagrangian:

L = ∑
K

k=1
 ek

i
 + λ (∑

K

k=1
 tk

i
 – T

i
),

substitute for t
i
k and e

i
k, and take partial derivatives with respect to s

i
k to get:
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∂L    qk
i
             –qk

i
 sk

–i
                                (sk

i
)2

     =    + λ        = 0     ⇒     λ =  
∂sk

i
    Ck

i
           Ck

i
 (sk

i
)2                                              sk

–i

Because s
–i
k includes the resource’s bid, and the agent’s bid must be positive, we know that

λ > 0. Also, because λ is identical for all the resources, we have the following relationship
between the bids:



 




We also have the following equation incorporating the constraint:

    ∂L         K   qk
i
      qk

i
 sk

–iλ    = λ ∑    +     – T
i
 = 0.

    ∂λ         k=1 Ck
i
     Ck

i
 sk

i

Since λ > 0, the latter factor must be identically zero. Substituting Eq. 4}), we have:

q1
i
 s1

–i
            qk

i
 √


 sk

–i
    √


 s1

–i
              K   qk

i

  + ∑        = T – ∑    . (15)
C1 s1

i
       k≠1 Ck

i
         s1

i
              k=1  Ck

i

Introducing the following variables,

                K   qk
iα

i
 := T

i
 – ∑   

               
k≠1

  C
k
i

        q1
iβ

i
 := 

        C
1

              qk
iγ

i
 := ∑     √


 sk

–i

       
 k=1    Ck

i

we can rewrite Eq. 15 as:

β
i
s1

–i
 + γ

i
 √


s1

–i
 = α

i
s1

i
.

Dropping the superscript, and substituting s
–i
 = p

i
 – s

i
, where p

i
 is the price of the current

resource in the itinerary, we have:

α
i
 s

i
 = β

i
 (p

i
 – s

i
) + γ

i
 √ 


p

i 


– s

i

(α
i
 + β

i
) s

i
 – β

i
 p

i
 = γ

i
 √


p

i


– s

i
.

                          sk
–isk

i
 = sj

i 
              . (14)

                   
     sj

–i
√
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We note that since the RHS of the previous equation is always positive, we require s
i
 > p

i

β / (α + β), for a solution to exit. Squaring both sides, we have

(α
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i
)2 s

i
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i
) p

i
 s

i
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i
2 p
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2 (p
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)
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i
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i
)2 s

i
2 + (γ

i
2 – 2β

i 
(α

i 
+ β

i
) p

i
)s

i
 + β

i
2 p

i
2 – γ

i
2 p

i
 = 0.

Making the substitution s
i
 = p

i
 x

i
, and then dividing by p

i
 which we know to be positive, we

have the following equation which characterizes the optimal response:

(α
i
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i
)2 p

i
 x

i
2 + (γ

i
2 – 2 β

i
 (α

i
 + α

i
) p

i
) x

i
 + (β

i
2 p

i
 – γ

i
2) = 0

We can solve this for x
i
 to obtain the following demand function
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                   2(α

i
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)2p

i

and solve for p
i
 to obtain the following price function

       γ2
i
 (1 – x

i
)

p
i
 =    = 0.

       [(αi
 + β

i
) x

i
 – β)]2

We choose the greater root for x
i
 since s

i
 > p

i
 β / (α + β) ⇒ x

i
 > β / (α + β). Similarly, we

realize that even though the price function is defined ∀ x ∈ (0, 1), it is only valid for x
i
 > β

/ (α + β). We note that p
i
(x

i
)/(1 – x

i
) is decreasing on (β / (α + β), 1). Thus, defining the

valuation as in Eq. 11, we have

            γ2
i
          1       1                             β

i
v

i
(x

i
) =           –        ∀ x ∈       , 1.
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                 α

i
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i

Sample plots of valuation, demand and price functions can be seen in Figure 14. We see
that the equivalent valuation is a concave increasing function on a subinterval of the allo-
cation space and meets the conditions of Assumption 1 on this subinterval. If we set the
valuation to be – ∝ on (0, β / (α + β)), the resulting optimal response would match the optimal
response of the optimization problem stated in the beginning of this section. We see that
the demand function does not go to zero as the price increases and the price function in-
creases to infinity above an allocation of zero. The reason for this is that the agent is effec-
tively inelastic with respect to allocation close to the minimal allocation requirement, and
even exorbitant prices will not deter the agent. This is due to the lack of a constraint on the
expenditure accrued. Nevertheless, this case of an inelastic agent can also be modeled with
a demand function, price function and an equivalent instantaneous valuation.
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Figure 14. Demand, Price and Valuation Functions for Agent with Finite Time Constraint for α
i
 = 0.9641, β

i
 =

0.2077, γ
i
 = 0.1611.

10. Conclusion

We have analyzed a proportionally fair divisible auction that is verifiable and has low
signaling and computational loads. Redefining optimal responses as price functions allows
us to show that the mechanism has a unique Nash equilibrium. We develop decentralized
algorithms that converge to the equilibrium without needing resource feedback or sharing
private information. We demonstrate the robustness of our characterization by investigat-
ing several utility models of an agent given a sequence of tasks.

In agent economies for computational and network resources, divisible auctions are
appropriate mechanisms for allocation. There are many areas open for further investiga-
tion. We have studied the effects of coalition formation and extended the auction to a mul-
tiple resource setting. The seller revenue problem and generalization of divisible auction
mechanisms are some of the issues to be addressed in the future.
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