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Introduction

• Central Question in Today’s and Future Networks:

– Systematic analysis and design of network architectures and development of

network control schemes

• Traditional Network Optimization: Single administrative domain with a single

control objective and obedient users.

• New Challenges:

– Large-scale with lack of access to centralized information and subject to

unexpected disturbances

∗ Implication: Control policies have to be decentralized, scalable, and

robust against dynamic changes

– Interconnection of heterogeneous autonomous entities, so no central party

with enforcement power or accurate information about user needs

∗ Implication: Selfish incentives and private information of users need to be

incorporated into the control paradigm

– Continuous upgrades and investments in new technologies

∗ Implication: Economic incentives of service and content providers much

more paramount
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Tools and Ideas for Analysis

• These challenges necessitate the analysis of resource allocation and data

processing in the presence of decentralized information and heterogeneous selfish

users and administrative domains

• Instead of a central control objective, model as a multi-agent decision problem:

Game theory and economic market mechanisms

• Game Theory: Understand incentives of selfish autonomous agents and large

players such as service and content providers

– Utility-based framework of economics (represent user preferences by utility

functions)

– Decentralized equilibrium of a multi-agent system (does not require tight

closed-loop explicit controls)

– Mechanism Design Theory: Inverse game theory

∗ Design the system in a way that maintains decentralization, but provides

appropriate incentives

• Large area of research at the intersection of Engineering, Computer Science,

Economics, and Operations Research
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Applications

• Wireless Communications

– Power control in CDMA networks

– Transmission scheduling in collision channels

– Routing in multi-hop relay networks

– Spectrum assignment in cognitive-radio networks

• Data Networks

– Selfish (source) routing in overlay networks, inter-domain routing

– Rate control using market-based mechanisms

– Online advertising on the Internet: Sponsored search auctions

– Network design and formation

– Pricing and investment incentives of service providers

• Other Networked-systems

– Social Networks: Information evolution, learning dynamics, herding

– Transportation Networks, Electricity Markets
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This Tutorial

• Tools for Analysis – Part I

– Strategic and extensive form games

– Solution concepts: Iterated strict dominance, Nash equilibrium, subgame

perfect equilibrium

– Existence and uniqueness results

• Network Games – Part I

– Selfish routing and Price of Anarchy

– Service provider effects:

∗ Partially optimal routing

∗ Pricing and capacity investments

• Tools for Analysis – Part II

– Supermodular games and dynamics

– Potential and congestion games

• Network Games – Part II

– Distributed power control algorithms

– Network design
5



Motivating Example
Selfish Routing for Noncooperative Users

• For simplicity, no utility from flow, just congestion effects (inelastic demand)

• Each link described by a convex latency function li(xi) measuring costs of delay

and congestion on link i as a function of link flow xi.

no congestion effects

delay depends on congestion

1 unit of traffic

• Traditional Network Optimization Approach:

– Centralized control, single metric: e.g. minimize total delay

• Selfish Routing:

– Allow end users to choose routes themselves: e.g. minimize own delay

∗ Applications: Transportation networks; Overlay networks

– What is the right equilibrium notion?

∗ Nash Equilibrium: Each user plays a “best-response” to actions of others

∗ Wardrop Equilibrium: Nash equilibrium when “users infinitesimal”
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Wardrop Equilibrium with Selfish Routing

• Consider the simple Pigou example:

no congestion effects

delay depends on congestion

1 unit of traffic

• In centralized optimum, traffic split equally between two links.

– Cost of optimal flow: Csystem(xS) =
∑

i li(x
S
i )xS

i = 1
4

+ 1
2

= 3
4

• In Wardrop equilibrium, cost equalized on paths with positive flow; all traffic

goes through top link.

– Cost of selfish routing: Ceq(xWE) =
∑

i li(x
WE
i )xWE

i = 1 + 0 = 1

• Efficiency metric: Given latency functions {li}, we define the efficiency metric

α =
Csystem(xS)

Ceq(xWE)

• For the above example, we have α = 3
4
.
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Game Theory Primer–I

• A strategic (form) game is a model for a game in which all of the participants

act simultaneously and without knowledge of other players’ actions.

Definition (Strategic Game): A strategic game is a triplet 〈I, (Si)i∈I , (ui)i∈I〉:
• I is a finite set of players, I = {1, . . . , I}.
• Si is the set of available actions for player i

– si ∈ Si is an action for player i

– s−i = [sj ]j 6=i is a vector of actions for all players except i.

– (si, s−i) ∈ S is an action profile, or outcome.

– S =
∏

i Si is the set of all action profiles

– S−i =
∏

j 6=i Sj is the set of all action profiles for all players except i

• ui : S → R is the payoff (utility) function of player i

• For strategic games, we will use the terms action and pure strategy

interchangeably.
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Example–Finite Strategy Spaces

• When the strategy space is finite, and the number of players and actions is small,

a game can be represented in matrix form.

• The cell indexed by row x and column y contains a pair, (a, b) where

a = u1(x, y) and b = u2(x, y).

• Example: Matching Pennies.

Heads Tails

Heads −1, 1 1,−1

Tails 1,−1 −1, 1

• This game represents pure conflict in the sense that one player’s utility is the

negative of the utility of the other player.

– Zero-sum games: favorable structure for dynamics and computation of

equilibria
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Example–Infinite Strategy Spaces

• Example: Cournot competition.

– Two firms producing the same good.

– The action of a player i is a quantity, si ∈ [0,∞] (amount of good he

produces).

– The utility for each player is its total revenue minus its total cost,

ui(s1, s2) = sip(s1 + s2)− csi

where p(q) is the price of the good (as a function of the total amount), and c

is unit cost (same for both firms).

• Assume for simplicity that c = 1 and p(q) = max{0, 2− q}
• Consider the best-response correspondences for each of the firms, i.e., for each i,

the mapping Bi(s−i) : S−i → Si such that

Bi(s−i) ∈ argmaxsi∈Si
ui(si, s−i).
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Example–Continued

• By using the first order optimality conditions,

we have

Bi(s−i) = argmaxsi≥0(si(2− si − s−i)− si)

=





1−s−i

2
if s−i ≤ 1,

0 otherwise.

• The figure illustrates the best response func-

tions as a function of s1 and s2.

1/2
1

1/2

1

B1(s2)

B2(s1)

s1

s2

• Assuming that players are rational and fully knowledgable about the structure of

the game and each other’s rationality, what should the outcome of the game be?
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Dominant Strategies

• Example: Prisoner’s Dilemma.

– Two people arrested for a crime, placed in separate rooms, and the

authorities are trying to extract a confession.

Cooperate Don’t Cooperate

Cooperate 2, 2 5, 1

Don’t Cooperate 1, 5 4, 4

• What will the outcome of this game be?

– Regardless of what the other player does, playing “DC” is better for each

player.

– The action “DC” strictly dominates the action “C”

• Prisoner’s dilemma paradigmatic example of a self-interested, rational behavior

not leading to jointly (socially) optimal result.
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Prisoner’s Dilemma and ISP Routing Game

• Consider two Internet service providers that need to send traffic to each other

• Assume that the unit cost along a link (edge) is 1

DC C Peering points

s1

t1

s2

t2

ISP1: s1 t1

ISP2: s2 t2

• This situation can be modeled by the “Prisoner’s Dilemma” payoff matrix

C DC

C 2, 2 5, 1

DC 1, 5 4, 4
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Dominated Strategies

Definition (Strictly Dominated Strategy): A strategy si ∈ Si is strictly dominated

for player i if there exists some s′i ∈ Si such that

ui(s
′
i, s−i) > ui(si, s−i) for all s−i ∈ S−i.

Definition (Weakly Dominated Strategy): A strategy si ∈ Si is weakly dominated

for player i if there exists some s′i ∈ Si such that

ui(s
′
i, s−i) ≥ ui(si, s−i) for all s−i ∈ S−i,

ui(s
′
i, s−i) > ui(si, s−i) for some s−i ∈ S−i.

• No player would play a strictly dominated strategy

• Common knowledge of payoffs and rationality results in iterative elimination of

strictly dominated strategies

Example: Iterated Elimination of Strictly Dominated Strategies.

Left Middle Right

Up 4, 3 5, 1 6, 2

Middle 2, 1 8, 4 3, 6

Down 3, 0 9, 6 2, 8
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Revisiting Cournot Competition

• Apply iterated strict dominance to Cournot model to predict the outcome

1/2 1

1/2

1

B1(s2)

B2(s1)

s1

s2

1
4/

1
4/

1/2 1

1/2

1

s1

s2

1
4/

1
4/

B2(s1)

B1(s2)

• One round of elimination yields S1
1 = [0, 1/2], S1

2 = [0, 1/2]

• Second round of elimination yields S1
1 = [1/4, 1/2], S1

2 = [1/4, 1/2]

• It can be shown that the endpoints of the intervals converge to the intersection

• Most games not solvable by iterated strict dominance, need a stronger

equilibrium notion
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Pure Strategy Nash Equilibrium

Definition (Nash equilibrium): A (pure strategy) Nash Equilibrium of a strategic

game 〈I, (Si)i∈I , (ui)i∈I〉 is a strategy profile s∗ ∈ S such that for all i ∈ I

ui(s
∗
i , s∗−i) ≥ ui(si, s

∗
−i) for all si ∈ Si.

• No player can profitably deviate given the strategies of the other players

• Why should one expect Nash equilibrium to arise?

– Introspection

– Self-enforcing

– Learning or evolution

• Recall the best-response correspondence Bi(s−i) of player i,

Bi(s−i) ∈ arg max
si∈Si

ui(si, s−i).

• An action profile s∗ is a Nash equilibrium if and only if

s∗i ∈ Bi(s
∗
−i) for all i ∈ I.

• Question: When iterated strict dominance yields a unique strategy profile, is this

a Nash equilibrium?
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Examples

Example: Battle of the Sexes (players wish to coordinate but have conflicting

interests)

Ballet Soccer

Ballet 2, 1 0, 0

Soccer 0, 0 1, 2

• Two Nash equilibria, (Ballet, Ballet) and (Soccer, Soccer).

Example: Matching Pennies.

Heads Tails

Heads 1,−1 −1, 1

Tails −1, 1 1,−1

Matching Pennies

• No pure Nash equilibrium

• There exists a “stochastic steady state”, in which each player chooses each of

her actions with 1/2 probability ⇒ Mixed strategies
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Mixed Strategies and Mixed Strategy Nash Equilibrium

• Let Σi denote the set of probability measures over the pure strategy (action) set

Si.

• We use σi ∈ Σi to denote the mixed strategy of player i, and

σ ∈ Σ =
∏

i∈I Σi to denote a mixed strategy profile.

• Note that this implicitly assumes that players randomize independently.

• We similarly define σ−i ∈ Σ−i =
∏

j 6=i Σj .

• Following Von Neumann-Morgenstern expected utility theory, we extend the

payoff functions ui from S to Σ by

ui(σ) =

∫

S

ui(s)dσ(s).

Definition (Mixed Nash Equilibrium): A mixed strategy profile σ∗ is a (mixed

strategy) Nash Equilibrium if for each player i,

ui(σ
∗
i , σ∗−i) ≥ ui(σi, σ

∗
−i) for all σi ∈ Σi.

• Note that it is sufficient to check pure strategy deviations, i.e., σ∗ is a mixed

Nash equilibrium if and only if for all i,

ui(σ
∗
i , σ∗−i) ≥ ui(si, σ

∗
−i) for all si ∈ Si.
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Characterization of Mixed Strategy Nash Equilibria

Lemma: Let G = 〈I, (Si)i∈I , (ui)i∈I〉 be a finite strategic game. Then, σ∗ ∈ Σ is a

Nash equilibrium if and only if for each player i ∈ I, every pure strategy in the

support of σ∗i is a best response to σ∗−i.

• It follows that every action in the support of any player’s equilibrium mixed

strategy yields the same payoff.

• The characterization result extends to infinite games: σ∗ ∈ Σ is a Nash

equilibrium if and only if for each player i ∈ I,

(i) no action in Si yields, given σ∗−i, a payoff that exceeds his equilibrium payoff,

(ii) the set of actions that yields, given σ∗−i, a payoff less than his equilibrium

payoff has σ∗i -measure zero.

• Example: Recall Battle of the Sexes Game.

Ballet Soccer

Ballet 2, 1 0, 0

Soccer 0, 0 1, 2

This game has two pure Nash equilibria and a mixed Nash equilibrium(
( 2
3
, 1

3
), ( 1

3
, 2

3
)
)
.
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Existence of Nash Equilibria –I

Theorem [Nash 50]: Every finite game has a mixed strategy Nash equilibrium.

Proof Outline:

• σ∗ mixed Nash equilibrium if and only if σ∗i ∈ Bi(σ
∗
−i) for all i ∈ I, where

Bi(σ
∗
−i) ∈ arg max

σi∈Σi

ui(σi, σ
∗
−i).

• This can be written compactly as σ∗ ∈ B(σ∗), where B(σ) = [Bi(σ−i)]i∈I , i.e.,

σ∗ is a fixed point of the best-response correspondence.

• Use Kakutani’s fixed point theorem to establish the existence of a fixed point.

Linearity of expectation in probabilities play a key role; extends to (quasi)-concave

payoffs in infinite games

Theorem [Debreu, Glicksberg, Fan 52]: Assume that the Si are nonempty compact

convex subsets of an Euclidean space. Assume that the payoff functions ui(si, s−i)

are quasi-concave in si and continuous in s, then there exists a pure strategy Nash

equilibrium.
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Existence of Nash Equilibria –II

• Can we relax quasi-concavity?

• Example: Consider the game where two players pick a location s1, s2 ∈ R2 on

the circle. The payoffs are u1(s1, s2) = −u2(s1, s2) = d(s1, s2), where d(s1, s2)

denotes the Euclidean distance between s1, s2 ∈ R2.

– No pure Nash equilibrium.

– The profile where both mix uniformly on the circle is a mixed Nash

equilibrium.

Theorem [Glicksberg 52]: Every continuous game has a mixed strategy Nash

equilibrium.

• Existence results for discontinuous games! [Dasgupta and Maskin 86]

• Particularly relevant for price competition models.
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Uniqueness of Pure Nash Equilibrium in Infinite Games

• Concavity of payoffs ui(si, s−i) in si not sufficient to establish uniqueness

• Assume that Si ⊂ Rmi . We use the notation:

∇iu(x) =

[
∂u(x)

∂x1
i

, . . . ,
∂u(x)

∂xmi
i

]T

, ∇u(x) = [∇1u1(x), . . . ,∇IuI(x)]T .

Definition: We say that the payoff functions (u1, . . . , uI) are diagonally strictly

concave for x ∈ S, if for every x∗, x̄ ∈ S, we have

(x̄− x∗)T∇u(x∗) + (x∗ − x̄)T∇u(x̄) > 0.

• Let U(x) denote the Jacobian of ∇u(x), i.e., for mi = 1, [U(x)]ij = ∂2ui(x)
∂xjxi

• A sufficient condition for diagonal strict concavity is that the symmetric matrix

(U(x) + (UT (x))) is negative definite for all x ∈ S.

Theorem [Rosen 65]: Assume that the payoff functions (u1, . . . , uI) are diagonally

strictly concave for x ∈ S. Then the game has a unique pure strategy Nash

equilibrium.
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Extensive Form Games

• Extensive-form games model multi-agent sequential decision making.

• Our focus is on multi-stage games with observed actions

• Extensive form represented by tree diagrams

• Additional component of the model, histories

(i.e., sequences of action profiles)

• Let Hk denote the set of all possible stage-k

histories

• Strategies are maps from all possible histories

into actions: sk
i : Hk → Si

Example:

• Player 1’s strategies: s1 : H0 = ∅ → S1; two possible strategies: C,D

• Player 2’s strategies: s2 : H1 = {C, D} → S2; four possible strategies:

EG,EH,FG, FH
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Subgame Perfect Equilibrium

• Equivalent strategic form representation

Accommodate Fight

In 2,1 0,0

Out 1,2 1,2

• Two pure Nash equilibria: (In,A) and (Out,F)

• The equilibrium (Out,F) is sustained by a non-

credible threat of the monopolist

• Equilibrium notion for extensive form games: Subgame Perfect (Nash)

Equilibrium

– Requires each player’s strategy to be “optimal” not only at the start of the

game, but also after every history

– For finite horizon games, found by backward induction

– For infinite horizon games, characterization in terms of one-stage deviation

principle
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Revisit Routing Models

• Directed network N = (V, E)

• Origin-destination pairs (sj , tj), j = 1, . . . , k

with rate rj

• Pj denotes the set of paths between sj and

tj ; P = ∪jPj

• xp denotes the flow on path p ∈ P (can be

non-integral)

• Each link i ∈ E has a latency func-

tion li(xi), which captures congestion effects

(xi =
∑
{p∈P|i∈p} xp)

– Assume li(xi) nonnegative, differentiable,

and nondecreasing

2

22

2

3x 1

0 0

0 0

x+1

2x1 + 2x3=8

• We call the tuple R = (V, E, (sj , tj , rj)j=1,...,k, (li)i∈E) a routing instance

• The total latency cost of a flow x is: C(x) =
∑

i∈E xili(xi)
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Socially Optimal Routing

Given a routing instance R = (V, E, (sj , tj , rj), (li)):

• We define the social optimum xS , as the optimal solution of the

multicommodity min-cost flow problem

minimize
∑
i∈E

xili(xi)

subject to
∑

{p∈P|i∈p}
xp = xi, i ∈ E,

∑
p∈Pj

xp = rj , j = 1, . . . , k, xp ≥ 0, p ∈ P.

• We refer to a feasible solution of this problem as a feasible flow.
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Wardrop (User) Equilibrium

• When traffic routes “selfishly,” all nonzero flow paths must have equal latency.

– Nonatomic users ⇒ Aggregate flow of many “small” users.

Definition: A feasible flow is a Wardrop equilibrium xWE if
∑
i∈p1

li(xi) ≤
∑
i∈p2

li(xi), for all p1, p2 ∈ P with xp1 > 0.

• A feasible flow is a Wardrop equilibrium xWE iff it is an optimal solution of

minimize
∑
i∈E

∫ xi

0

li(z) dz

subject to
∑

{p∈P|i∈p}
xp = xi, i ∈ E,

∑
p∈Pj

xp = rj , j = 1, . . . , k, xp ≥ 0, p ∈ P.

• Existence and “essential” uniqueness of a Wardrop equilibrium follows from the

previous optimization formulation [Beckmann, McGuire, Winsten 56]

• A feasible flow xWE is a Wardrop equilibrium iff [Smith 79]
∑
i∈E

li(x
WE
i )(xWE

i − xi) ≤ 0, for all feasible x.
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Recall Pigou Example

no congestion effects

delay depends on congestion

1 unit of traffic

• In social optimum, traffic split equally between two links.

– Cost of optimal flow: C(xS) =
∑

i li(x
S
i )xS

i = 1
4

+ 1
2

= 3
4

• In Wardrop equilibrium, cost equalized on paths with positive flow; all traffic

goes through top link.

– Cost of selfish routing: C(xWE) =
∑

i li(x
WE
i )xWE

i = 1 + 0 = 1

• Efficiency metric: Given the routing instance R, we define the efficiency metric

α(R) =
C(xS(R))

C(xWE(R))

• For the above example, we have α(R) = 3
4
.
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Selfish Routing and Price of Anarchy

• Let R′ denote the set of all routing instances.

• Worst case efficiency over all instances: infR∈R′
C(xS(R))

C(xW E(R))

– Price of Anarchy: Measure of lack of centralized coordination [Koutsoupias,

Papadimitriou 99]

Theorem : [Roughgarden, Tardos 02] Let Raff (Rconv) denote routing instances

with affine (convex) latency functions.

(a) Let R ∈ Raff . Then,

C(xS(R))

C(xWE(R))
≥ 3

4
.

Furthermore, the bound above is tight.

(b)

inf
R∈Rconv

C(xS(R))

C(xWE(R))
= 0.

• Bounds for capacitated networks and polynomial latency functions [Correa,

Schulz, Stier-Moses 03, 05]

• Genericity analysis [Friedman 04], [Qiu et al. 03]

– Likely outcomes rather than worst cases
29



Further Paradoxes of Decentralized Equilibrium: Braess’

Paradox

• Idea: Addition of an intuitively helpful link negatively impacts network users

x

   traffic

1/2

1/2

1

1 x

x

1 unit of

eq

sysC     = 3/2
C   = 1/2 (1/2+1) + 1/2 (1/2+1) = 3/2

1

x

eqC   = 1 + 1 = 2

sysC    = 3/2

0
1 unit of
   traffic

1

1

• Introduced in transportation networks [Braess 68], [Dafermos, Nagurney 84]

– Studied in the context of communication networks, distributed computing,

queueing networks [Altman et al. 03]

• Motivated research in methods of upgrading networks without degrading network

performance

– Leads to limited methods under various assumptions.
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Selfish Routing

• Is this the right framework for thinking about network routing?

• No, for 2 reasons:

– It ignores providers’ role in routing traffic

– It ignores providers’ pricing and profit incentives
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New Routing Paradigm for Noncooperative Users and

Providers

• Most large-scale networks, such as Internet, consist of interconnected

administrative domains that control traffic within their networks.

• Obvious conflicting interests as a result:

– Users care about end-to-end performance.

– Individual network providers optimize their own objectives.

• The study of routing patterns and performance requires an analysis of Partially

Optimal Routing (POR): [Acemoglu, Johari, Ozdaglar 06]

– End-to-end route selection selfish

∗ Transmission follows minimum latency route for each source.

– Network providers route traffic within their own network to achieve minimum

intradomain latency.
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Partially Optimal Routing

• Consider a subnetwork inside of N , denoted N0 = (V0, E0).

• Assume first that N0 has a unique entry and exit point, denoted by s0 ∈ V0

and t0 ∈ V0. P0 denotes paths from s0 to t0.

• We call R0 = (V0, E0, s0, t0) a subnetwork of N : R0 ⊂ R.

• Given an incoming amount of flow X0, the network operator chooses the routing

by:

L(X0) = minimize
∑
i∈E0

xili(xi)

subject to
∑

{p∈P0|i∈p}
xp = xi, i ∈ E0,

∑
p∈P0

xp = X0, xp ≥ 0, p ∈ P0.

• Define l0(X0) = L(X0)/X0 as the effective latency of POR in the subnetwork

R0.
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POR Flows

• Given a routing instance R = (V, E, (sj , tj , rj), (li)), and a subnetwork

R0 = (V0, E0, s0, t0) defined as above, we define a new routing instance

R′ = (V ′, E′, (sj , tj , rj), (l
′
i)) as follows:

V ′ = (V \ V0)
⋃
{s0, t0};

E′ = (E \ E0)
⋃
{(s0, t0)};

• (l′i) = {li}i∈E\E0

⋃{l0}.
• We refer to R′ as the equivalent POR instance for R with respect to R0.

• The overall network flow in R with partially optimal routing in R0,

xPOR(R, R0), is defined as:

xPOR(R, R0) = xWE(R′).
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Price of Anarchy for Partially Optimal Routing

• Let Raff (Rconv) denote routing instances with affine (convex) latency functions.

Proposition: Let R′ denote set of all routing instances.

inf
R∈R′
R0⊂R

C(xS(R))

C(xPOR(R, R0))
≤ inf

R∈R′
C(xS(R))

C(xWE(R))
.

inf
R∈Raff

R0⊂R

C(xS(R))

C(xPOR(R, R0))
≥ inf

R∈Rconc

C(xS(R))

C(xWE(R))
.

Theorem:

(a)

inf
R∈Rconv

R0⊂R

C(xS(R))

C(xPOR(R, R0))
= 0.

(b) Consider a routing instance R where li is an affine latency function for all i ∈ E;

and a subnetwork R0 of R.

C(xS(R))

C(xPOR(R, R0))
≥ 3

4
.

Furthermore, the bound above is tight.
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Price of Anarchy for Partially Optimal Routing

Proof of part (b): The proof relies on the following two results:

Lemma: Assume that the latency functions li of all the links in the subnetwork are

nonnegative affine functions. Then, the effective latency of POR, l0(X0), is a

nonnegative concave function of X0.

Proposition: Let R ∈ Rconc be a routing instance where all latency functions are

concave.
C(xS(R))

C(xWE(R))
≥ 3

4
.

Furthermore, this bound is tight.
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Price of Anarchy for Partially Optimal Routing

Proof of Proposition: From the variational inequality representation of WE, for all

feasible x, we have

C(xWE) =
∑
j∈E

xWE
j lj(x

WE
j ) ≤

∑
j∈E

xj lj(x
WE
j )

=
∑
j∈E

xj lj(xj) +
∑
j∈E

xj(lj(x
WE
j )− lj(xj)).

For all feasible x, we have

xj(lj(x
WE
j )− lj(xj)) ≤ 1

4
xWE

j lj(x
WE
j ).

l (x )j j

x
j
WE

x
j
WE

�����
�����
�����
�����

�����
�����
�����
�����

xx
j

              
 

l (         )j

jl (    )x

• For subnetworks with multiple entry-exit points, even for linear latencies,

efficiency loss of POR can be arbitrarily high.

• Need for regulation and pricing!
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Congestion and Provider Price Competition

• If a network planner can charge appropriate prices (taxes), system optimal

solution can be decentralized even with selfish routing.

• Where do prices come from?

– In newly-emerging large-scale networks, for-profit entities charge prices

– Efficiency implications of profit-maximizing prices

Model:

– I parallel links.

– Interested in routing d units of

traffic ⇒ inelastic traffic

1 unit of traffic

Reservation utility R

• Users have a reservation utility R and do not send their flow if the effective cost

exceeds the reservation utility.

• Each link owned by a different service provider: charges a price pi per unit

bandwidth on link i (extends to arbitrary market structure).
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Wardrop Equilibrium

• Assume li(xi): convex, continuously differentiable, nondecreasing.

Wardrop’s principle: Flows routed along paths with minimum “effective cost”.

Definition: Given p ≥ 0, x∗ is a Wardrop Equilibrium (WE) if

li(x
∗
i ) + pi = min

j
{lj(x∗j ) + pj}, for all i with x∗i > 0,

li(x
∗
i ) + pi ≤ R, for all i with x∗i > 0,

and
∑

i∈I x∗i ≤ d, with
∑

i∈I x∗i = d if minj{lj(xj) + pj} < R.

We denote the set of WE at a given p by W (p).

• For any p ≥ 0, the set W (p) is nonempty.

• If li strictly increasing, W (p) is a singleton and a continuous function of p.
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Social Problem and Optimum

Definition: A flow vector xS is a social optimum if it is an optimal solution of the

social problem

maximize x≥0∑
i∈I xi≤d

∑
i∈I

(R− li(xi))xi,

• It follows from the Karush-Kuhn-Tucker optimality conditions that xS ∈ RI
+ is a

social optimum iff

li(x
S
i ) + xS

i l′i(x
S
i ) = min

j∈I
{lj(xS

j ) + xS
j l′j(x

S
j )}, ∀ i with xS

i > 0,

li(x
S
i ) + xS

i l′i(x
S
i ) ≤ R, ∀ i with xS

i > 0,

∑
i∈I xS

i ≤ d, with
∑

i∈I xS
i = d if minj{lj(xS

j ) + xS
j l′j(x

S
j )} < R.

• (li)
′(xS

i )xS
i : Marginal congestion cost, Pigovian tax.
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Oligopoly Equilibrium

• Given the prices of other providers p−i = [pj ]j 6=i, SP i sets pi to maximize his

profit

Πi(pi, p−i, x) = pixi,

where x ∈ W (pi, p−i).

• We refer to the game among SPs as the price competition game.

Definition: A vector (pOE , xOE) ≥ 0 is a (pure strategy) Oligopoly Equilibrium (OE)

if xOE ∈ W (pOE
i , pOE

−i ) and for all i ∈ I,

Πi(p
OE
i , pOE

−i , xOE) ≥ Πi(pi, p
OE
−i , x), ∀ pi ≥ 0, ∀ x ∈ W (pi, p

OE
−i ). (1)

We refer to pOE as the OE price.

• Equivalent to the subgame perfect equilibrium notion.
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Example

2

1

1 unit of
  traffic

l (x)=(2/3)x

l (x)=x /3
2

• Social Optimum: xS
1 = 2/3, xS

2 = 1/3

• WE: xWE
1 = 0.73 > xS

1 , xWE
2 = 0.27

• Single Provider: xME
1 = 2/3, xME

2 = 1/3

• Multiple Providers: xOE
1 = 0.58, xOE

2 = 0.42

– The monopolist internalizes the congestion externalities.

– Increasing competition decreases efficiency!

– There is an additional source of “differential power” in the oligopoly case

that distorts the flow pattern.
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Existence and Price Characterization

Proposition: Assume that the latency functions are linear. Then the price

competition game has a (pure strategy) OE.

• Existence of a mixed strategy equilibrium can be established for arbitrary convex

latency functions.

• Oligopoly Prices: Let (pOE , xOE) be an OE. Then,

pOE
i = (li)

′(xOE
i )xOE

i +

∑
j∈Is

xOE
j∑

j /∈Is

1
l′j(xOE

j )

• In particular, for two links, the OE prices are given by

pOE
i = xOE

i (l′1(x
OE
1 ) + l′2(x

OE
2 )).

– Increase in price over the marginal congestion cost.
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Efficiency Bound for Parallel Links

• Recall our efficiency metric: Given a set of latency functions {li} and an

equilibrium flow xOE , we define the efficiency metric as

α({li}, xOE) =
R

∑I
i=1 xOE

i −∑I
i=1 li(x

OE
i )xOE

i

R
∑I

i=1 xS
i −

∑I
i=1 li(xS

i )xS
i

.

Theorem [Acemoglu, Ozdaglar 05]: Consider a parallel link network with inelastic

traffic. Then

α({li}, xOE) ≥ 5

6
, ∀ {li}i∈I , xOE ,

and the bound is tight irrespective of the number of links and market structure.

Proof Idea:

• Lower bound the infinite dimensional optimization problem by a finite

dimensional problem.

• Use the special structure of parallel links to analytically solve the optimization

problem.

Contrasts (superficially) with the intuition that with large number of oligopolists

equilibrium close to competitive.
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Extensions

• General network topologies [Acemoglu, Ozdaglar 06],[Chawla, Roughgarden 08]

– With serial provider competition, efficiency can be worse.

– Bounds under additional assumptions on network and demand structure

– Regulation and cooperation may be necessary

• Elastic traffic: Routing and flow control [Hayrapetyan et al. 06], [Ozdaglar 06],

[Musacchio and Wu 07]

• Models for investment and capacity upgrade decisions [Acemoglu, Bimpikis,

Ozdaglar 07], [Weintraub, Johari, Van Roy 06]

• Atomic players: Users that control large portion of traffic (models coalitions)

[Cominetti, Correa, Stier-Moses 06, 07], [Bimpikis, Ozdaglar 07]

• Two-sided markets: interactions of content providers, users, and service

providers [Musacchio, Schwartz, Walrand 07]

• Are networks leading to worst case performance likely? (Genericity analysis)

45



Game Theory Primer–II

• Convexity often fails in many game-theoretic situations, including wireless

network games

• Are there any other structures that we can exploit in games for:

– analysis of equilibria

– design of distributed dynamics that lead to equilibria

• Games with special structure

– Supermodular Games

– Potential Games
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Supermodular Games

• Supermodular games are those characterized by strategic complementarities

• Informally, this means that the marginal utility of increasing a player’s

strategy raises with increases in the other players’ strategies.

– Implication ⇒ best response of a player is a nondecreasing function of other

players’ strategies

• Why interesting?

– They arise in many models.

– Existence of a pure strategy equilibrium without requiring the quasi-concavity

of the payoff functions.

– Many solution concepts yield the same predictions.

– The equilibrium set has a smallest and a largest element.

– They have nice sensitivity (or comparative statics) properties and behave well

under a variety of distributed dynamic rules.
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Monotonicity of Optimal Solutions

• The machinery needed to study supermodular games is lattice theory and

monotonicity results in lattice programming

– Methods used are non-topological and they exploit order properties

• We first study the monotonicity properties of optimal solutions of parametric

optimization problems:

x(t) ∈ arg max
x∈X

f(x, t),

where f : X × T → R, X ⊂ R, and T is some partially ordered set.

– We will focus on T ⊂ RK with the usual vector order, i.e., for some

x, y ∈ T , x ≥ y if and only if xi ≥ yi for all i = 1, . . . , k.

– Theory extends to general lattices

• We are interested in conditions under which we can establish that x(t) is a

nondecreasing function of t.
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Increasing Differences

• Key property: Increasing differences

Definition: Let X ⊆ R and T be some partially ordered set. A function

f : X × T → R has increasing differences in (x, t) if for all x′ ≥ x and t′ ≥ t, we

have

f(x′, t′)− f(x, t′) ≥ f(x′, t)− f(x, t).

• incremental gain to choosing a higher x (i.e., x′ rather than x) is greater when t

is higher, i.e., f(x′, t)− f(x, t) is nondecreasing in t.

Lemma: Let X ⊆ R and T ⊂ Rk for some k, a partially ordered set with the usual

vector order. Let f : X × T → R be a twice continuously differentiable function.

Then, the following statements are equivalent:

(a) The function f has increasing differences in (x, t).

(b) For all t′ ≥ t and all x ∈ X, we have

∂f(x, t′)
∂x

≥ ∂f(x, t)

∂x
.

(c) For all x ∈ X, t ∈ T , and all i = 1, . . . , k, we have

∂2f(x, t)

∂x∂ti
≥ 0.
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Examples–I

Example: Network effects (positive externalities).

• A set I of users can use one of two technologies X and Y (e.g., Blu-ray and HD

DVD)

• Bi(J, k) denotes payoff to i when a subset J of users use technology k and i ∈ J

• There exists a network effect or positive externality if

Bi(J, k) ≤ Bi(J
′, k), when J ⊂ J ′,

i.e., player i better off if more users use the same technology as him.

• Leads naturally to a strategic form game with actions Si = {X, Y }
• Define the order Y º X, which induces a lattice structure

• Given s ∈ S, let X(s) = {i ∈ I | si = X}, Y (s) = {i ∈ I | si = Y }.
• Define the payoffs as

ui(si, s−i) =





Bi(X(s), X) if si = X,

Bi(Y (s), Y ) if si = Y

• Show that the payoff functions of this game feature increasing differences.
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Examples –II

Example: Cournot duopoly model.

• Two firms choose the quantity they produce qi ∈ [0,∞).

• Let P (Q) with Q = qi + qj denote the inverse demand (price) function. Payoff

function of each firm is ui(qi, qj) = qiP (qi + qj)− cqi.

• Assume P ′(Q) + qiP
′′(Q) ≤ 0 (firm i’s marginal revenue decreasing in qj).

• Show that the payoff functions of the transformed game defined by s1 = q1,

s2 = −q2 has increasing differences in (s1, s2).
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Monotonicity of Optimal Solutions

Theorem [Topkis 79]: Let X ⊂ R be a compact set and T be some partially ordered

set. Assume that the function f : X × T → R is upper semicontinuous in x for all

t ∈ T and has increasing differences in (x, t). Define x(t) = arg maxx∈X f(x, t).

Then, we have:

1. For all t ∈ T , x(t) is nonempty and has a greatest and least element, denoted by

x̄(t) and x(t) respectively.

2. For all t′ ≥ t, we have x̄(t′) ≥ x̄(t) and x(t′) ≥ x(t).

• If f has increasing differences, the set of optimal solutions x(t) is non-decreasing

in the sense that the largest and the smallest selections are non-decreasing.
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Supermodular Games

Definition: The strategic game 〈I, (Si), (ui)〉 is a supermodular game if for all i:

1. Si is a compact subset of R (or more generally Si is a complete lattice in Rmi),

2. ui is upper semicontinuous in si, continuous in s−i,

3. ui has increasing differences in (si, s−i) [or more generally ui is supermodular in

(si, s−i), which is an extension of the property of increasing differences to games

with multi-dimensional strategy spaces].

• Apply Topkis’ Theorem to best response correspondences

Corollary: Assume 〈I, (Si), (ui)〉 is a supermodular game. Let

Bi(s−i) = arg max
si∈Si

ui(si, s−i).

Then:

1. Bi(s−i) has a greatest and least element, denoted by B̄i(s−i) and Bi(s−i).

2. If s′−i ≥ s−i, then B̄i(s
′
−i) ≥ B̄i(s−i) and Bi(s

′
−i) ≥ Bi(s−i).
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Existence of a Pure Nash Equilibrium

• Follows from Tarski’s fixed point theorem

Theorem [Tarski 55]: Let S be a compact sublattice of Rk and f : S → S be an

increasing function (i.e., f(x) ≤ f(y) if x ≤ y). Then, the set of fixed points of f ,

denoted by E, is nonempty.

s

f(s)

s

f(s)

• Apply Tarski’s fixed point theorem to best response correspondences
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Main Result

• A different approach to understand the structure of Nash equilibria.

Theorem [Milgrom, Roberts 90]: Let 〈I, (Si), (ui)〉 be a supermodular game. Then

the set of strategies that survive iterated strict dominance (i.e., iterated elimination

of strictly dominated strategies) has greatest and least elements s̄ and s, which are

both pure strategy Nash Equilibria.

Proof idea: Start from the largest or smallest strategy profile and iterate the

best-response mapping.

Corollary: Supermodular games have the following properties:

1. Pure strategy NE exist.

2. The largest and smallest strategies are compatible with iterated strict dominance

(ISD), rationalizability, correlated equilibrium, and Nash equilibrium are the

same.

3. If a supermodular game has a unique NE, it is dominance solvable (and lots of

learning and adjustment rules converge to it, e.g., best-response dynamics).
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Potential Games

Example: Cournot competition.

• n firms choose quantity qi ∈ (0,∞)

• The payoff function for player i given by ui(qi, q−i) = qi(P (Q)− c).

• We define the function Φ(q1, · · · , qn) = q1 · · · qn(P (Q)− c)

• Note that for all i and all q−i,

ui(qi, q−i)− ui(q
′
i, q−i) > 0 iff Φ(qi, q−i)− Φ(q′i, q−i) > 0, for all qi, q

′
i ∈ (0,∞).

• Φ is an ordinal potential function for this game.

Example: Cournot competition.

• P (Q) = a− bQ and arbitrary costs ci(qi)

• We define the function

Φ∗(q1, · · · , qn) = a
∑n

i=1 qi − b
∑n

i=1 q2
i − b

∑n
1≤i<l≤n qiql −

∑n
i=1 ci(qi).

• It can be shown that for all i and all q−i,

ui(qi, q−i)− ui(q
′
i, q−i) = Φ∗(qi, q−i)− Φ∗(qi, q

′
−i), for all qi, q

′
i ∈ (0,∞).

• Φ is an (exact) potential function for this game.
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Potential Functions

Definition [Monderer and Shapley 96]:

(i) A function Φ : S → R is called an ordinal potential function for the game G if

for all i and all s−i ∈ S−i,

ui(x, s−i)− ui(z, s−i) > 0 iff Φ(x, s−i)− Φ(z, s−i) > 0, for all x, z ∈ Si.

(ii) A function Φ : S → R is called a potential function for the game G if for all i

and all s−i ∈ S−i,

ui(x, s−i)− ui(z, s−i) = Φ(x, s−i)− Φ(z, s−i), for all x, z ∈ Si.

G is called an ordinal (exact) potential game if it admits an ordinal (exact) potential.

Remarks:

• A global maximum of an ordinal potential function is a pure Nash equilibrium

(there may be other pure NE, which are local maxima)

– Every finite ordinal potential game has a pure Nash equilibrium.

• Many learning dynamics (such as 1-sided better reply dynamics, fictitious play,

spatial adaptive play) “converge” to a pure Nash equilibrium [Monderer and

Shapley 96], [Young 98], [Marden, Arslan, Shamma 06, 07]
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Congestion Games

• Congestion games arise when users need to share resources in order to complete

certain tasks

– For example, drivers share roads, each seeking a minimal cost path.

– The cost of each road segment adversely affected by the number of other

drivers using it.

• Congestion Model: C = 〈N, M, (Si)i∈N , (cj)j∈M 〉 where

– N = {1, 2, · · · , n} is the set of players,

– M = {1, 2, · · · , m} is the set of resources,

– Si consists of sets of resources (e.g., paths) that player i can take.

– cj(k) is the cost to each user who uses resource j if k users are using it.

• Define congestion game 〈N, (Si), (ui)〉 with utilities ui(si, s−i) =
∑

j∈si
cj(kj),

where kj is the number of users of resource j under strategies s.

Theorem [Rosenthal 73]: Every congestion game is a potential game.

Proof idea: Verify that the following is a potential function for the congestion game:

Φ(s) =
∑

j∈∪si

( kj∑

k=1

cj(k)
)
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Network Games–II

• In the presence of heterogeneity in QoS requests, the resource allocation problem

becomes nonstandard

– Traditional network optimization techniques information intensive, rely on

tight closed-loop controls, and non-robust against dynamic changes

• Recent literature used game-theoretic models for resource allocation among

heterogeneous users in wireline and wireless networks

– User terminals: players competing for network resources

– Compatible with self-interested nature of users

– Leads to distributed control algorithms

• Utility-maximization framework of market economics, to provide different

access privileges to users with different QoS requirements in a distributed

manner [Kelly 97], [Kelly, Maulloo, Tan 98], [Low and Lapsley 99], [Srikant 04]

– Each user (or equivalently application) represented by a utility function that

is a measure of his preferences over transmission rates.

• For wireless network games: Negative externality due to interference effects
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Wireless Games

• Most focus on infrastructure networks, where users transmit to a common

concentration point (base station in a cellular network or access point)

• Actions: Transmit power, transmission rate, modulation scheme, multi-user

receiver, carrier allocation strategy etc.

• Utilities: Received signal-to-interference-noise ratio (SINR) measure of quality

of signal reception for the wireless user:

γi =
pihi

σ2 +
∑

j 6=i pjhj
,

where σ2 is the noise variance (assuming an additive white Gaussian noise

channel), and hi is the channel gain from mobile i to the base station.
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Examples of Utility Functions

• Spectral Efficiency [Alpcan, Basar, Srikant, Altman 02], [Gunturi, Paganini 03]

ui = ξi log(1 + γi)−cipi,

where ξi is a user dependent constant and ci is the price per unit power.

• Energy Efficiency [Goodman, Mandayam 00]

ui =
Throughput

power
=

Rif(γi)

pi
bits/joule,

where Ri is the transmission rate for user i and f(·) is an efficiency function

that represents packet success rate (assuming packet retransmission if one or

more bit errors)

– f(γ) depends on details of transmission: modulation, coding, packet size

– Examples: f(γ) = (1− 2Q(
√

2γ))M (BPSK modulation), (where M is the

packet size, and Q(· is the complementary cumulative distribution function of

a standard normal random variable), f(γ) = (1− e−γ/2) (FSK modulation)

– In most practical cases, f(γ) is strictly increasing and has a sigmoidal shape.
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Wireless Power Control Game

• Power control in cellular CDMA wireless networks

• It has been recognized that in the presence of interference, the strategic

interactions between the users is that of strategic complementarities [Saraydar,

Mandayam, Goodman 02], [Altman and Altman 03]

Model:

• Let L = {1, 2, ..., n} denote the set of users (nodes) and

P =
∏
i∈L

[P min
i , P max

i ] ⊂ Rn

denote the set of power vectors p = [p1, . . . , pn].

• Each user is endowed with a utility function fi(γi) as a function of its SINR γi.

• The payoff function of each user represents a tradeoff between the payoff

obtained by the received SINR and the power expenditure, and takes the form

ui(pi, p−i) = fi(γi)− cpi.
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Increasing Differences

• Assume that each utility function satisfies the following assumption regarding its

coefficient of relative risk aversion:

−γif
′′
i (γi)

f ′i(γi)
≥ 1, for all γi ≥ 0.

– Satisfied by α-fair functions f(γ) = γ1−α

1−α
, α > 1 [Mo, Walrand 00], and the

efficiency functions introduced earlier

• Show that for all i = 1 . . . , n, the function ui(pi, p−i) has increasing differences

in (pi, p−i).

Implications:

• Power control game has a pure Nash equilibrium.

• The Nash equilibrium set has a largest and a smallest element, and there are

distributed algorithms that will converge to any of these equilibria.

• These algorithms involve each user updating their power level locally (based on

total received power at the base station).
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Extensions–I

• Distributed multi-user power control in digital subscriber lines [Yu, Ginis,

Cioffi 02], [Luo, Pang 06]

– Model as a Gaussian parallel interference channel

– Each user chooses its power spectral density to maximize rate subject to a

power budget

– Existence of a Nash equilibrium (due to concavity)

– Best-response dynamics leads to a distributed iterative water filling

algorithm, where each user optimizes its power spectrum treating other

users’ interference as noise

– Convergence analysis by [Luo, Pang 06] based on Linear Complementarity

Problem Formulation

• Power control in CDMA-based networks (no fading)

– Single and multi-cell [Saraydar, Mandayam, and Goodman 02], [Alpcan,

Basar, Srikant and Altman 02]

– Joint power control-receiver design [Meshkati, Poor, Schwartz, Mandayam

05]

– Adaptive modulation and delay constraints [Meshkati, Goldsmith, Poor,

Schwartz 07]
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Extensions–II

• Distributed control in collision channels

– Aloha-like framework [Altman, El-Azouzi, Jimenez 04], [Inaltekin, Wicker 06]

– Single packet perspective [MacKenzie, Wicker 03], [Fiat, Mansour, Nadav 07]

– Rate-based equilibria [Jin, Kesidis 02], [Menache, Shimkin 07]

• Power control and transmission scheduling in wireless fading channels

(“Water-Filling” Games)

– CDMA-like networks [Altman, Avrachenko, Miller, Prabhu 07], [Lai and

El-Gamal 08]

– Collision Channels [Menache, Shimkin 08], [Cho, Hwang, Tobagi 08]

• Jamming Games [Altman, Avrachenkov, Garnaev 07], [Gohary, Huang, Luo,

Pang 08]
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Extensions–III

Game Theory for Nonconvex Distributed Optimization:

• Distributed Power Control for Wireless Adhoc Networks [Huang,Berry,Honig 05]

– Two models: Single channel spread spectrum, Multi-channel orthogonal

frequency division multiplexing

– Asynchronous distributed algorithm for optimizing total network performance

– Convergence analysis in the presence of nonconvexities using supermodular

game theory

• Distributed Cooperative Control–“Constrained Consensus” [Marden, Arslan,

Shamma 07]

– Distributed algorithms to reach consensus in the “values of multiple agents”

(e.g. averaging and rendezvous problems)

– Nonconvex constraints in agent values

– Design a game (i.e., utility functions of players) such that

∗ The resulting game is a potential game and the Nash equilibrium

“coincides” with the social optimum

∗ Use learning dynamics for potential games to design distributed algorithms

with favorable convergence properties
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Network Design

• Sharing the cost of a designed network among participants [Anshelevich et al. 05]

Model:

• Directed graph N = (V, E) with edge cost

ce ≥ 0, k players

• Each player i has a set of nodes Ti he wants

to connect

• A strategy of player i set of edges Si ⊂ E

such that Si connects to all nodes in Ti

s

t1 t2 tk-1 tk…

1 1/2 1/(k-1) 1/k

1+

0 0 0 0

Optimum cost:  1+

Unique NE cost:

• Cost sharing mechanism: All players using an edge split the cost equally

• Given a vector of player’s strategies S = (S1, . . . , Sk), the cost to agent i is

Ci(S) =
∑

e∈Si
(ce/xe), where xe is the number of agents whose strategy

contains edge e
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Price of Stability for Network Design Game

• The price of anarchy can be arbitrarily bad.

– Consider k players with common source s and destination t, and two parallel

edges of cost 1 and k.

• We consider the worst performance of the best Nash equilibrium relative to the

system optimum.

– Price of Stability

Theorem: The network design game has a pure Nash equilibrium and the price of

stability is at most H(k) = 1 + 1
2

+ 1
3

+ · · ·+ 1
k
.

Proof idea: The game is a congestion game, implying existence of a pure Nash

equilibrium from [Rosenthal 73]. Use the potential function to establish the bound.

Extensions:

• Congestion effects

• More general cost-sharing mechanisms and their performance
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Concluding Remarks

• New emerging control paradigm for large-scale networked-systems based on

game theory and economic market mechanisms

• Many applications of decentralized network control

– Sensor networks, mobile ad hoc networks

– Large-scale data networks, Internet

– Transportation networks

– Power networks

• Future Challenges

– Models for understanding when local competition yields efficient outcomes

– Dynamics of agent interactions over large-scale networks

– Distributed algorithm design in the presence of incentives and network effects
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