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When payoffs from different actions are unknown, agents use their own past experience as 
well as the experience of their neighbours to guide their decision making. In this paper, we develop 
a general framework to study the relationship between the structure of these neighbourhoods and 
the process of social learning. 

We show that, in a connected society, local learning ensures that all agents obtain the same 
payoffs in the long run. Thus, if actions have different payoffs, then all agents choose the same 
action, and social conformism obtains. We develop conditions on the distribution of prior beliefs, 
the structure of neighbourhoods and the informativeness of actions under which this action is 
optimal. In particular, we identify a property of neighbourhood structures-local independence- 
which greatly facilitates social learning. Simulations of the model generate spatial and temporal 
patterns of adoption that are consistent with empirical work. 

1. INTRODUCTION 

We consider a society with many agents, each of whom faces a similar decision problem: 
to choose an action at regular intervals without knowing the true payoffs from different 
actions. The action chosen generates a random reward and also provides information 
concerning the true payoffs. An agent uses her experience along with the experience of a 
subset of the society, viz. her neighbours, to update her prior beliefs. This experience 
consists of actions and the corresponding outcomes.' Given these beliefs, she chooses an 
action that maximizes expected utility. We study the evolution of agents' beliefs, actions 
and utilities. 

We wish to understand how the structure of neighbourhoods in a society effects 
the generation of information (via the actions individuals choose) as well as its social 
dissemination. More specifically, we ask the following questions: 

What properties of the neighbourhood structure facilitate/hinder the social adoption 
of an optimal action? 
What are the implications of neighbourhood learning for diversity/conformism? 
What are the spatial and temporal patterns of adoption when individuals learn from 
their neighbours? Are these patterns consistent with empirical observations? 

1. Examples of such environments include consumers learning about different brands, farmers learning 
about the productivity of improved seeds/pesticides/insecticides and doctors learning about the efficacy of new 
treatments. Empirical work has documented the importance of learning from "others" in several contexts, such 
as the adoption of new crops (Ryan and Gross (1943)), the diffusion of patent drugs (Coleman (1966)), the 
choice of new agricultural techniques (Hagerstrand (1969), Rogers (1983)), economic demography (Watkins 
(1991)) and the purchase of consumer products (Kotler (1986)). 
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An important aspect of our framework is the generality of the structure of neighbour- 
hoods. We allow for any neighbourhood structure that generates a connected society. A 
society is said to be connected if for every pair of agents i and j, either j is a neighbour 
of i or there exist agents i1, . .. , i4 (depending upon i and j) such that i1 is a neighbour 
of i, i2 is a neighbour of i1 and so on, until j is a neighbour of i,.2 

In our analysis, we make two assumptions on individual behaviour which limit the 
(Bayesian) rationality of agents. The first assumption says that, in updating her beliefs, 
an agent does not make inferences concerning the experience of unobserved agents (such 
as some of the neighbours of her neighbours), from the choice of actions of her neighbours. 
The second assumption requires that agents are myopic and, given their beliefs, choose 
an action that maximizes one-period expected utility. 

The primary motivation underlying these assumptions is that in our setting a model 
with fully rational agents would require them to perform highly complex calculations 
before making their choices in each period. Our model implicitly presumes that agents 
either do not possess the computational capacity required to undertake these calculations, 
or do not find the effort required to perform them to be worthwhile. A related reason for 
our specification of agent behaviour is that it allows us to simplify the formulation of the 
model and the subsequent analysis. This simplification allows us to focus on the questions 
raised above. This is worthwhile since we believe that while our results are derived in a 
model with a specific form of bounded rationality, the insights obtained from our analysis 
are more general and provide an understanding of the factors relevant for social learning 
with other decision rules (including a fully rational one) as well. Later in the introduction, 
we discuss some of the considerations underlying these behavioural assumptions in greater 
detail, when we relate our work to the literature on Bayesian learning. 

We now summarize our results and briefly discuss the intuition underlying them. 
We begin by establishing that agents' beliefs converge to a limit with probability one 
(Theorem 3.1). We use this result to demonstrate an important general property of con- 
nected societies: the limiting (expected) utilities of all agents are equal (Theorem 3.2). In 
other words, local learning enables an agent to do as well as everyone else in a connected 
society. The proof of this theorem uses the following arguments. We first establish that if 
an agent i takes some action x infinitely often then the limiting utility is equal to the true 
payoffs from action x. Next, we consider two agents i and j and suppose that j is a 
neighbour of i. If agent j takes some action x' infinitely often then her limiting utility is 
equal to the true payoffs from action x'. We then establish the following intuitive property: 
if i observes j then the true payoffs from x must be at least as high as the true payoffs 
from x'. We note that this property of limiting utilities is transitive. The proof is completed 
by using the definition of connectedness along with this transitivity of limiting utilities.3 

Theorem 3.2 implies that, in the long run, different agents cannot choose actions 
which are payoff ranked. Thus if actions have distinct payoffs then in a connected society 
everyone takes the same action and conformism obtains with probability one.4 

2. Familiar examples of connected societies are (a) agents located on points of a d-dimensional lattice in 
which every agent observes her immediate 2d neighbours; (b) an organization tree where each person observes 
their immediate superior and subordinates; (c) agents located around a circle, observing their immediate neigh- 
bours and in addition observing a common set of agents who are sampled by a consumer magazine; (d) a group 
of agents who observe each other. 

3. The arguments for this proof are very general and do not rest upon the specific form of bounded 
rationality assumed. This suggests that a similar result should also obtain in a model with fully rational agents. 

4. Diversity refers to a situation in which different groups of agents choose different actions, while confor- 
mism describes the outcome with everyone choosing the same action. 
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The above result naturally leads to the question: do agents learn to choose the optimal 
action in the long run? It can be shown using standard arguments that learning is generally 
incomplete in finite agent societies. This motivates the study of learning in large societies, 
i.e. with a countably infinite number of agents. We begin with an example of incomplete 
social learning. In this example, every agent has to choose between two actions, one action 
whose payoffs are known and a second one whose payoffs are unknown; thus agents 
do not know which action is optimal. We assume that agents are indexed by the set 
of integers and that each agent observes the agent on either side of her. In addition, 
there exists a "royal family", i.e. a small set of agents who are observed by everyone.S 
We suppose that the action with unknown payoffs is the optimal action and also that 
initially everyone's prior beliefs favour the adoption of this action. Thus an infinite 
number of independent trials of this action are undertaken in the society. Despite this, 
we show that there is a positive probability that the society will choose the sub- 
optimal action eventually. 

This happens because, in our example, the royal family can generate sufficient negative 
information that can overwhelm any locally gathered positive information, thereby induc- 
ing all agents to switch to the action with known payoffs. This means that no further 
information is generated and thus the society is locked into an inferior choice.6 We can 
also show that, in the absence of the royal family, the society will choose the optimal 
action in the long run. Thus, this example illustrates an interesting aspect of social learning: 
more information links can increase the probability that a society gets locked into a sub- 
optimal action. 

The example with incomplete learning helps us to identify alternative sets of conditions 
that ensure complete learning (Propositions 4.1-4.2 and Theorems 4.1-4.2). Our analysis 
highlights the role of locally independent agents. We say that two agents i and i' are locally 
independent if they have non-overlapping neighbourhoods, i.e. they observe different sets 
of agents. The general argument proceeds as follows: First, for any agent i we construct 
a set of sample paths Ai having positive probability with the following two properties: 
one, Ai depends only upon the realizations agent i observes, and two, sample paths in Ai 
have a uniform upper bound on the amount of negative information concerning optimal 
actions. Second, we observe that if agent i's beliefs are "optimistic" and can overcome 
this negative information then she will choose an optimal action forever on the set Ai. 
Third, we note that for two locally independent agents, i and i', the corresponding events 
Ai and Ai are independent. This implies that, given that both i and i' have optimistic prior 
beliefs, the probability that neither of them tries an optimal action forever is bounded 
above by the product of the probabilities that neither Ai nor Ai occur. More generally, 
the probability bound on the event that no one from a set of locally independent agents 
chooses an optimal action forever is exponentially decreasing in the number of such agents 

5. This structure corresponds to situations in which individuals have access to local as well as some 
common/public source of information. For example, such a structure arises naturally in the context of agriculture 
where individual farmers observe their neighbouring farmers but all the farmers observe a few large farmers and 
research laboratories. Another setting with this structure is a consumer goods market; individual consumers 
discuss purchase decisions with their colleagues and friends and potential customers read one or two consumer 
magazines which report on some experiments/consumer experiences. A third example pertains to research activ- 
ity; individual researchers typically keep abreast of developments in their own narrow area of specialization, 
and also try to keep informed about the work of the pioneers/intellectual leaders in their subject more broadly 
defined. 

6. The reasoning above should apply in any setting where agents choose the informative action only when 
the posterior belief is above some cut-off value. We therefore conjecture that a similar incomplete learning result 
can be also be derived in a model with fully rational agents. 
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and in the limit equals 0.7 The final step in the argument invokes Theorem 3.2 to show 
that in a connected society the probability of a society choosing suboptimal actions in the 
long run is subject to the same upper bound. 

Theorem 4.1 makes assumptions on the distribution of prior beliefs while Proposition 
4.2 and Theorem 4.2 impose restrictions on the informativeness of actions to ensure that 
each of the locally independent agents will choose an optimal action in the long run, with 
strictly positive probability. 

We also study the temporal and spatial patterns of diffusion by simulating the choices 
of a group of farmers trying to learn the true productivity of a new crop. We find that 
the temporal pattern (percentage of adopters vs. time) is described quite well by the logistic 
function, and that the rate of adoption is positively related to the profitability of the new 
crop. These results are consistent with empirical findings (Griliches (1959), Feder, Just 
and Zilberman (1985)). We also observe that for different model specifications and param- 
eter values the speed of convergence is fairly rapid. Finally, with regard to the spatial 
patterns, we find that initially small groups of farmers adopt the new crops and then it 
slowly spreads as neighbouring agents adopt it as well. Eventually these regions join up 
and the pace of diffusion accelerates. These findings match empirically observed spatial 
patterns (see e.g. Hagerstrand (1969)). 

Our paper should be seen as a contribution to the theory of Bayesian learning. Blume 
and Easley (1992) and Vives (1995) survey some of the work in this area; recent work 
includes papers by Aghion, Paz-Espinosa and Jullien (1993), Bala and Goyal (1994, 1995), 
Banerjee (1992), Bikhchandani, Hirshleifer and Welch (1992) and Bolton and Harris 
(1992), among others. Research in this tradition has focused on cases where individual 
agents privately observe a signal and also have access to some central statistic which is 
publicly observed. This central statistic varies, depending on the model. In models of 
rational expectations learning, for instance, market prices are the central statistic, while 
in the recent work on herding/information cascades the actions of all previous agents are 
publicly observable. By contrast, in our framework, agents take actions repeatedly and 
learn from their own past experience as well as the experience of their neighbours.8 

In general, the choice of actions by neighbours will reflect their own past experience 
as well as the past experience of their neighbours. A fully rational agent can therefore try 
to extract information about the experience of unobserved agents via the choice of actions 
of her neighbours. In the context of our model, this involves several kinds of computations. 
First, even if the neighbourhood structure is perfectly known, when agents attempt to 
infer the information in the society as a whole, they must take into account the fact that 
other agents are simultaneously attempting to make similar types of inferences, and are 
making choices based upon these inferences. Thus, in order to incorporate the behaviour 
of other agents, the beliefs of agents would be quite complicated, and the manner in which 
these beliefs would have to be updated in each period even more so. These difficulties are 
compounded when we wish to study "large" societies, as the neighbourhood structure is 
then likely to be imperfectly known. In this case, a fully rational agent would also need 

7. The construction of sets such as Ai is central to our argument. This construction is possible in our 
model because agents do not make inferences from the choices of their neighbours, but only from the realizations 
of the choices. This is related to our first assumption on bounded rationality. We note, however, that the basic 
idea behind the concept of locally independent agents is that negative information must spread sufficiently slowly 
so that individual agents have a chance to generate adequate positive information on the optimal action. We 
expect that this intuition would also be central to the study of social learning with fully rational agents. 

8. Recall that this experience consists of actions and corresponding outcomes. Our formulation is thus 
quite different from the recent work on observational learning in which agents enter sequentially and choose 
actions once and learn from others' actions only. 
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to have beliefs over the set of all neighbourhood structures and update these as well over 
time. Our assumption about the manner in which agents respond to new information from 
their neighbours arises from an effort to keep the agents' belief revision process from 
becoming unmanageable, and our own analysis from becoming intractable. Secondly, if 
agents were not myopic, their incentives for strategic behavior (such as free riding on the 
information generated by other agents) would also interact with the imperfect monitoring 
of the rest of society in very complex ways; the determination of equilibrium strategies of 
agents would likewise demand great computational effort on their part. For this reason, 
we suppose in our model that agents are concerned only with current expected utility.9 
However, for the reasons discussed above (in footnotes 3, 6 and 7), we conjecture that 
our main findings are quite general and would also be pertinent in a model with fully 
rational agents. Thus our paper contributes to the Bayesian learning literature in two 
ways: one, by formulating a general model of neighbourhood structures and two, by 
identifying certain properties of this structure which facilitate information aggregation 
and adequate learning. 

Our paper is also related to the research on social learning with boundedly rational 
agents. Recent work in this area includes papers by An and Kiefer (1992), Ellison and 
Fudenberg (1993, 1995) and Smallwood and Conlisk (1983), among others. We briefly 
discuss the relationship of our paper with the work of Ellison and Fudenberg. In Ellison 
and Fudenberg's social learning models, agents use only currently available social informa- 
tion such as recent popularity weighting and disregard historical data (including their own 
past experience) in making decisions. By contrast, in our model agents do use historical 
information. Moreover, the bounded Bayesian decision rule the agents employ precludes 
the use of popularity weighting. Ellison and Fudenberg study the possibility of obtaining 
efficient outcomes and social diversity under different levels of popularity weighting and 
sample sizes. While our paper also studies efficiency and conformism, we focus on the role 
of prior beliefs and neighbourhood structures. These differences suggest that our paper 
should be viewed as complementary to their work. 

Finally, our paper can also be regarded as studying the dynamics of technology 
adoption. Our example on incomplete learning, in the presence of a royal family, provides 
new insights about how the structure of information flows can generate "lock-ins" into 
inferior technologies.'0 In this connection we would also like to mention the early work 
of Allen (1982a, b) which explores the role of neighbourhood influence on the invariant 
distribution of a process of technology adoption. Our paper extends her work by consider- 
ing social learning in an explicit model of (Bayesian) individual decision making and 
learning. 

The rest of the paper is organized as follows. Section 2 describes the model. Sections 
3-4 present our results while Section 5 discusses simulations of spatial and temporal 
patterns of social learning. Section 6 concludes. 

2. THE MODEL 

2.1. Preliminaries 

Let 0 be a finite set of possible states of the world, X be a finite set of actions and let Y 
be the space of outcomes. If the state of the world is 0 eO and an agent chooses action 

9. It is possible to assume that agents behave as if they were long lived (i.e. with discount factors greater 
than zero) but isolated. This formulation is somewhat more complicated than the one presented here. Nonetheless, 
we believe that the results presented here should hold qualitatively in such a setting, since the essential properties 
of agents' behaviour required for our proofs would be preserved. 

10. See e.g. Arthur (1989). 



600 REVIEW OF ECONOMIC STUDIES 

x eX, he observes outcome y with conditional density q (y; x, 0) and obtains reward 
r(x, ;). We make the following assumptions about Y, X and r(x, y). 

(A. 1) Yis a non-empty, separable metric space. The distribution of outcomes'1 condi- 
tional on x and 0 can be represented by the density f ( ; x, 0) with respect to 
a measure F defined on the Borel subsets of Y. 

(A.2) For each xeX, r(x, ) is bounded and measurable in Y. 

Agents do not know the true state of the world, and they enter with a prior belief in 
the set ?9(0) of beliefs (probability distributions) over the state of nature 

?9(0)= {p = {p(0)}oc?I for all 0eO , p(0)?O and 0?,u(0)= 1}. (2.1) 

Given belief p an agent's one-period expected utility u(x, p) from taking action x is 

U(X, P) = Le ,H (0) J'r(x, y) q (y; x, 0)dF(y). (2.2) 

Note that u(x, ) is linear on 9(0) for every xeX. We assume that individuals have the 
same preferences.'2 Let G: -9() -+X be the one-period optimality correspondence 

G(p) = {xeX I u(x, p) > u(x', p) for all x'eX}, p e? (0). (2.3) 

Let 60 be the point mass belief on the state 0; then G(60) denotes the set of ex post 
optimal actions if the true state is 0 ee. (In the rest of the paper, we refer to ex post 
optimal actions as "optimal actions"). 

We now give two examples which are special cases of the above framework. The first 
example helps to clarify the basic structure, while the second example is the canonical 
bandit model (Berry and Fristedt (1985)) and illustrates the generality of our framework. 

Example 2.1. There are two actions x0 and xl and two states, Oo and 01. In state 
01, action xl yields Bernoulli distributed payoffs with parameter r e(1/2, 1); in state 00 
the payoffs from xi are Bernoulli distributed with parameter 1 - nr. Furthermore, in both 
states action x0 yields payoffs which are Bernoulli distributed with parameter 1/2. Hence, 
xi is the optimal action if the true state is 01 while x0 is the optimal action if 00 is the 
true state. The belief of an agent is a number p e (0, 1), which represents the probability 
that the true state is 0 .13 In this example, the one period optimality correspondence is 
given by 

G(p) x if=l/2 
(2.4) 

From the point of view of learning, we emphasize that agents do not observe any signals 
apart from the realized payoffs (1 or 0). 

Example 2.2. There is a finite set of actions X; each of the actions can be one of 
s > 2 quality levels or types. We suppose that the s quality types are labelled {q, .. . , q, }- 

11. In what follows, we shall use the words outcomes/realizations/observations interchangeably. 
12. We have also explored the learning process when agents have heterogeneous utilities. Our results on 

limiting utilities and learning carry over if for each group of agents of a given preference type, taken separately, 
connectedness obtains. 

13. A natural interpretation of this example is to view action x0 as an established technology, whose 
payoffs are known, and action x, as a new technology, whose payoffs are uncertain. 
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If an action x is of quality q,, then it generates observations with a density jm (y) and a 
reward r(y). The expected value of an action of type q,, is 

Vm-J r(y)sm (Y)d]F(Y). (2.5) 

Let the quality levels be strictly ordered according to ascending expected value, i.e. 
V1 < V2 <... < V . This induces an ordering -< among quality levels where qj<qk if and 
only if Vj < Vk. Any two distinct actions are independent. This implies that a belief p can 
be written as 

p = {{1i(x; q)}IEqe {qi .q,} p(x; q)= 1, p(x; q) >o, Vx and q}. (2.6) 

In terms of the model presented earlier, a, state 0 e0 is a specification of the quality 
types of the various actions. Let p be the initial belief of an agent in the society. We assume 
as before that the belief is interior, i.e. for each x and each quality type q, p (x; q) >0. Recall 
that u(x, pu) gives the expected one-period utility of choosing x when the belief is P. Thus, 
equation (2.2) can be rewritten as 

u(x, p) = EGj {q p(x; qj) Vj. (2.7) 

Finally, we also allow for an additional kind of action which is completely uninfor- 
mative i.e. yields the same distribution of outcomes in all states of nature.'4 The set of 
actions is thus given by X = XT u {XU } where XT is the set of actions each of which can 
be one of s types and xu is the uninformative action. 

2.2. The social structure 

The set of agents is a non-empty set N which can be finite or countably infinite. For each 
ieN, let N(i) denote the set of neighbours of agent i. The statement "j is in N(i)" is to be 
interpreted as saying that agent i has access to the entire past history of agent j's actions 
and outcomes. By contrast, if j is not a neighbour of i, then i does not observe any of j's 
actions or outcomes. Throughout this paper we shall suppose ieN(i) for every agent i. 
We also assume that the set N(i) is a finite set for all ieN. Let NA'(i) = {jeNI ieN(j)}; 
the set N l(i) is the set of all agents who observe agent i.'5 The "royal family" is the set 
R= {jeNI N- (j) =N}, i.e. those agents who are observed by everyone. 

A society comprises of the set of agents and the neighbourhoods of each of the agents. 
We shall say that a society is connected if, for every ieN and every other agent jeN there 
exists a sequence of agents {il, i2, . . ., im } (depending upon i and j) such that il eN(i), 
i2eN(il ), and so on until jeN(im). The analysis in this paper is restricted to connected 
societies; we focus on such societies because all other types of societies can be analysed 
as a collection of connected societies. (See footnote 20 below, for a discussion on this 
issue.) In what follows, for expositional simplicity, we shall usually omit the term "con- 
nected" while referring to societies. 

14. In the context of crop choice, this corresponds to a case where the farmer decides not to plant any 
crop. Likewise, in situations where consumers are making brand choices this action is the "no purchase" option. 

15. If the observation relation is symmetric, this set clearly coincides with N(i). However, there are many 
sources of communication (e.g. radio, television, books, journals and gossip!) which do not possess symmetry. 
Our framework allows for asymmetric observational links. 
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2.3. The dynamics of the model 

Time is discrete and is indexed by t = 1, 2, .... At the beginning of period 1, each agent 
i has a prior belief pi,i - 9(0). We assume 

(A.3) For all ieN, pi,, lInt (9(0)), 

where Int (?9(0)) denotes the interior of the belief space. It is worth noting that we do 
not restrict the agents to have identical priors. 

For each ieN, let gi: 9(0)-+X be a selection from the one-period optimality corre- 
spondence G of equation (2.3) above. In period 1, each agent i plays the action gi(p l, ) 
and observes the outcome. Agent i also observes the actions taken and outcomes obtained 
by the other agents in N(i). In periods t= 2 and beyond, each agent i first computes her 
posterior belief 1ui, based on the experiences of the agents in N(i). In this regard, we 
assume that agents employ a "bounded Bayesian" learning algorithm. This algorithm 
specifies that agents modify their prior beliefs to posterior ones, using Bayes rule in con- 
junction with the information obtained from their own and their neighbours' experiences. 
However, they do not attempt to extract any information from the observed choices of 
their neighbours.'6 After forming her posterior pi,, in the manner described above, agent 
i then chooses the action gi(p i,) which maximizes one-period expected utility, and the 
process continues in this manner. Thus, agents are being boundedly rational both in 
choosing their optimal action myopically given their beliefs and also in forming posterior 
beliefs. 

We now briefly sketch the construction of the probability space since the notation is 
required for the results. Details are provided in the Appendix. For a fixed 0 e- we define 
a probability triple (Q, , PO), where Q is the space containing sequences of realizations 
of actions of all agents over time, and Po is the probability measure induced over sample 
paths in Q by the state OeO. 

Let 0 be endowed with the discrete topology, and suppose 4 is the Borel a-field on 
this space. For rectangles of the form A x H where A c 0 and H is a measurable subset 
of Q, let Pi(A x H) be given by 

Pi (A x H) = EOc-A pij l(0)P6(H), (2.8) 

for each agent ieN. Each Pi extends uniquely to all of X x F. Since every agent's prior 
belief lies in the interior of 9(0), the measures {Pi} are pairwise mutually absolutely 
continuous. All stochastic processes are defined on the measurable space (0 x Q, q x ,F). 
A typical sample path is of the form o = (0, o') where 0 is the state of nature and co' is 
the infinite sequence of sample outcomes denoted by 

(O = ((YiIl )xeX,ieN (yi,2)xeX,ieN, * *), (2.9) 

where x-Y- _ Y. Let Ci,=-gi (pi,) denote the action of agent i at time t, Zi, the outcome 
of agent i's action at time t (i.e. the signal of her own action from the outcome space Y) 
and let (Zj,t )jeN(i) be the set of outcomes of the neighbours of i at time t. Also let Ui,J(o) = 

u(Ci,t, pi,t) be the expected utility of i with respect to her own action at time t 7 The 

16. This formulation thus rules out the use of popularity weighting and related measures in the learning 
process. Note, however, that Bayesian updating provides a relatively simple way for each agent to keep track 
of the information in past history. We also note that while the bounded Bayesian learning rule employed here 
may not be efficient, it is consistent in our framework. 

17. The outcomes of actions are projections of o onto the respective coordinates. We assume that if agent 
has chosen action x' for the t-th time on o, he observes the coordinate y-,(o). 
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posterior belief of agent i in period t + 1 is computed as follows 

Fljc [I]N(i) O(Z},t CJ;t O )PiA tO ) (2.10) 

The a-field of agent i's information at the beginning of time 1 is ~F I _ {0, 0 x Q}. For 
every t _ 2, define Fi,t as the a-field generated by the past history of agent i's observations 
of her neighbours' actions and outcomes, i.e. the random variables (Cj,QZj,l)jeN(i) 

... , (Ci,t-I , Zi,t- 1 )jeN(i) . Since by the rules of the process, agents only employ the informa- 
tion generated by their neighbours, the set classes {E,t} are the relevant a-fields for our 
purposes. We shall denote by F the smallest a-field containing all , for t ?1. 

3. AGGREGATION OF INFORMATION 

In this section we establish that (roughly speaking) in a connected society every agent 
expects the same utility, in the long run. The first step in the study of the long run 
distribution of individual utilities establishes convergence of a typical individual's beliefs 
and utilities. The following result shows that the sequence of posterior beliefs of a typical 
agent converges almost surely to a limit belief which is measurable with respect to the 
(direct) limit information of the agent.18 

Theorem 3.1. There exists Qe4 x F satisfying Pi(Q) = 1 for all ieN and random 
vectors {/P i,co } ic-N such that 

(a) For each iseN, pE,0 is ,,8,-measurable. 
(b) oeQ -: for all ieN, pi,t((O)-Pi,oo((o). 

This result is an immediate consequence of the Martingale Convergence Theorem.'9 
In what follows, we restrict attention to a specific state of nature which is taken to be the 
true state. We shall denote this state by 01. Clearly, the set 

Q0'- {o = (0, 0 C- Q 0= 01 } 

has Po' probability 1. (Strictly speaking, the domain of definition of Po' is the measurable 
subsets of Q, not of 0 x Q. However, we can regard Po' as the conditional probability 
induced by 01 on the product space, which is the same for all agents). Without loss of 
generality we assume that the strong law of large numbers holds on Q6'. In what follows 
statements of the form "which probability one" are with respect to the measure Po'. 

We next show the convergence of utilities of a typical individual in the society. For 
each agent i, given co E Q6', let Xi(Z) be the set of actions which are chosen infinitely often 
on the sample path. We shall refer to X'(Z9) as the set of limiting actions (of agent i) on 
co. Given that every individual is a myopic optimizer, it seems natural that the set of 
limiting actions should be optimal with respect to the limiting beliefs. This is true, as part 
(a) of the following result shows. This result immediately implies that each agent's one 
period expected payoffs converges as well. Recall that U1,t(o) _u(Ci,j()), p,(ao))). 

18. It is worth emphasizing that Theorem 3.1 does not preclude the possibility of limit beliefs being 
different across individual agents. 

19. The proofs not given in the text can be found in the appendix. 
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Lemma 3.1. Suppose c-E Q6 '. 

(a) If x'eX'(co) then x'e argmaxxex u(x, pi, (o))). 
(b) There exists a real number Uj,o(o) such that { Uj,,(o)} -+ Uis,(o)) Furthermore, 

Ui ,(ot) = u(x', pi o)) where x' is any member of X'(Z). 

We now examine the distribution of these limiting utilities and actions in the society. 
Our analysis is summarized in the following result. 

Theorem 3.2. Suppose that the society is connected. Then Uj,"o(o)= Uj,((o) for all 
agents i andj in N, with probability 1. 

The proof of this result employs the following arguments. On a fixed sample path, 
consider two agents i and j and suppose ieN(j). We show that if x' is an action taken 
infinitely often by j then j's long run expected utility Uj, will be u(x', 6 0, ). Likewise, if i 
chooses x infinitely often, then Ui,, = u(x, 6o,). Furthermore, the assumption that j 
observes i is shown to imply that u(x', 6 o, ) > u(x, 0, ).20 Thus, UjQoo > Ui1,sO. Connectedness 
of the society now yields the result. 

One interesting implication of the result is that if actions have different payoffs then, 
on a set of probability one, all agents will choose the same action in the long run and 
social conformism obtains.2' 

4. LONG RUN SOCIAL LEARNING 

In this section we study the optimality of long run actions. An important implication of 
Theorem 3.2 is that, on a given sample path, if even one agent eventually learns to choose 
ex post optimal actions, then so will the rest of society. We exploit this observation and 
develop conditions on the distribution of prior beliefs, the structure of neighbourhoods 
and the informativeness of actions that ensure that everyone in a society chooses an 
optimal action in the long run. We start with some definitions. Assume as before that 0, 
is the true state of nature. 

Definition 4.1. Given a sample path o, the long run actions of agent i are said to 
be optimal on co if X'(Z) c G(66, ). Social learning is said to occur if 

Po (ni.N{X'(co) c( G(6 ,)} ) >0. (4.1) 

Social learning is said to be complete if the probability on the left-hand side above is equal 
to 1; it is said to be incomplete if this probability is less than 1. 

Definition 4.2. An action xeX is said to be fully informative if, for all 0, 0' in 0 
such that 0 #0' we have: 

{ kb(Y; x, 0)- b(Y; X, 0')IdF(y)>0. (4.2) 

20. This intermediate result is also useful for addressing questions concerning limit utilities in societies 
that are not connected. Any such society can be partitioned into a collection of (internally) connected sub- 
societies. Consider two such sub-societies, N' and N2. The above result says that if an agent ieN' observes 
some agent jeN2 then Uk,, > Uk, o, for all leN' and all keN2. 

21. In an earlier version of the paper, we also studied the likelihood of conformism and diversity in an 
example where different actions have the same payoff. We showed that the long run outcome is related to the 
structure of neighbourhoods, with conformism being more likely in more "integrated" societies. Details of these 
results are available from the authors upon request. 
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We shall say that an action xu, is uninformative if 4 ( *; x, 0) is independent of 0.22 

Thus a fully informative action x is statistically capable of distinguishing between 
any two distinct states in the long run. 

We start by noting that social learning will typically be incomplete in finite societies.23 
This motivates the study of learning in societies with infinitely many agents. We begin our 
analysis with two observations. The first observation concerns the importance of the initial 
distribution of priors. It is easy to see (with the help of Example 2.1) that even in a large 
(infinite agent) society, learning will not occur if all agents start out with prior beliefs that 
lead them to choose the uninformative action. Thus for social learning to occur some 
restrictions on the distribution of prior beliefs are necessary. Our second observation is that 
even when beliefs are favourable, the social structure of information flows may preclude 
learning. The following example illustrates this point and also helps us derive sufficient 
conditions for complete social learning subsequently. 

Example 4.1. Consider the setting of Example 2.1. Suppose that the true state is 0O 
and that the society has an infinite number of agents. Assume that the prior beliefs of 
agents satisfy the following condition 

infpui1, >-, sup /ui, 1 < 24' 
ieN 2 ieN I+p2( 

where p = (1 - r)j/re (0, 1). The above assumption implies that in period 1 all agents will 
choose the optimal (and informative) action x1. We suppose that society N is given by 
the one dimensional integer lattice. For ieN, the set of neighbours is assumed to be N(i) = 
{i- 1, i, i+ 1 } u R, where R= {1, 2, 3, 4, 5} constitute the royal family. We now note the 
possibility of incomplete learning: there is a strictly positive probability that every agent 
will choose the suboptimal action xo for all t > 2. 

The argument underlying this claim is as follows: Define Q= {Zj = 0, for all jeR}; 
by construction, P' (Q) = (1 - c)5 > 0. We show that if o E Q, then CQ, (o) = x0 for all t > 29 
for ieN. Note that on o e Q, an agent ieN observes 5 "negative" realizations from the 
royal family, while the maximum number of "positive" realizations that can be observed 
locally is 3. Thus there is a minimum amount of residual negative information. Since 
ui 1 < 1/(1 +p2) this negative residual information is sufficient to push the posterior belief 

Pi,2 below 1/2, making agent i choose the uninformative action. The argument is completed 
by noting that i has been chosen arbitrarily.24 

22. It is worth remarking that if the set of uninformative actions Xu is non-empty, then there is no essential 
loss of generality in assuming that it consists of a single element xu. 

23. To see why this is true consider the set up of Example 2.1. Suppose that the true state is 0 and that 
the society is finite. Prior beliefs of agents are then represented by a number pi l which is the probability that 
true state is 01 . Let infj6N NJ l > 1/2 and focus on the agent with the highest value of pi , . Standard arguments 
imply that there exists a finite sequence of T realizations of 0, such that this agent would switch to action xo. 
Now consider the set of sample paths on which all agents get realizations of 0 for the first T periods. The 
probability of this set is positive given that realizations are independent and the number of agents finite. The 
argument is completed by observing that on any sample path in this set every agent will choose the sub-optimal 
(and uninformative) action xo after time period T. 

24. The above example illustrates the possibility of incomplete social learning in perhaps the simplest 
setting. The phenomenon itself is more general and arises in a larger class of societies. Consider, for example, 
a society with agents located on the one-dimensional lattice, and observing their two immediate neighbours. 
Suppose in addition that there are S disjoint, finite groups of agents {R }1 l, and for each ieN outside of a 
finite set N of agents, RscN(i) for at least one s. Thus, the groups {R,} are nearly royal families. It is not 
difficult to show, using the arguments above, that if each group R, is sufficiently large, then learning will be 
incomplete in such societies. 
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In the example above, one reason for incomplete social learning is that the prior 
beliefs of agents are not very dispersed. This allows a "little" bad experience of a few 
people to convince everyone to switch to the uninformative action. This aspect of the 
example motivates a study of connected societies with dispersed prior beliefs. We formalize 
the idea of dispersed beliefs in the following definition. 

(H) The distribution of prior beliefs is heterogeneous if for every 0 eO, and for any 
open neighbourhood around 6,9, there exists an agent whose prior belief lies in 
that neighbourhood. 

Heterogeneity of beliefs may be interpreted as saying that the truth must lie in the support 
of the distribution of prior beliefs across agents. Since the true state is unknown, this 
requirement leads naturally to the formulation above, where for any 0, 60 lies in the 
support of the distribution of prior beliefs. 

We can now specify circumstances under which (H) ensures "almost" complete social 
learning. The essential idea is to find an agent i who puts a large prior probability on the 
true state, and a set of sample paths Ai on which the agent's favourable prior "overcomes" 
any negative information generated by her neighbours concerning the true state. This will 
ensure that she will choose only optimal actions in the long run. Theorem 3.2 can then 
be used to show that the same holds for all agents in the society. In order to apply this 
idea, we need to ensure that the maximum amount of negative information that an agent 
receives from her neighbours is bounded. This motivates the following restriction on the 
size of individual neighbourhoods. 

(B) There exists a number K> 0 such that SUpieN I N(i)I <K. 

We are now in a position to state our first learning result. 

Proposition 4.1. Consider a connected society. Suppose that conditions (H) and (B) 
are satisfied. Then for any A, (0, 1), we have 

Poi(nic-N{X'(w) (-G(,5o, }> A. (4.4) 

This Proposition follows as a corollary of Lemmas 4.1 and 4.2. These lemmas are 
also central to an understanding of our subsequent results on learning and so we present 
their proofs in the text. 

Lemma 4.1 makes use of the following property of the one-period optimality corre- 
spondence G. 

Remark 4.1. Let pe_9(0). There exists a number de(O, 1) such that if p((01)?d 
then G(p)c G(6 ). 

The existence of d follows directly from the finiteness of the action space X and the 
continuity of the utility function with respect to beliefs. 

Lemma 4.1. Fix some agent ieN. For any A)(0, 1) there exists a set of sample paths 
Aisatisfying Pol(Ai) _ Aand d( )E(O, 1) such that ifpi,1(01)_d() then 
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Proof Consider agent i in isolation, and suppose she only chooses action x for t -1 
periods, and observes a sequence {y',r } L', where each yl,rc YL _ Y. The agent's informa- 
tion about state 00#01 based upon the observations generated by her choices can be 
summarized by the product likelihood ratio r-,6O, defined as 

HFl 0yi"r,((0); x, 0) 
ri` (@= rHL ,?.(, x0(o;x, 0) (4.6) 

(If t = 1, we follow the convention that r6 i = 1). It follows from an application of the law 
of large numbers that rK,-+ir"0 where ri'6 < oo, almost surely (see e.g. DeGroot (1970) 
pp. 201-204). Since this is true for all 0 # 01 and all xeX, there exists a and a set A of 
sample paths defined as 

f= ax sup ri,; ? a} x Hl2 'e N\i HlxGX Yi *tX (4.7) 

such that P0'(A9)>6, where S AI/K>0. It follows from our convention that T?1. 
Intuitively, on a sample path oe A7, the maximum amount of "negative information" 
about state 01 vis-a-vis state 0 that i can obtain from her own actions is bounded above 
by olxl. We now consider each agentjeN(i) other than i. Since the realizations of individual 
agents from their own actions are identically distributed (conditional on 01), it follows 
that for each neighbour jeN(i) \i, there exists a similarly defined set AJ with 
P0'(AJ) = P0'(A') = 6. (This is done by just replacing i by jeverywhere in equation (4.7)). 
Define the set Ai= UjIN(o) A/a. Using the independence of observations obtained from 
different individuals, it follows that 

Po' (Ai) _ ? IN(i)l > ?6K= A) (4.8) 

where we use the inequality IN(i)l ?K, from assumption (B). Note that individual i's 
posterior belief about state 01 at time t can be written as 

(O (00 = ~~~~PiA,i(O1 )4@9) 
P is (0 1) ( a)) +E0 7t1 F1j.EN(i)F1X.-X rix t (a))p,l ( 0) ( @) 

where rjxt0((o) now refers to the product likelihood ratio along the sample path when the 
actions {Cj,r} are chosen. For o eAi we have 

PiA] )(a)) _>pi (i)(co)) +Z 0 c.AIXIPi,( 0)(c)' (4.10) 

by construction of the set Ai, 25 
Let d be the number defined in Remark 4.1 above. Since the expression on the right 

side of (4.10) is independent of t, it is evident that there will exist a number d(A) e (0, 1) 
such that if pj1,I(0I )_ d(A) and o Ai , then p i,t(01I )(o)? d for all t_ 1. By the definition 
of d this means G(pi,,(o))cG(601) for each t. Since C1,,(co)eG(P1,t(o)) for each t, we 
have o En ltI {Ci,teG(6o )}. It follows easily that X(Zo) c G(66o) as well. 11 

Thus, if an agent i can be found whose prior belief pj1,I(0I ) > d(A), then by construc- 
tion, for each sample path co eAi the agent will only choose optimal actions in the long 

25. On this set of sample paths, irrespective of the choice of actions by jeN(i) up to time t - 1 the 
corresponding rx,j will be bounded above by a. See the discussion following equation (2.9) in Section 2. 
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run.26 Theorem 3.2 can then be used to show that the long run behaviour of the society 
is the same as agent i. The following lemma formalizes the argument. 

Lemma 4.2. Suppose that the society is connected. Iffor some co ei Q6' there exists an 
agent i(co) such that Xi(`)(co) c G(6ol) then for everyjjeN, Xi(wo) c G(6o,) as well. 

Proof. Let x'eXi(c )(w9) so that x'eG(6,6) as well. By Remark 1 in the Appendix, 
if x'eX'-X ')() then Ui(,, = u(x', S o, ). Fix jeN. Connectedness (and hence Theorem 3.2) 
implies that UjQo(()= =Ui(w,,0(o). Hence Uj,o,()=u(x', 8,). Let JxeX1(o). Using 
Remark 1 again, Ujbo,(,))=u(x, 0, ) so that u(x, 61,)=u(x', 0, ). Since x' EG(60,) we 
have xeG(S6o) as well. As x has been arbitrarily chosen from XJ((9) we obtain 
XJ(wo) c G(66, ). Since jeN is also arbitrary, the result follows. I 

The proof of Proposition 4.1 is now straightforward. From the first lemma, if i is an 
agent whose prior belief puts probability weight of at least d(A) on 01, then for each 
co eAi he will choose only optimal actions in the long run. By (H), there will exist an agent 
i for whom pj, I(OI ) ?d(A). Hence 

Aic {X'(w) c G(661 )} c flEN {Xi(@) C G(3o6 )}, (4.11) 

where the first relation derives from Lemma 4.1 and the second from Lemma 4.2. The 
lower bound on the probability of the event on the right-hand side in (4.4) follows, since 
by construction, Po'(Ai) >A. 

Proposition 4.1 applies to a large class of societies, including those with a royal family, 
or with "nearly-royal" families (see footnote 24). The assumption of heterogeneity, as 
expressed in condition (H), is, however, very strong since a single agent with a belief 
suitably close to the truth is responsible for all the learning that occurs.27 This motivates 
an alternative approach to the question of complete social learning: we try to find an 
infinite number of agents who each play an optimal action forever with probability 
bounded away from zero, ensuring at the same time that these events are independent. 

In this context, we introduce the notion of locally independent agents. Two agents i 
and i' are locally independent if they have non-overlapping neighbourhoods, i.e. satisfying 
N(i) r- N(i') = 0. A pairwise locally independent group of agents is a subset of N such that 
any two agents in the group are locally independent. Fix a number K> 0 and a e(0, 1). 
Let d- d(A) be the corresponding value whose existence is ensured by Lemma 4.1. Consider 
the collection of agents ieN such that I N(i)I ? K and satisfying p ,I (OI ) > d. Let NK,d be a 
maximal group of pairwise locally independent agents chosen from this collection, i.e. a 
subset of the above collection which has the highest cardinality.28 We are now ready to 
state and prove the following general complete learning result. 

26. As can be seen, the above proof shows that agent i will choose an optimal action forever, which is 
stronger than the implication Xi(o) c G(36, ) found in the statement of the lemma. We retain this formulation 
since the weaker implication is the one needed for subsequent proofs. 

27. In particular, the proof of Lemma 4.1 requires in most cases of interest that d() -+ 1 as A - 1. Techni- 
cally, this is because the supremum (over all t> 1) of the product likelihood ratio defined in (4.6) can be 
arbitrarily large with positive probability. In other words, for social learning to occur with probability close to 
1, a prior belief close to 1 in favour of the true state is needed. 

28. It is worth noting that there may be many such maximal groups of agents. For instance let N be the 
set of integers, with N(i) = {i- 1, i, i+ 1 } for all ieN. Here, we can fix K= 3. Suppose all agents ieN satisfy 
pi1(01 ) >?d. Then the sets of agents {O, 3, 6, 9, 12, . . . }, and ... ., -6, -2, 2, 6, 10, .. .} are just two of infinitely 
many possible candidates for NK,J. 
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Theorem 4.1. Consider a connected society. Let A> 0, d= d(A) and NK,d be as defined 
above. Then 

P0'(UiEN {X1(co) g G(3o0 )} ) < (1 - A)Ndl (4.12) 

In particular, iffor some A > 0 and d= d(A) we have I NK,d = o, then complete social learning 
obtains. 

Proof. Let ieNK,d. Let Ai be the set of sample paths specified in Lemma 4.1 corre- 
sponding to i', so that P0'(Ai) >A. By definition, ieNK,J implies p I( )_ d. Applying 
Lemma 4.1 and Lemma 4.2, we get Aic fnjEN {X}(0) c G(3o)}. Since ieNK,d is arbitrary, 
we have 

UitENK,, Ai cfnleN {X'(co) c G(301 )} (4.13) 

as well. Hence 

ujeN {Xj(ci)) 9- G(,5o, )} Cz nic-NK,3 Ai X1 (4.14) 

However, as the agents in the set NK,d are pairwise locally independent, the events 
{Ai}iENk, are independent. Thus 

P l (Ujc-N {Xj(co) 9-, G(8ol )}) _ Pol (nic_NK,; Ai) < (-I) d (4.15) 

where we have used the fact that P0 (Ai)> ? for each i. The result follows. I 

We make a number of remarks concerning the above result. First, it is useful to 
compare it with the proposition established earlier. In Theorem 4.1, A, can be an arbitrarily 
small positive number. The construction in Lemma 4.1 then suggests (informally) that 
d= d(A) is also relatively "small". Thus, a large number of agents with priors "slightly" 
in favour of the true state can play the role of the agent in Proposition 4.1 whose prior 
is strongly in favour of the true state. This can be seen most clearly in the context of 
Example 4.1. Suppose that everything were the same as in that example, except that there 
was no royal family, i.e. N(i)= {i- 1, i, i+ 1} and hence K= 3. The theory of random 
walks can be applied to show that d can be chosen to be any number greater than 1/2.29 
The assumption made in the example that infiEN P,i > 1/2 implies that I NK,dl = oo. We can 
then apply Theorem 4.1 to conclude that complete social learning obtains. Thus, the 
condition that infinitely many agents have priors which make them choose the optimal 
action in the first period is essentially sufficient for complete learning.30 

Second, we note that unlike Proposition 4.1, the above theorem has virtually no 
implications for societies where a royal family is present, since in this case, R c N(i) n N(i') 
and no two agents can be pairwise locally independent. It then follows that I NK,jI ?1 so 
that (4.12) does not ensure complete social learning. Indeed, we know from Example 4.1 
that if we re-admit the information links of the royal family (by having N(i) = {i- 1, i, 
i+ I} u R for all ieN), then social learning is incomplete. Thus, more information links 
can increase the chances of a society getting locked into a sub-optimal action! 

29. In the terminology of Lemma 4.1, there exists a A> O such that a may be chosen to equal 1. Clearly, 
the value d can be any number larger than 1/2. Then d= d suffices. 

30. Note also that Theorem 4.1 requires only that the agents in NK,J have at most K neighbours each. For 
the remaining agents, the set of neighbours can be any finite set. This is weaker than condition (B) used in 
Proposition 4.1. 
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Thirdly, we elaborate on the term 'local independence'. Since the society is connected, 
it is clear that no agent is truly independent of any other agent. Our terminology refers 
to the following property of the model: if i and j are distinct agents in NK,d, then there 
exist independent sets of sample paths Ai and Aj where i's and j's choices respectively are 
determined only by their locality, i.e. by the information derived from N(i) and N(j) 
respectively. In particular, on these sets of sample paths, each agent's choices (but not 
necessarily beliefs) are independent of the information-either positive or negative-gener- 
ated by the agents outside their own neighbourhoods. 

Finally, to obtain a better idea of the rate at which the probability of incomplete 
social learning decreases with the number of locally independent agents, we briefly discuss 
some simulations of Example 2.1. We suppose the agents in N are arranged in a circle 
with N(i) = {i - 1, i, i + 1 } (no royal family). Figure 1 displays the probability of incomplete 
learning as a function of societal size INI assuming the payoffs in Example 2.1 are Bernoulli 
distributed, while Figure 2 concerns the Normal case. 

Prob. 
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FIGURE 1 

Incomplete social learning 

We note that the probability decays quite rapidly with the size of the society; further- 
more, a regression of the log incomplete learning probability on INI yields a very good 
fit (the R2 values are all above 0 99 and between 0 94 and 0X98 in the Bernoulli and 
Normal cases respectively), and suggests that the bound established in (4.12) is tight. 

While Theorem 4.1 demonstrates the role of locally independent agents in generating 
socially optimal long run behaviour, as the above discussion shows, it does restrict the 
class of societies. In particular, it effectively excludes societies with a royal family. This 
motivates an examination of conditions under which we can obtain complete learning in 
more general societies, where prior beliefs may not satisfy (H). Example 4.1 is again a good 
starting point: one reason why the example "works" is because the negative information 
generated by the royal family exceeds any positive information that a local neighbourhood 
can produce. This suggests that if an agent (or a group of them) is able to generate an 
arbitrarily "large" amount of positive information with non-zero probability, then com- 
plete social learning may obtain. This motivates the concept of Unbounded Positive 
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FIGURE 2 

Incomplete social learning 

Information 

(UPI) An action xeX generates unbounded positive information concerning the true 
state 01, if for every ae(O, 1), there is a set B"c,ac Y with 

fBx,a (y;x, 01)dF>O such that 

yeBx,a max q(y;x, 0) a (4.16) 
c0O\O1 +(y; x, 01 ) 

Assumption (UPI) may be used to prove complete social learning in a large class of 
societies, including those with a royal family. Let R be an arbitrary finite set of agents. 
Consider the following generalization of local independence: two individuals ioR and 
i' R are called quasi-locally independent if N(i) n N(i') c R. For more than two agents the 
corresponding condition is that of pairwise quasi-local independence. For p e3(o), recall 
from Remark 4.1 above that de(O, 1) is such that if p (01) d then G(p))cG(3o ). Fix 
K> 0 and let NKd be a maximal group of pairwise quasi-locally independent agents having 
at most K neighbours each and whose prior beliefs satisfy p ?(, d. We now have: 

Proposition 4.2. Consider a connected society with I NK d I = 00. If each x E G(30, ) satis- 
fies condition (UPI), then social learning is complete. 

The proof is (roughly) along the lines of Theorem 4.1 and may be found in the 
Appendix. The main difference arises in the case where I RI > 0. The argument for this case 
proceeds by contradiction. Suppose social learning is incomplete: then there must exist a 
set which has positive probability, on which the negative information generated by the 
agents in R concerning the true state is bounded above by some number and yet learning 
is incomplete. We use a construction similar to the one used in Theorem 4.1 to establish 
that if there are an infinite number of quasi-locally independent agents then at least one 
of them will get sufficiently positive information in their first trial with an optimal action 
to offset this negative information. Thus at least one agent will try an optimal action 
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forever on any sample path of this set. This observation taken along with the connectedness 
of society yields a contradiction and completes the proof.3' 

Assumption (UPI) allows us to demonstrate complete social learning in a number of 
societies not covered by Theorem 4.1. For instance, the case of a royal family is one where 
Rc _N(i) for each ieN; hence, the quasi-local independence of i' and i" is equivalent to 
requiring N(i') n N(i") = R. More generally, Proposition 4.2 will also apply if there are S 
"nearly-royal" families (see footnote 24). 

In the results described so far, social learning relies on the set of locally independent 
agents who each try optimal actions with positive probability from the first period onwards. 
We now examine the possibilities of complete learning when agents do not necessarily 
start with prior beliefs that favour optimal actions. In this setting, the likelihood of social 
learning is sensitive to the nature of information generated by non-optimal actions across 
agents, both regarding the payoffs of these actions themselves as well as the payoffs of 
optimal actions.32 

We provide two alternative sets of sufficient conditions on the informativeness of 
actions. One set of conditions applies when realizations from an action convey no payoff 
relevant information concerning any other action. The second set of conditions deal with 
the complementary situation when realizations on an action can reveal information about 
other actions. The conditions are used in Theorem 4.2. 

To state the result we need to introduce additional concepts. First note that xeX 
induces an ordered partition of the states denoted by 0 (x) -<x 02(x) <x -<xOs(xx (x) 
such that 

(a) for each k = 1, ... , s(x), the expected payoff u(x, 3ok) is constant for all 
Ok E Ok (X) . 

(b) if Om(X) < x Ok(X) then u(x, 50m.) < U(x, 0k) for Om EcEOm(x) andk E Ok (X). 

For xeX, let k(x) denote the payoff equivalent set of states of nature which contains 
01, i.e. 01EOk(x)(x). Also let @(X) -"Um>k(x) Om(X), E(X) -Um?k(x) em(X) and 
@(X-Um<k(x) Om (x). The first set of assumptions on informativeness of actions are 
given by condition (I) stated below: 

(Ia) For x, x' eX, where x' # x, if action x' is chosen and ye Y is observed, then for 
any p ,u-(0) the posterior belief p(Om(x))'=p(Om(X)) for each m = 1, . . . , s(x). 

(Ib) There exists xi e G(68o) such that if xi is chosen and ye Y is observed, then 
o(y; xl, 0)/4(y; xl, , ) = 1 for all 0EOk(xi)(Xi ). 

(Ic) For xi as above, there exists a set BXl c Y satisfying fBx I 0 (y; xi, 01 )dF(y) >0 
and ae(0, 1) such that 

ye BXI (Y; x, 0) 
a<1 (4.17) 

~(y;x, O1) 

for all 0EO(x,)-. 

Condition (I) can be best understood in terms of the canonical bandit model of 
Example 2.2. Condition (Ia) requires that there be no essential information flows across 

31. To continue Example 4.1 further, suppose that when xl is chosen the outcome is distributed according 
to the normal, exponential, Poisson or geometric distributions. Then (UPI) is satisfied and the above result 
applies. It also holds more generally: for example if the density functions take one of the above forms and 
xe G(36) => u(x, o0 ) > u(x, 80) for all 0: 0 1 then complete learning obtains. 

32. In this context it is also worth noting that Proposition 4.2 also holds if an infinite number of quasi- 
locally independent agents have priors that lead them to try sub-optimal actions provided that these actions 
satisfy the condition (UPI). 
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actions, i.e. actions are independent of each other. Condition (Ib) says that the action xi 
is incapable of distinguishing between states which are payoff equivalent for it: in the 
bandit model, payoff equivalent states for xi correspond to states where the quality types 
of actions other than xi vary. As actions are independent, xi will not be able to distinguish 
between these states. Condition (Ic) requires that xi should be capable of generating a 
minimum amount of negative information concerning payoff inferior states. In the bandit 
model if the conditional density functions {q ( )} have the standard monotone likelihood 
ratio property (MLRP), then (Ic) holds. 

We now impose some restrictions on beliefs. Let xi E G(68o ) be as above. By definition, 
it must be the case that u(x1, 6o ) >maxXEx\G(3o ) u(x, 50,). Hence we can find 4e(0, 1) 
and ?> 0 such that 

4u(xI,3o,)+(l-4)u(xI,30L)> max U(X, 3Oi)+ 6Umin, (4.18) 
xeX\G(301) 

where OLeOI(xI ). Recall that 0k(x )(Xi) is the set of states payoff equivalent to state 01 
for action xi . Consider the collection of agents ieN, who have at most K neighbours each 
and such that Pi,I(Ok(x)(XI )) >- for each i. Let NK,4 be a maximal group of pairwise 
locally independent agents chosen from this collection. The restriction on the belief of an 
agent ie N,4 ensures that i will choose xi at least once; however, it does not preclude 
suboptimal actions from being chosen at the outset. 

We next consider the class of situations where actions potentially provide information 
on states which are payoff relevant for other actions. Recall that X, is the set of fully 
informative actions. Assume that X =XI u {x, } and let xi e G(60o ) be given. The case 
where x eG(6o ) is trivial and thus there is no loss of generality in assuming that xi eXX. 
We now state the alternative conditions on the informativeness of actions. 

(Ia*) For each xeX\xu, there exists a set BXc Y satisfying 

fBX 4 (y; x, 01 )dF(y) > 0 such that if action x is chosen and yeBx is observed, 
then for any p e 9(0) the posterior belief p (e(xi )+)' ?p(0(xi )+). 

(Ib*) For each xeX\xu and for Bx as in (Ia*) above there exists a(x) e(0, 1) such 
that yeBX implies maxo-E\ol (y; x, 0)/0(y; x, 01)?a(x). 

Condition (Ia*) requires that for each informative action x, if yeBX is observed then 
this does not yield negative information concerning payoffs of the optimal action xi. 
Condition (Ib*) requires that all informative actions should be capable of generating a 
certain minimum amount of positive information concerning the true state. We note that 
condition (I*) is always satisfied when I0 = 2. 

As before, fix ?>0 and 4*e(0, 1) such that 4*u(xi, 6o,)+(I-4*)u(xi, 6oL)- 

u(xU) +8 where OLEeI(XI). Let NKE,* be a maximal collection of locally independent 
agents having at most K neighbours each and whose beliefs satisfy Pi,i 4*. We can now 
state the following theorem. 

Theorem 4.2. Consider a society which is connected. (a) Suppose that actions satisfy 
condition (I). Then there exists 2,e(0, 1] such that 

P0'(ULiN {X (ao) ? G(60o )} ) <(1 - A))INK4 . (4.19) 

In particular if I NK, I = oo then complete learning obtains. (b) The above conclusions continue 
to hold if condition (I) is replaced by condition (I*) and NK,4 by NK,4* everywhere. 
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We now summarize the intuition underlying Theorem 4.2. The basic difference from 
the earlier results lies in the construction of the set Ai. In part (a) we show that for a 
sample path in Ai, agent i will observe a critical number of trials T with the optimal action 
xi. By virtue of (Ic) this is sufficient to ensure that the agent will choose only the optimal 
action from some finite time onwards. 

We briefly discuss how condition (I*) is used in part (b). As in Lemma 4.1, we can 
isolate a set of sample paths Ai, on which the amount of negative information obtained 
by agent jeN(i) concerning 01 is uniformly bounded above by a number a. Recall that 
d is a number such that p(0)?d implies G(p)cG(680). Let a maxxEx\x. a(x); since 
a < 1, we can choose T to satisfy 4*/( * + aT XI(1 - 4*)) >_d. Define A as follows 

A} HX_X\X, IT Bt{ x max sup rix0(T+ 1, t) < C}} 

nt-I nj'6ND nxEX 4 st 9 (~~~4.20) 

where Bix = Bx for all t > 1 and rx"0(T+ 1, t) is the product likelihood ratio from choosing 
x between periods T+ 1 and t - 1. Let Ai =fjc-N(q)A7; familiar arguments can be used to 
establish that P0 (Ai) = A> 0. Using condition (Ia*) we next show that along sample paths 
in Ai, the choices Ci,t # xu, for all t < T. This guarantees that agent i tries an informative 
action long enough and generates positive information that is sufficient to offset any 
subsequent negative information concerning state 01. The rest of the proof is standard. 

The discussion so far has focused on the optimality of long run actions: we now 
summarize our findings on the distribution of limit beliefs. Recall that the beliefs of every 
agent converge almost surely (Theorem 3.1). An issue of importance is whether agents 
learn the truth, i.e. if limit beliefs place point mass on the true state. In general, even in 
cases where long run actions are optimal, there is no guarantee that beliefs will converge 
to the truth. This is because the support of the limiting beliefs distribution depends crucially 
on the informativeness of the optimal actions.34 However, if an agent chooses optimal 
actions in the long run and these actions are fully informative about the true state then 
the agent will learn the truth. 

5. TEMPORAL AND SPATIAL PATTERNS OF LEARNING 

While the results of Sections 3 and 4 characterize the long run outcomes in our framework, 
they do not tell us much about the temporal and spatial evolution of social learning. In 
this section we discuss simulations of our framework to get some idea about these issues. 
In particular, we wish to compare the results of our simulations with the findings of 
the extensive empirical literature on diffusion as a means of validating our theoretical 
paradigm. 

We assume the following social structure: The set of farmers N is arranged in a k x k 
grid, with each farmer owning a single plot of land. In our simulations we take k = 20, so 
that we have a total of 400 agents. Each farmer i observes the actions and payoffs (observa- 
tions) of her surrounding 8 neighbours, in addition to her observations corresponding to 

33. The proof of part (a) is given in the Appendix. The proof of part (b) is similar, and is omitted. 
34. It is not difficult to construct instances of Example 2.2 (the canonical bandit model) where beliefs fail 

almost surely to place point mass on the truth despite long run actions being optimal. 
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her own actions. We perform simulations under different specifications, which are special 
cases of Example 2.2. We now summarize our findings.35 

Termporal patterns In the first simulation, we assume that there are two crops, one 
of which (Crop 0) has known payoffs of 1/2, while the other (Crop 1) represents a new, 
unknown technology. Crop 1 can be of quality level q, = 0 45 or q2 = 0 55; if the crop is 
of quality qk for k = 1, 2 then its payoffs are Bernoulli-distributed with parameter qk. We 
suppose that the true quality of Crop 1 is q2, and so it is better than Crop 0. We also 
assume that the farmers' beliefs at the beginning of period 1 are heterogeneous, with about 
1% of the farmers having a prior above 1/2 and therefore experimenting with the new 
crop. 

(a) (b) 

08 08 
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04 ' 04 
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FIGURE 3 

Diffusion curve 

The diffusion curve of a typical simulation is given in Figure 3(a). As can be seen, 
the logistic curve fitted from the data matches the adoption curve quite well. The R2 is 
0987, which is in the same range as obtained by Griliches (1957) in his study of the 
diffusion of hybrid corn. We also report a simulation where the new technology is more 
profitable than in the earlier case (we chose q1 = 0 43 and q2 = 0 57 as the quality levels). 
The adoption curve for this simulation is given in the Figure 3(b). 

As can be seen, the logistic still provides a good fit (R2 = 0.99); however, the adoption 
rate is far higher, as it takes approximately half the time for the population to adopt 
compared to the earlier case. This is consistent with the result of Griliches, who found 
that the adoption rate was strongly positively linked to profitability. Finally, we also note 
that both adoption curves exhibit small downward fluctuations, an empirical phenomenon 
which has been discussed by Rogers (1983). As a check on the robustness of these patterns, 
we also ran simulations of a two crop model in which the returns of the new crop were 
normally distributed, with unknown means. Two typical simulations are plotted in Figures 
4(a) and (b). The R2 values are 0988 and 0982 respectively. These figures corroborate 
the findings that emerged from the Bernoulli case.36 

Spatial patterns. We consider a simulation of the two crop model discussed above 
when q, = 0 45 and q2=0 55 to obtain an idea of the spatial evolution of the process. 
Figure 5 depicts the results at different points in time. 

35. In our simulations, the opposite edges of the rectangular grid are identified with each other to ensure 
that all farmers have 8 neighbours apart from themselves, including those living along an edge. 

36. All four figures also reveal high positive serial correlation of the residuals from the logistic fit. Given 
the local learning structure of our model, this is intuitive, and suggests a (reduced-form) test of the hypothesis 
of neighbourhood learning. 
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FIGURE 4 
Diffusion curve 
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FIGURE 5 
Spatial diffusion 

Initially, there are only 3 farmers who experiment with the new crop. By t = 25, one 
farmer has dropped out due to bad experiences with the new crop. However, a group of 
agents around the other two farmers have chosen the new crop as well. By t= 50 the two 
clusters are almost in contact with each other, after which the adoption rate increases 
rapidly. (At t = 50, the proportion of adopters is about 0 15, while at t= 100 it has almost 
tripled to 0-41). By t = 200 adoption is nearly complete. We note that this pattern of spatial 
diffusion is consistent with empirical evidence (Hagerstrand (1969), Rogers (1983)). 
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6. CONCLUDING REMARKS 

When payoffs from different actions are unknown, agents use their own past experience 
as well as the experience of their colleagues, friends and acquaintances as a guide for current 
decisions. We model these information flows across agents in terms of neighbourhoods of 
individual observation. Our analysis suggests that the structure of these neighbourhoods 
has important implications for the likelihood of adoption of new technologies, the coexist- 
ence of different practices, and for the temporal and spatial patterns of diffusion in a 
society. These findings raise an important question: what types of neighbourhood struc- 
tures are likely to emerge in a society? 

APPENDIX 

We begin with a construction of the probability space, (Qi, F, P0). Fix 0 E). For each ieN, xeX and t= 
1, 2, . . . let YX, =Y. For each t = 1, 2, . . . let Q, = Hi,N nx.x Y", be the space of the t-th outcomes across all 
agents and all actions. Q1, is endowed with the product topology. Let H, cQ (, be of the form 

H, = HiG N FXlxH,,, (A. 1) 

where H~,, is a Borel subset of Y-', for each ieN and xeX. (If the number of agents n is countably infinite, 
Hx Yix, for all but a finite set of i's). Define the probability Po of the set H, as 

Po(H,) =RHN H1, (y; x, O)da(y). (A.2) 

Po extends uniquely to the 
ca-field 

on 
Q1, 

generated by sets of the form H,. Let Q1 = H,l 
I.1,. 

For cylinder sets 
HcQ of the form 

H =n,= H,tX nt=T+l 
Q (.3 

let P0(H) be defined as P0(H) = HT P,(H,). Let F be the ca-field on Q1 generated by sets of the type given by 
(A.3). Po extends uniquely to the sets in E. This completes the construction of the probability space (Qi, F, PO). 

Let 0 be endowed with the discrete topology, and suppose - is the Borel ca-field on this space. For 
rectangles of the form A x H where A c 0 and H is a measurable subset of Q1, let Pi (A x H) be given by 

Pi (A X H) = Y- -A He l, (69)PO(H), (A.4) 

for each agent ieN. Each Pi extends uniquely to all of i x F. Since every agent's prior belief lies in the interior 
of 9(0), the measures {Pi } are pairwise mutually absolutely continuous. 

Proof of Theorem 3.1 

For each 0eO, the belief jui,,(0) of agent i at the beginning of time t can be regarded as a version of the 
conditional expectation E[1 0o} Qnj.i, where the expectation is with respect to the measure Pi. Since this 
sequence of random variables is a uniformly bounded martingale (see Easley and Kiefer (1988)) with respect to 
the increasing sequence of ca-fields {Fi,, } the Martingale Convergence Theorem applies, so that jui,, converges 
almost surely to the ,Fi,-measurable limit belief jui,O. Let Qi be the set of sample paths on which agent i's 
beliefs converge, where Pi (Qi) = 1. Since the measures are pairwise mutually absolutely continuous and the set 
of agents N is at most countable, the set Q= nifN Qi also has Pi measure 1 for each i. 1 

Proof of Lemma 3.1 

Let xeX. Since x' eX1(w) there exists a subsequence {tk } such that u(x', Iu i,k(oa,)) > u(x, juI k (a)). Taking limits 
and using the continuity of u on the set 9(0), we get u(x', ,ui ,(o)))?u(x, (uiwo-()). Since x is arbitrary, this 
proves statement (a). Statement (b) follows from the maximum theorem and part (a). 1I 

Let supp (,u) denote the support of a probability distribution ,u. We have: 

Lemma 3.2. Suppose ieN(j) and woeQ0'. If, for some 0:#01, 0esupp (jujco,()) then 
u(x, S o ) = u(x, 8il ) for all xeX1(o,) u Xj(o). 
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Proof. Suppose the conditions of Lemma 3.2 hold but u(x, o ) #u(x, o) for some xeX'(o)uXI((). 
Then, by definition, we have 

1 0(y; X, 01) )-0(y; X, 0)jdI`(y) >0. (B. 1) 

Since x is chosen infinitely often either by agent i or by j (or both), and agent j observes agent i, the law of 
large numbers ensures that juji,(0)(())=0, so that 0 is not in the support of juj,j(9). This contradiction 
establishes the result. I 

Remark 1. Since ieN(i) for every ieN, the above lemma implies that for every xeX1(o), u(x, *) is 
constant on the set 

1'lUIsPP C (-)'suPP (Hui,%(0))} 

In particular, Uj,o,(w) _u(x, ,ui oO (w)) = u(x, So1 ) for each xeX1(w). 

Lemma 3.3. Suppose w) eQ0'. If ieN(j), then Ujo(a)> Ui,o(a)). 

Proof. We shall show that if x'eXj(w), then u(x', So))>u(x, So), for all xeX(o). This will suffice for 
the proof since from Lemma 3.2 and Remark 1 we have 

Uj1,(w)=u(x', juji,(w))=u(x', So,)=u(x', So) for all Ocesupp (uj,,), (B.2) 

and 

U,(oo,)=-u(x, ui,,, (w))=u(x, So,)=u(x, So) forall Oesupp (juji,). (B.3) 

There are two cases: if ujjo (w) = S the result follows trivially from Lemma 3.1. In the second case, suppose 
that 0 #0, also lies in the support of juj 1,(9). We now proceed by contradiction. Assume that 
u(x', So, ) < u(x, So, ). Since 0:0 0 lies in the support of juj,w ((), Lemma 3.2 above together with the facts that 
x'eXj(co) and xeX1(o) implies that u(x', ujo (w)) <u(x, iuj1 (w)). However this contradicts Lemma 3.1 above 
and hence u(x', So)>u(x, So). 11 

Proof of Theorem 3.2 If i and j are two agents in N, then either ieN(j) or there exist agents ji . . . , j,, such 
that ji eN(j), j2eN(j1) and so on until ieN(jm). In the first case, Lemma 3.3 applies directly to show that 
Uj,.(j) UQ1,.(w) while in the latter case the same is true by transitivity. The result follows by interchanging 
the roles of i and j. 11 

Let is N. If agent i were to choose x eX between period t and t' - 1 and observe the corresponding outcomes 
{y,tn},"', the product likelihood ratio of state 0 with respect to 01 at the beginning of time t' would be 

rK0(t, t')H = " 0 ( Yn; X, 0) (C. ) 

By convention we assume that rix 0(t, t') = 1 if t = t'. Moreover, if t = 1 we write rK 0(1, t') simply as rix 

Proof of Proposition 4.2 (Sketch) 

Let jeN. For ace(O, 1) and xeG(So,) let Bjx;a be the set BXa whose existence is assumed in condition (UPI). 
Using arguments analogous to Lemma 4.1, we can establish that there exists a c > 1, an a e (0, 1) such that 
a cyJxl < 1, a set A defined as 

Ay =nXec(, B'J; x{ max sup rjX(2 I x-G(80) r;?>2 

x max sup rx^,&?c4x H j,N Nv F1, Y>,, (C.2) 

and 6 > 0 such that P0' (Aj<r ) = 7 > 0 (by using the assumption that each xe G(0o, ) satisfies the (UPI) property). 
Fix icNK,d. Define Ai= =njfN(I) A7'. Clearly Po' (Ai) > AK> 0. Note that since agent i is assumed to have a belief 
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,ui,,(9i ) >d, she will choose an action xeG(680); by construction of the set Ai, she will observe an outcome 
yefB a. For w eAi we have 

'U i t(0l)(0 (O (0 l- ) ) (R; ,, a (f A El( 
0) (a (C .3 ) 

/i,O)O-)Y-', 
(9 

r )(w)UiiO)O- 

Since a aIXI <I by construction, for all t>1 we have ju,i,(I)?>i,u(9I)?> d, so that X'(w)cG(60). The proof 
for the case of I RI = 0 now follows along the lines of Lemma 4.2 and Theorem 4.1, and is omitted. 

The case I RI > 0. Let Q= UiGN {X'(0) t G(0o, )}. We shall assume P0' (Q) > 0 initially. Clearly, there 
exists a > 1 (without loss of generality having the same value as above) such that P0 (Q n AR ) > 0, where AR is 
the set 

AR =fnjeR { max max sup r,, _ }x HJXN\RHXeX Y-,. (C.4) 

For icNKd consider the set Ai constructed as above, but excluding all jeN(i) who are members of R. The 
probability of Ai conditional on A' satisfies 

P(AiIA)= rljc N(i)\R ( J P >(AR) -K>. (C.5) 

Using (C.5) we can establish the analogue of the argument used in Theorem 4.1, i.e. 

P(n.eNKASIAa ) lim (1 -K)INKd1=I0 (C.6) 

Note that for w eA, n AR, as jiu, I d, our construction ensures that Ci,,eGcuG,u) c G(G ) for all t_ 1. Thus 
on the set Ai n AR, agent i will always choose an action in G(60). As icNKd is arbitrary, we get 
(UiGNKd Ai) n AR CJeN {Xj(w) CG(6o )}, using the argument of Lemma 4.2. However, using (C.6) this implies 
P0 (Q nAU)=P0 (UieN {X1(w)) z:G(So )} n A')=O, which contradicts our earlier supposition that 
P0' (Q n A') > 0. The result follows. 11 

Proof of Theorem 4.2 

We suppose for simplicity that G(680) is a singleton. The steps presented below extend easily to cover the case 
where there are multiple optimal actions. We first establish the following lemma: 

Lemma 4.3. Suppose (Ia)-(Ic) hold. Let jue-9(0) satisfy U(Ok(,,)(X1))? t4. (a) If action xi is chosen t 
times, and outcomes yl eBx,. .. y,cBXI are observed, then the posterior belief u(E(xi )+)' > 4. (b) The conclusion 
in (a) is unaffected if an action xeX\xi has also been chosen and ye Y is observed. 

The proof exploits condition (Tb) and involves some straightforward calculations. We omit it due to space 
constraints. Lemma 4.3 is useful since if ju e9(0) satisfies ju(O(xI )+) > 4 then u(x,, ju) > ummn 

Proof. (Theorem 4.2). Let jeN. Arguments analogous to those used in Lemma 4.1 establish that there 
exists a real number c > 1 and 6 > 0 such that 

'0' sup max rX' 10(t, t') _ c<)= = >0. (C.7) 
t'>t Oe3(xl )~ 

Choose T to satisfy a TaK< 1, where a e (0, 1) is the number assumed in condition (Ic). Let A7 be defined as 

A7'= H,T Bjx, x {sup max rx"0(T+ 1,t')_ 
t > T Onuo(xl ) 

X nlx. \X\ , r, =Iy,;, X n1j. eN ,n rX n, , Yj," (c. 8) 

where we have written Bt' as B)X, to avoid confusion. Fix ic-NK,g. Let Ai= njc-N(i) A" . By construction 
Po' ( Ai = _-) fl(')I > 9K> 0 
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We claim that if w eAi then agent i will choose the optimal action x,, for all time periods after some finite 
point. The first step is to show that agent i will observe at least T trials of action xi. We begin by showing it 
is tried at least once by some agentjjeN(i). The proof is by contradiction. Suppose not. This implies, in particular, 
agent i observes infinitely many trials of some action xeX\xl. Since x is suboptimal, the strong law of large 
numbers will ensure that lim,_ ,,,ui,(0)=0 for all states 0 where u(x, 80)>u(x, 8o,). Choose E>0 such that 
umin - Z>maxXGx\x u(x, 8,). The above argument implies that at a finite time t', agent i's expected utility 
u(x, JUit')?Umin- s. Since x, has not been chosen and the choice of other actions does not affect i's beliefs 
concerning Ek(x,)(x), we have ui,,(0k(x,)(X))?4. By the observation following Lemma 4.3 this implies 
u(x, s Ui,') ?> Umin, which implies that x, would be preferable to x at the time of the next choice of x by agent i. 
Thus action x, must be tried by agent i at some time t', and this contradicts our original supposition. 

We now make the following observation. Suppose that at time t each agent jeN(i) has chosen action xi 
for O0tj?T periods. Hence up to time t, for each jeN(i) agent i observes the outcomes 
yjx, eB1 .yjx, I x , eBj,1j for t= 1,...,tj. It follows from Lemma 4.3 that agent i's posterior belief 
,ui,,(O(x1 ) ) > 4. Note by Lemma 4.3(b) that the possibility that agents]jeN(i) may have also chosen actions in 
X\xI does not alter the conclusion. The same argument can be repeated in conjunction with this observation 
to show that agent i must observe at least T choices of action xi by agents je N(i). 

Let t(T) be the time when agent i has observed a trial of xi for the T-th time. Let 2i,,e9(E) be agent i's 
belief after incorporating all information about actions xeX\xi up to time t'> t(T). We get 

,Ui,0((xI )- ) 

= 0e0(X1)-1,,i(0) HiN(,i)rj"0 (1, tj) (C.9) 
.Uil,(Ok(x,)(Xl))+Y_OC-O,(x)++pi.t(O) ljcN(i) rj (1, ti)+Y-Oef(X,)- ai.(O) nje-N(i) rj ( >t) 

Since w eAi by assumption we have HjvN(,) rjx" 0(1l tj) <aToaK< 1 for all 0 eE(x1 )-. This is because, by construc- 
tion of the set Ai, for the first T observation of x, by agent i, the product likelihood ratio rXI for any 0 cEO(x1 )- 
is at most aT, and in all subsequent trials for each agent jeN(i) the product likelihood ratio is at most a. 
However, by (Ta) we have pi,r(Ok(x,) )) = i, I(Ok(x(, )) > 4 and pi,,,(O(x1 )-) _ 1-. Thus 

Yoe<3O(x)- jui,,(0)-aToK(l )<(1-4 ). It follows from (C.9) that ju-i,((x,)-)<(I- 4)/( + +(1- I -. 
Thus ui,,,(O(x1 )+) > 4 and hence u(xI, jUi,,) > Umin. As t' is arbitrary, this means that agent i's belief on w will 
henceforth never fall below Umin. As all suboptimal actions will fall below Umin - E in finite time, agent i must 
choose action x, from some finite time onwards. The rest of the proof now proceeds as in Lemma 4.2 and 
Theorem 4.1. 11 
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