NETWORKS' CHALLENGE: WHERE GAME THEORY MEETS NETWORK OPTIMIZATION

Asu Ozdaglar

International Symposium on Information Theory

July 2008

Department of Electrical Engineering & Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY, USA

Introduction

- Central Question in Today's and Future Networks:
 - Systematic analysis and design of network architectures and development of network control schemes
- **Traditional Network Optimization:** Single administrative domain with a single control objective and obedient users.
- New Challenges:
 - Large-scale with lack of access to centralized information and subject to unexpected disturbances
 - * **Implication**: Control policies have to be decentralized, scalable, and robust against dynamic changes
 - Interconnection of heterogeneous autonomous entities, so no central party with enforcement power or accurate information about user needs
 - * **Implication**: Selfish incentives and private information of users need to be incorporated into the control paradigm
 - Continuous upgrades and investments in new technologies
 - * **Implication**: Economic incentives of service and content providers much more paramount

Tools and Ideas for Analysis

- These challenges necessitate the analysis of resource allocation and data processing in the presence of decentralized information and heterogeneous selfish users and administrative domains
- Instead of a central control objective, model as a multi-agent decision problem: Game theory and economic market mechanisms
- Game Theory: Understand incentives of selfish autonomous agents and large players such as service and content providers
 - Utility-based framework of economics (represent user preferences by utility functions)
 - Decentralized equilibrium of a multi-agent system (does not require tight closed-loop explicit controls)
 - Mechanism Design Theory: Inverse game theory
 - * Design the system in a way that maintains decentralization, but provides appropriate incentives
- Large area of research at the intersection of Engineering, Computer Science, Economics, and Operations Research

Applications

• Wireless Communications

- Power control in CDMA networks
- Transmission scheduling in collision channels
- Routing in multi-hop relay networks
- Spectrum assignment in cognitive-radio networks

• Data Networks

- Selfish (source) routing in overlay networks, inter-domain routing
- Rate control using market-based mechanisms
- Online advertising on the Internet: Sponsored search auctions
- Network design and formation
- Pricing and investment incentives of service providers
- Other Networked-systems
 - Social Networks: Information evolution, learning dynamics, herding
 - Transportation Networks, Electricity Markets

This Tutorial

- Tools for Analysis Part I
 - Strategic and extensive form games
 - Solution concepts: Iterated strict dominance, Nash equilibrium, subgame perfect equilibrium
 - Existence and uniqueness results
- Network Games Part I
 - Selfish routing and Price of Anarchy
 - Service provider effects:
 - * Partially optimal routing
 - * Pricing and capacity investments
- Tools for Analysis Part II
 - Supermodular games and dynamics
 - Potential and congestion games
- Network Games Part II
 - Distributed power control algorithms
 - Network design

Motivating Example

Selfish Routing for Noncooperative Users

- For simplicity, no utility from flow, just congestion effects (inelastic demand)
- Each link described by a convex latency function $l_i(x_i)$ measuring costs of delay and congestion on link *i* as a function of link flow x_i .

- Traditional Network Optimization Approach:
 - Centralized control, single metric: e.g. minimize total delay
- Selfish Routing:
 - Allow end users to choose routes themselves: e.g. minimize own delay
 - * Applications: Transportation networks; Overlay networks
 - What is the right equilibrium notion?
 - * Nash Equilibrium: Each user plays a "best-response" to actions of others
 - * Wardrop Equilibrium: Nash equilibrium when "users infinitesimal"

Wardrop Equilibrium with Selfish Routing

• Consider the simple **Pigou example**:

- In centralized optimum, traffic split equally between two links.
 - Cost of optimal flow: $C_{\text{system}}(x^S) = \sum_i l_i(x_i^S) x_i^S = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}$
- In Wardrop equilibrium, cost equalized on paths with positive flow; all traffic goes through top link.
 - Cost of selfish routing: $C_{eq}(x^{WE}) = \sum_i l_i(x_i^{WE})x_i^{WE} = 1 + 0 = 1$
- Efficiency metric: Given latency functions $\{l_i\}$, we define the efficiency metric

$$\alpha = \frac{C_{\mathsf{system}}(x^S)}{C_{\mathsf{eq}}(x^{WE})}$$

• For the above example, we have $\alpha = \frac{3}{4}$.

Game Theory Primer–I

 A strategic (form) game is a model for a game in which all of the participants act simultaneously and without knowledge of other players' actions.

Definition (Strategic Game): A strategic game is a triplet $\langle \mathcal{I}, (S_i)_{i \in \mathcal{I}}, (u_i)_{i \in \mathcal{I}} \rangle$:

- \mathcal{I} is a finite set of players, $\mathcal{I} = \{1, \dots, I\}$.
- S_i is the set of available actions for player i
 - $s_i \in S_i$ is an action for player i
 - $s_{-i} = [s_j]_{j \neq i}$ is a vector of actions for all players except *i*.
 - $(s_i, s_{-i}) \in S$ is an action profile, or outcome.
 - $S = \prod_i S_i$ is the set of all action profiles
 - $S_{-i} = \prod_{j \neq i} S_j$ is the set of all action profiles for all players except i
- $u_i: S \to \mathbb{R}$ is the payoff (utility) function of player i
- For strategic games, we will use the terms **action** and **pure strategy** interchangeably.

Example–Finite Strategy Spaces

- When the strategy space is finite, and the number of players and actions is small, a game can be represented in matrix form.
- The cell indexed by row x and column y contains a pair, (a, b) where $a = u_1(x, y)$ and $b = u_2(x, y)$.
- **Example:** Matching Pennies.

	HEADS	TAILS
HEADS	-1, 1	1, -1
TAILS	1, -1	-1, 1

- This game represents pure conflict in the sense that one player's utility is the negative of the utility of the other player.
 - Zero-sum games: favorable structure for dynamics and computation of equilibria

Example–Infinite Strategy Spaces

- **Example:** Cournot competition.
 - Two firms producing the same good.
 - The action of a player *i* is a quantity, $s_i \in [0, \infty]$ (amount of good he produces).
 - The utility for each player is its total revenue minus its total cost,

$$u_i(s_1, s_2) = s_i p(s_1 + s_2) - cs_i$$

where p(q) is the price of the good (as a function of the total amount), and c is unit cost (same for both firms).

- Assume for simplicity that c = 1 and $p(q) = \max\{0, 2 q\}$
- Consider the best-response correspondences for each of the firms, i.e., for each *i*, the mapping B_i(s_{-i}) : S_{-i} → S_i such that

$$B_i(s_{-i}) \in \operatorname{argmax}_{s_i \in S_i} u_i(s_i, s_{-i}).$$

Example–Continued

tions as a function of s_1 and s_2 .

• Assuming that players are rational and fully knowledgable about the structure of the game and each other's rationality, what should the outcome of the game be?

Dominant Strategies

- **Example:** Prisoner's Dilemma.
 - Two people arrested for a crime, placed in separate rooms, and the authorities are trying to extract a confession.

	COOPERATE	Don't Cooperate
Cooperate	2,2	5,1
Don't Cooperate	1,5	4,4

- What will the outcome of this game be?
 - Regardless of what the other player does, playing "DC" is better for each player.
 - The action "DC" strictly dominates the action "C"
- Prisoner's dilemma paradigmatic example of a self-interested, rational behavior not leading to jointly (socially) optimal result.

Prisoner's Dilemma and ISP Routing Game

- Consider two Internet service providers that need to send traffic to each other
- Assume that the unit cost along a link (edge) is 1

• This situation can be modeled by the "Prisoner's Dilemma" payoff matrix

$$\begin{array}{c|c} C & DC \\ C & 2,2 & 5,1 \\ DC & 1,5 & 4,4 \end{array}$$

Dominated Strategies

Definition (Strictly Dominated Strategy): A strategy $s_i \in S_i$ is strictly dominated for player *i* if there exists some $s'_i \in S_i$ such that

$$u_i(s'_i, s_{-i}) > u_i(s_i, s_{-i})$$
 for all $s_{-i} \in S_{-i}$.

Definition (Weakly Dominated Strategy): A strategy $s_i \in S_i$ is weakly dominated for player *i* if there exists some $s'_i \in S_i$ such that

$$u_i(s'_i, s_{-i}) \ge u_i(s_i, s_{-i})$$
 for all $s_{-i} \in S_{-i}$,
 $u_i(s'_i, s_{-i}) > u_i(s_i, s_{-i})$ for some $s_{-i} \in S_{-i}$.

- No player would play a strictly dominated strategy
- Common knowledge of payoffs and rationality results in **iterative elimination of** strictly dominated strategies

Example: Iterated Elimination of Strictly Dominated Strategies.

	LEFT	MIDDLE	Right
Up	4,3	5,1	6,2
MIDDLE	2,1	8,4	3, 6
Down	3,0	9,6	2,8

Revisiting Cournot Competition

• Apply iterated strict dominance to Cournot model to predict the outcome

- One round of elimination yields $S_1^1 = [0, 1/2]$, $S_2^1 = [0, 1/2]$
- Second round of elimination yields $S_1^1 = [1/4, 1/2]$, $S_2^1 = [1/4, 1/2]$
- It can be shown that the endpoints of the intervals converge to the intersection
- Most games not solvable by iterated strict dominance, need a stronger equilibrium notion

Pure Strategy Nash Equilibrium

Definition (Nash equilibrium): A (pure strategy) Nash Equilibrium of a strategic game $\langle \mathcal{I}, (S_i)_{i \in \mathcal{I}}, (u_i)_{i \in \mathcal{I}} \rangle$ is a strategy profile $s^* \in S$ such that for all $i \in \mathcal{I}$

 $u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*)$ for all $s_i \in S_i$.

- No player can profitably deviate given the strategies of the other players
- Why should one expect Nash equilibrium to arise?
 - Introspection
 - Self-enforcing
 - Learning or evolution
- Recall the best-response correspondence $B_i(s_{-i})$ of player *i*,

$$B_i(s_{-i}) \in \arg \max_{s_i \in S_i} u_i(s_i, s_{-i}).$$

• An action profile \boldsymbol{s}^* is a Nash equilibrium if and only if

$$s_i^* \in B_i(s_{-i}^*)$$
 for all $i \in \mathcal{I}$.

• Question: When iterated strict dominance yields a unique strategy profile, is this a Nash equilibrium?

Examples

Example: Battle of the Sexes (players wish to coordinate but have conflicting interests)

	BALLET	Soccer
Ballet	2,1	0,0
Soccer	0,0	1, 2

• Two Nash equilibria, (Ballet, Ballet) and (Soccer, Soccer).

Example: Matching Pennies.

	HEADS	TAILS
HEADS	1, -1	-1, 1
TAILS	-1, 1	1, -1

Matching Pennies

- No pure Nash equilibrium
- There exists a "stochastic steady state", in which each player chooses each of her actions with 1/2 probability ⇒ Mixed strategies

Mixed Strategies and Mixed Strategy Nash Equilibrium

- Let Σ_i denote the set of probability measures over the pure strategy (action) set S_i.
- We use $\sigma_i \in \Sigma_i$ to denote the mixed strategy of player *i*, and $\sigma \in \Sigma = \prod_{i \in \mathcal{I}} \Sigma_i$ to denote a mixed strategy profile.
- Note that this implicitly assumes that **players randomize independently**.
- We similarly define $\sigma_{-i} \in \Sigma_{-i} = \prod_{j \neq i} \Sigma_j$.
- Following Von Neumann-Morgenstern expected utility theory, we extend the payoff functions u_i from S to Σ by

$$u_i(\sigma) = \int_S u_i(s) d\sigma(s).$$

Definition (Mixed Nash Equilibrium): A mixed strategy profile σ^* is a (mixed strategy) Nash Equilibrium if for each player *i*,

$$u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i, \sigma_{-i}^*)$$
 for all $\sigma_i \in \Sigma_i$.

• Note that it is sufficient to check pure strategy deviations, i.e., σ^* is a mixed Nash equilibrium if and only if for all i,

$$u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(s_i, \sigma_{-i}^*)$$
 for all $s_i \in S_i$.

Characterization of Mixed Strategy Nash Equilibria

Lemma: Let $G = \langle \mathcal{I}, (S_i)_{i \in \mathcal{I}}, (u_i)_{i \in \mathcal{I}} \rangle$ be a finite strategic game. Then, $\sigma^* \in \Sigma$ is a Nash equilibrium if and only if for each player $i \in \mathcal{I}$, every pure strategy in the support of σ_i^* is a best response to σ_{-i}^* .

- It follows that every action in the support of any player's equilibrium mixed strategy yields the same payoff.
- The characterization result extends to infinite games: $\sigma^* \in \Sigma$ is a Nash equilibrium if and only if for each player $i \in \mathcal{I}$,
 - (i) no action in S_i yields, given σ_{-i}^* , a payoff that exceeds his equilibrium payoff,
 - (ii) the set of actions that yields, given σ_{-i}^* , a payoff less than his equilibrium payoff has σ_i^* -measure zero.
- **Example:** Recall Battle of the Sexes Game.

	BALLET	SOCCER
BALLET	2,1	0,0
Soccer	0,0	1, 2

This game has two pure Nash equilibria and a mixed Nash equilibrium $\left(\left(\frac{2}{3},\frac{1}{3}\right),\left(\frac{1}{3},\frac{2}{3}\right)\right)$.

Existence of Nash Equilibria –I

Theorem [Nash 50]: Every finite game has a mixed strategy Nash equilibrium. *Proof Outline:*

• σ^* mixed Nash equilibrium if and only if $\sigma^*_i \in B_i(\sigma^*_{-i})$ for all $i \in \mathcal{I}$, where

$$B_i(\sigma_{-i}^*) \in \arg \max_{\sigma_i \in \Sigma_i} u_i(\sigma_i, \sigma_{-i}^*).$$

- This can be written compactly as $\sigma^* \in B(\sigma^*)$, where $B(\sigma) = [B_i(\sigma_{-i})]_{i \in \mathcal{I}}$, i.e., σ^* is a fixed point of the best-response correspondence.
- Use Kakutani's fixed point theorem to establish the existence of a fixed point.

Linearity of expectation in probabilities play a key role; extends to (quasi)-concave payoffs in infinite games

Theorem [Debreu, Glicksberg, Fan 52]: Assume that the S_i are nonempty compact convex subsets of an Euclidean space. Assume that the payoff functions $u_i(s_i, s_{-i})$ are quasi-concave in s_i and continuous in s, then there exists a pure strategy Nash equilibrium.

Existence of Nash Equilibria –II

- Can we relax quasi-concavity?
- Example: Consider the game where two players pick a location s₁, s₂ ∈ ℝ² on the circle. The payoffs are u₁(s₁, s₂) = -u₂(s₁, s₂) = d(s₁, s₂), where d(s₁, s₂) denotes the Euclidean distance between s₁, s₂ ∈ ℝ².
 - No pure Nash equilibrium.
 - The profile where both mix uniformly on the circle is a mixed Nash equilibrium.

Theorem [Glicksberg 52]: Every continuous game has a mixed strategy Nash equilibrium.

- Existence results for discontinuous games! [Dasgupta and Maskin 86]
- Particularly relevant for price competition models.

Uniqueness of Pure Nash Equilibrium in Infinite Games

- Concavity of payoffs $u_i(s_i, s_{-i})$ in s_i not sufficient to establish uniqueness
- Assume that $S_i \subset \mathbb{R}^{m_i}$. We use the notation:

$$\nabla_i u(x) = \left[\frac{\partial u(x)}{\partial x_i^1}, \dots, \frac{\partial u(x)}{\partial x_i^{m_i}}\right]^T, \qquad \nabla u(x) = \left[\nabla_1 u_1(x), \dots, \nabla_I u_I(x)\right]^T.$$

Definition: We say that the payoff functions (u_1, \ldots, u_I) are *diagonally strictly* concave for $x \in S$, if for every $x^*, \bar{x} \in S$, we have

$$(\bar{x} - x^*)^T \nabla u(x^*) + (x^* - \bar{x})^T \nabla u(\bar{x}) > 0.$$

- Let U(x) denote the Jacobian of $\nabla u(x)$, i.e., for $m_i = 1$, $[U(x)]_{ij} = \frac{\partial^2 u_i(x)}{\partial x_j x_i}$
- A sufficient condition for diagonal strict concavity is that the symmetric matrix (U(x) + (U^T(x))) is negative definite for all x ∈ S.

Theorem [Rosen 65]: Assume that the payoff functions (u_1, \ldots, u_I) are diagonally strictly concave for $x \in S$. Then the game has a unique pure strategy Nash equilibrium.

Extensive Form Games

- Extensive-form games model multi-agent sequential decision making.
- Our focus is on multi-stage games with observed actions

Example:

- Player 1's strategies: $s_1: H^0 = \emptyset \to S_1$; two possible strategies: C,D
- Player 2's strategies: $s^2: H^1 = \{C, D\} \rightarrow S_2$; four possible strategies: EG,EH,FG, FH

Subgame Perfect Equilibrium

• Equivalent strategic form representation

	Accommodate	Fight	
In	2,1	0,0	
Jut	1,2	1,2	

- Two pure Nash equilibria: (In,A) and (Out,F)
- The equilibrium (Out,F) is sustained by a **noncredible threat** of the monopolist
- Equilibrium notion for extensive form games: Subgame Perfect (Nash)
 Equilibrium
 - Requires each player's strategy to be "optimal" not only at the start of the game, but also after every history
 - For finite horizon games, found by backward induction
 - For infinite horizon games, characterization in terms of one-stage deviation principle

Revisit Routing Models

- Directed network N = (V, E)
- Origin-destination pairs (s_j, t_j) , $j = 1, \ldots, k$ with rate r_j
- \mathcal{P}_j denotes the set of paths between s_j and t_j ; $\mathcal{P} = \cup_j \mathcal{P}_j$
- x_p denotes the flow on path $p \in \mathcal{P}$ (can be non-integral)
- Each link $i \in E$ has a latency function $l_i(x_i)$, which captures congestion effects $(x_i = \sum_{\{p \in \mathcal{P} | i \in p\}} x_p)$
 - Assume $l_i(x_i)$ nonnegative, differentiable, and nondecreasing

- We call the tuple $R = (V, E, (s_j, t_j, r_j)_{j=1,...,k}, (l_i)_{i \in E})$ a routing instance
- The total latency cost of a flow x is: $C(x) = \sum_{i \in E} x_i l_i(x_i)$

Socially Optimal Routing

Given a routing instance $R = (V, E, (s_j, t_j, r_j), (l_i))$:

• We define the social optimum $x^{S}, \mbox{ as the optimal solution of the multicommodity min-cost flow problem$

$$\begin{array}{ll} \text{minimize} & \sum_{i \in E} x_i l_i(x_i) \\ \text{subject to} & \sum_{\{p \in \mathcal{P} | i \in p\}} x_p = x_i, \ i \in E, \\ & \sum_{p \in \mathcal{P}_j} x_p = r_j, \ j = 1, \dots, k, \quad x_p \ge 0, \ p \in \mathcal{P}. \end{array}$$

• We refer to a feasible solution of this problem as a **feasible flow**.

Wardrop (User) Equilibrium

• When traffic routes "selfishly," all nonzero flow paths must have equal latency.

– **Nonatomic users** \Rightarrow Aggregate flow of many "small" users.

Definition: A feasible flow is a Wardrop equilibrium x^{WE} if

$$\sum_{i \in p_1} l_i(x_i) \le \sum_{i \in p_2} l_i(x_i), \quad \text{for all } p_1, p_2 \in \mathcal{P} \text{ with } x_{p_1} > 0.$$

• A feasible flow is a Wardrop equilibrium x^{WE} iff it is an optimal solution of

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{i \in E} \int_{0}^{x_{i}} l_{i}(z) \ dz \\ \text{subject to} & \displaystyle \sum_{\{p \in \mathcal{P} | i \in p\}} x_{p} = x_{i}, \ i \in E, \\ & \displaystyle \sum_{p \in \mathcal{P}_{j}} x_{p} = r_{j}, \ j = 1, \dots, k, \quad x_{p} \geq 0, \ p \in \mathcal{P}. \end{array}$$

- Existence and "essential" uniqueness of a Wardrop equilibrium follows from the previous optimization formulation [Beckmann, McGuire, Winsten 56]
- A feasible flow x^{WE} is a Wardrop equilibrium iff [Smith 79]

$$\sum_{i \in E} l_i(x_i^{WE})(x_i^{WE} - x_i) \le 0, \quad \text{for all feasible } x.$$

Recall Pigou Example

- In social optimum, traffic split equally between two links.
 - Cost of optimal flow: $C(x^S) = \sum_i l_i(x_i^S) x_i^S = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}$
- In Wardrop equilibrium, cost equalized on paths with positive flow; all traffic goes through top link.
 - Cost of selfish routing: $C(x^{WE}) = \sum_i l_i(x_i^{WE})x_i^{WE} = 1 + 0 = 1$
- Efficiency metric: Given the routing instance R, we define the efficiency metric

$$\alpha(R) = \frac{C(x^S(R))}{C(x^{WE}(R))}$$

• For the above example, we have $\alpha(R) = \frac{3}{4}$.

Selfish Routing and Price of Anarchy

- Let \mathcal{R}' denote the set of all routing instances.
- Worst case efficiency over all instances: $\inf_{R \in \mathcal{R}'} \frac{C(x^{S}(R))}{C(x^{WE}(R))}$
 - Price of Anarchy: Measure of lack of centralized coordination [Koutsoupias, Papadimitriou 99]

Theorem : [Roughgarden, Tardos 02] Let $\mathcal{R}^{aff}(\mathcal{R}^{conv})$ denote routing instances with affine (convex) latency functions.

(a) Let $R \in \mathcal{R}^{aff}$. Then,

$$\frac{C(x^S(R))}{C(x^{WE}(R))} \ge \frac{3}{4}.$$

Furthermore, the bound above is tight.

(b)

$$\inf_{R \in \mathcal{R}^{conv}} \frac{C(x^S(R))}{C(x^{WE}(R))} = 0.$$

- Bounds for capacitated networks and polynomial latency functions [Correa, Schulz, Stier-Moses 03, 05]
- Genericity analysis [Friedman 04], [Qiu et al. 03]
 - Likely outcomes rather than worst cases

Further Paradoxes of Decentralized Equilibrium: Braess' Paradox

• Idea: Addition of an intuitively helpful link negatively impacts network users

- Introduced in transportation networks [Braess 68], [Dafermos, Nagurney 84]
 - Studied in the context of communication networks, distributed computing, queueing networks [Altman et al. 03]
- Motivated research in methods of upgrading networks without degrading network performance
 - Leads to limited methods under various assumptions.

Selfish Routing

- Is this the right framework for thinking about network routing?
- No, for 2 reasons:
 - It ignores providers' role in routing traffic
 - It ignores providers' pricing and profit incentives

New Routing Paradigm for Noncooperative Users and Providers

- Most large-scale networks, such as Internet, consist of interconnected administrative domains that control traffic within their networks.
- Obvious conflicting interests as a result:
 - Users care about end-to-end performance.
 - Individual network providers optimize their own objectives.
- The study of routing patterns and performance requires an analysis of **Partially Optimal Routing (POR)**: [Acemoglu, Johari, Ozdaglar 06]
 - End-to-end route selection selfish
 - * Transmission follows minimum latency route for each source.
 - Network providers route traffic within their own network to achieve minimum intradomain latency.

Partially Optimal Routing

- Consider a subnetwork inside of N, denoted $N_0 = (V_0, E_0)$.
- Assume first that N₀ has a unique entry and exit point, denoted by s₀ ∈ V₀ and t₀ ∈ V₀. P₀ denotes paths from s₀ to t₀.
- We call $R_0 = (V_0, E_0, s_0, t_0)$ a subnetwork of $N : R_0 \subset R$.
- Given an incoming amount of flow X₀, the network operator chooses the routing by:

$$\begin{split} L(X_0) &= \text{minimize} \qquad \sum_{i \in E_0} x_i l_i(x_i) \\ &\text{subject to} \qquad \sum_{\{p \in P_0 | i \in p\}} x_p = x_i, \ i \in E_0, \\ &\sum_{p \in \mathcal{P}_0} x_p = X_0, \qquad x_p \ge 0, \ p \in \mathcal{P}_0 \end{split}$$

• Define $l_0(X_0) = L(X_0)/X_0$ as the effective latency of POR in the subnetwork R_0 .

POR Flows

• Given a routing instance $R = (V, E, (s_j, t_j, r_j), (l_i))$, and a subnetwork $R_0 = (V_0, E_0, s_0, t_0)$ defined as above, we define a new routing instance $R' = (V', E', (s_j, t_j, r_j), (l'_i))$ as follows:

$$V' = (V \setminus V_0) \bigcup \{s_0, t_0\};$$
$$E' = (E \setminus E_0) \bigcup \{(s_0, t_0)\};$$

- $(l'_i) = \{l_i\}_{i \in E \setminus E_0} \bigcup \{l_0\}.$
- We refer to R' as the equivalent POR instance for R with respect to R_0 .
- The overall network flow in R with partially optimal routing in R_0 , $x^{POR}(R, R_0)$, is defined as:

$$x^{POR}(R, R_0) = x^{WE}(R').$$

Price of Anarchy for Partially Optimal Routing

• Let $\mathcal{R}^{aff}(\mathcal{R}^{conv})$ denote routing instances with affine (convex) latency functions.

Proposition: Let \mathcal{R}' denote set of all routing instances.

$$\inf_{\substack{R \in \mathcal{R}' \\ R_0 \subset R}} \frac{C(x^S(R))}{C(x^{POR}(R,R_0))} \leq \inf_{R \in \mathcal{R}'} \frac{C(x^S(R))}{C(x^{WE}(R))}.$$

$$\inf_{\substack{R \in \mathcal{R}^{aff} \\ R_0 \subset R}} \frac{C(x^S(R))}{C(x^{POR}(R,R_0))} \geq \inf_{R \in \mathcal{R}^{conc}} \frac{C(x^S(R))}{C(x^{WE}(R))}.$$

Theorem:

(a)

$$\inf_{\substack{R \in \mathcal{R}^{conv}\\R_0 \subset R}} \frac{C(x^S(R))}{C(x^{POR}(R,R_0))} = 0.$$

(b) Consider a routing instance R where l_i is an affine latency function for all $i \in E$; and a subnetwork R_0 of R.

$$\frac{C(x^S(R))}{C(x^{POR}(R,R_0))} \ge \frac{3}{4}$$

Furthermore, the bound above is tight.

Price of Anarchy for Partially Optimal Routing

Proof of part (b): The proof relies on the following two results:

Lemma: Assume that the latency functions l_i of all the links in the subnetwork are nonnegative affine functions. Then, the effective latency of POR, $l_0(X_0)$, is a nonnegative concave function of X_0 .

Proposition: Let $R \in \mathcal{R}^{conc}$ be a routing instance where all latency functions are concave.

$$\frac{C(x^S(R))}{C(x^{WE}(R))} \ge \frac{3}{4}.$$

Furthermore, this bound is tight.

Price of Anarchy for Partially Optimal Routing

Proof of Proposition: From the variational inequality representation of WE, for all feasible x, we have

$$C(x^{WE}) = \sum_{j \in E} x_j^{WE} l_j(x_j^{WE}) \le \sum_{j \in E} x_j l_j(x_j^{WE})$$
$$= \sum_{j \in E} x_j l_j(x_j) + \sum_{j \in E} x_j (l_j(x_j^{WE}) - l_j(x_j)).$$

For all feasible x, we have

$$x_j(l_j(x_j^{WE}) - l_j(x_j)) \le \frac{1}{4} x_j^{WE} l_j(x_j^{WE})$$

- For subnetworks with multiple entry-exit points, even for linear latencies, efficiency loss of POR can be arbitrarily high.
- Need for regulation and pricing!

Congestion and Provider Price Competition

- If a network planner can charge appropriate prices (taxes), system optimal solution can be decentralized even with selfish routing.
- Where do **prices** come from?
 - In newly-emerging large-scale networks, for-profit entities charge prices
 - Efficiency implications of profit-maximizing prices

- Users have a reservation utility R and do not send their flow if the effective cost exceeds the reservation utility.
- Each link owned by a different service provider: charges a price p_i per unit bandwidth on link *i* (extends to arbitrary market structure).

Wardrop Equilibrium

• Assume $l_i(x_i)$: convex, continuously differentiable, nondecreasing.

Wardrop's principle: Flows routed along paths with minimum *"effective cost"*. **Definition:** Given $p \ge 0$, x^* is a *Wardrop Equilibrium* (WE) if

$$\begin{split} l_i(x_i^*) + p_i &= \min_j \{l_j(x_j^*) + p_j\}, \quad \text{ for all } i \text{ with } x_i^* > 0, \\ l_i(x_i^*) + p_i &\leq R, \quad \text{ for all } i \text{ with } x_i^* > 0, \\ \text{and } \sum_{i \in \mathcal{I}} x_i^* \leq d, \text{ with } \sum_{i \in \mathcal{I}} x_i^* = d \text{ if } \min_j \{l_j(x_j) + p_j\} < R. \end{split}$$

We denote the set of WE at a given p by W(p).

- For any $p \ge 0$, the set W(p) is nonempty.
- If l_i strictly increasing, W(p) is a singleton and a continuous function of p.

Social Problem and Optimum

Definition: A flow vector x^S is a *social optimum* if it is an optimal solution of the *social problem*

maximize
$$\sum_{\substack{x \ge 0 \\ \sum_{i \in \mathcal{I}} x_i \le d}} \sum_{i \in \mathcal{I}} (R - l_i(x_i)) x_i,$$

• It follows from the Karush-Kuhn-Tucker optimality conditions that $x^S \in \mathbb{R}^I_+$ is a social optimum iff

$$\begin{split} l_{i}(x_{i}^{S}) + x_{i}^{S}l_{i}'(x_{i}^{S}) &= \min_{j \in \mathcal{I}} \{ l_{j}(x_{j}^{S}) + x_{j}^{S}l_{j}'(x_{j}^{S}) \}, \qquad \forall \ i \text{ with } x_{i}^{S} > 0, \\ l_{i}(x_{i}^{S}) + x_{i}^{S}l_{i}'(x_{i}^{S}) &\leq R, \qquad \forall \ i \text{ with } x_{i}^{S} > 0, \end{split}$$

 $\sum_{i \in \mathcal{I}} x_i^S \leq d, \text{ with } \sum_{i \in \mathcal{I}} x_i^S = d \text{ if } \min_j \{ l_j(x_j^S) + x_j^S l_j'(x_j^S) \} < R.$

• $(l_i)'(x_i^S)x_i^S$: Marginal congestion cost, Pigovian tax.

Oligopoly Equilibrium

• Given the prices of other providers $p_{-i} = [p^j]_{j \neq i}$, SP *i* sets p_i to maximize his profit

$$\Pi_i(p_i, p_{-i}, x) = p_i x_i,$$

where $x \in W(p_i, p_{-i})$.

• We refer to the game among SPs as the *price competition game*.

Definition: A vector $(p^{OE}, x^{OE}) \ge 0$ is a (pure strategy) Oligopoly Equilibrium (OE) if $x^{OE} \in W(p_i^{OE}, p_{-i}^{OE})$ and for all $i \in \mathcal{I}$,

 $\Pi_i(p_i^{OE}, p_{-i}^{OE}, x^{OE}) \ge \Pi_i(p_i, p_{-i}^{OE}, x), \qquad \forall \ p_i \ge 0, \ \forall \ x \in W(p_i, p_{-i}^{OE}).$ (1)

We refer to p^{OE} as the *OE price*.

• Equivalent to the subgame perfect equilibrium notion.

Example

- Social Optimum: $x_1^S = 2/3$, $x_2^S = 1/3$
- WE: $x_1^{WE} = 0.73 > x_1^S$, $x_2^{WE} = 0.27$
- Single Provider: $x_1^{ME} = 2/3$, $x_2^{ME} = 1/3$
- Multiple Providers: $x_1^{OE} = 0.58$, $x_2^{OE} = 0.42$
 - The monopolist internalizes the congestion externalities.
 - Increasing competition decreases efficiency!
 - There is an additional source of "differential power" in the oligopoly case that distorts the flow pattern.

Existence and Price Characterization

Proposition: Assume that the latency functions are linear. Then the price competition game has a (pure strategy) OE.

- Existence of a mixed strategy equilibrium can be established for arbitrary convex latency functions.
- Oligopoly Prices: Let (p^{OE}, x^{OE}) be an OE. Then,

$$p_i^{OE} = (l_i)'(x_i^{OE})x_i^{OE} + \frac{\sum_{j \in \mathcal{I}_s} x_j^{OE}}{\sum_{j \notin \mathcal{I}_s} \frac{1}{l'_j(x_j^{OE})}}$$

• In particular, for two links, the OE prices are given by

 $p_i^{OE} = x_i^{OE}(l_1'(x_1^{OE}) + l_2'(x_2^{OE})).$

- Increase in price over the marginal congestion cost.

Efficiency Bound for Parallel Links

• Recall our efficiency metric: Given a set of latency functions $\{l_i\}$ and an equilibrium flow x^{OE} , we define the efficiency metric as

$$\alpha(\{l_i\}, x^{OE}) = \frac{R \sum_{i=1}^{I} x_i^{OE} - \sum_{i=1}^{I} l_i (x_i^{OE}) x_i^{OE}}{R \sum_{i=1}^{I} x_i^S - \sum_{i=1}^{I} l_i (x_i^S) x_i^S}$$

Theorem [Acemoglu, Ozdaglar 05]: Consider a parallel link network with inelastic traffic. Then

$$\alpha(\{l_i\}, x^{OE}) \ge \frac{5}{6}, \quad \forall \; \{l_i\}_{i \in \mathcal{I}}, \; x^{OE},$$

and the bound is tight irrespective of the number of links and market structure. *Proof Idea*:

- Lower bound the infinite dimensional optimization problem by a finite dimensional problem.
- Use the special structure of parallel links to analytically solve the optimization problem.

Contrasts (superficially) with the intuition that with large number of oligopolists equilibrium close to competitive.

Extensions

- General network topologies [Acemoglu, Ozdaglar 06], [Chawla, Roughgarden 08]
 - With serial provider competition, efficiency can be worse.
 - Bounds under additional assumptions on network and demand structure
 - Regulation and cooperation may be necessary
- Elastic traffic: Routing and flow control [Hayrapetyan et al. 06], [Ozdaglar 06], [Musacchio and Wu 07]
- Models for investment and capacity upgrade decisions [Acemoglu, Bimpikis, Ozdaglar 07], [Weintraub, Johari, Van Roy 06]
- Atomic players: Users that control large portion of traffic (models coalitions) [Cominetti, Correa, Stier-Moses 06, 07], [Bimpikis, Ozdaglar 07]
- **Two-sided markets:** interactions of content providers, users, and service providers [Musacchio, Schwartz, Walrand 07]
- Are networks leading to worst case performance likely? (Genericity analysis)

Game Theory Primer–II

- Convexity often fails in many game-theoretic situations, including wireless network games
- Are there any other structures that we can exploit in games for:
 - analysis of equilibria
 - design of distributed dynamics that lead to equilibria
- Games with special structure
 - Supermodular Games
 - Potential Games

Supermodular Games

- Supermodular games are those characterized by strategic complementarities
- Informally, this means that the marginal utility of increasing a player's strategy raises with increases in the other players' strategies.
 - Implication \Rightarrow best response of a player is a nondecreasing function of other players' strategies
- Why interesting?
 - They arise in many models.
 - Existence of a pure strategy equilibrium without requiring the quasi-concavity of the payoff functions.
 - Many solution concepts yield the same predictions.
 - The equilibrium set has a smallest and a largest element.
 - They have nice sensitivity (or comparative statics) properties and behave well under a variety of distributed dynamic rules.

Monotonicity of Optimal Solutions

- The machinery needed to study supermodular games is lattice theory and monotonicity results in lattice programming
 - Methods used are **non-topological and they exploit order properties**
- We first study the monotonicity properties of optimal solutions of parametric optimization problems:

$$x(t) \in \arg \max_{x \in X} f(x, t),$$

where $f: X \times T \to \mathbb{R}$, $X \subset \mathbb{R}$, and T is some partially ordered set.

- We will focus on $T \subset \mathbb{R}^K$ with the usual **vector order**, i.e., for some $x, y \in T$, $x \ge y$ if and only if $x_i \ge y_i$ for all $i = 1, \ldots, k$.
- Theory extends to general lattices
- We are interested in conditions under which we can establish that x(t) is a nondecreasing function of t.

Increasing Differences

• Key property: Increasing differences

Definition: Let $X \subseteq \mathbb{R}$ and T be some partially ordered set. A function $f: X \times T \to \mathbb{R}$ has increasing differences in (x, t) if for all $x' \ge x$ and $t' \ge t$, we have

$$f(x',t') - f(x,t') \ge f(x',t) - f(x,t).$$

• incremental gain to choosing a higher x (i.e., x' rather than x) is greater when t is higher, i.e., f(x',t) - f(x,t) is nondecreasing in t.

Lemma: Let $X \subseteq \mathbb{R}$ and $T \subset \mathbb{R}^k$ for some k, a partially ordered set with the usual vector order. Let $f: X \times T \to \mathbb{R}$ be a twice continuously differentiable function. Then, the following statements are equivalent:

- (a) The function f has increasing differences in (x, t).
- (b) For all $t' \ge t$ and all $x \in X$, we have

$$\frac{\partial f(x,t')}{\partial x} \ge \frac{\partial f(x,t)}{\partial x}$$

(c) For all $x \in X$, $t \in T$, and all $i = 1, \ldots, k$, we have

$$\frac{\partial^2 f(x,t)}{\partial x \partial t_i} \ge 0.$$

Examples-I

Example: Network effects (positive externalities).

- A set \mathcal{I} of users can use one of two technologies X and Y (e.g., Blu-ray and HD DVD)
- $B_i(J,k)$ denotes payoff to i when a subset J of users use technology k and $i \in J$
- There exists a network effect or positive externality if

 $B_i(J,k) \leq B_i(J',k),$ when $J \subset J'$,

i.e., player i better off if more users use the same technology as him.

- Leads naturally to a strategic form game with actions $S_i = \{X, Y\}$
- Define the order $Y \succeq X$, which induces a lattice structure
- Given $s \in S$, let $X(s) = \{i \in \mathcal{I} \mid s_i = X\}$, $Y(s) = \{i \in \mathcal{I} \mid s_i = Y\}$.
- Define the payoffs as

$$u_i(s_i, s_{-i}) = \begin{cases} B_i(X(s), X) & \text{if } s_i = X, \\ B_i(Y(s), Y) & \text{if } s_i = Y \end{cases}$$

• Show that the payoff functions of this game feature increasing differences.

Examples –II

Example: Cournot duopoly model.

- Two firms choose the quantity they produce $q_i \in [0, \infty)$.
- Let P(Q) with Q = q_i + q_j denote the inverse demand (price) function. Payoff function of each firm is u_i(q_i, q_j) = q_iP(q_i + q_j) − cq_i.
- Assume $P'(Q) + q_i P''(Q) \le 0$ (firm *i*'s marginal revenue decreasing in q_j).
- Show that the payoff functions of the transformed game defined by $s_1 = q_1$, $s_2 = -q_2$ has increasing differences in (s_1, s_2) .

Monotonicity of Optimal Solutions

Theorem [Topkis 79]: Let $X \subset \mathbb{R}$ be a compact set and T be some partially ordered set. Assume that the function $f: X \times T \to \mathbb{R}$ is upper semicontinuous in x for all $t \in T$ and has increasing differences in (x, t). Define $x(t) = \arg \max_{x \in X} f(x, t)$. Then, we have:

- 1. For all $t \in T$, x(t) is nonempty and has a greatest and least element, denoted by $\bar{x}(t)$ and $\underline{x}(t)$ respectively.
- 2. For all $t' \ge t$, we have $\bar{x}(t') \ge \bar{x}(t)$ and $\underline{x}(t') \ge \underline{x}(t)$.
- If f has increasing differences, the set of optimal solutions x(t) is non-decreasing in the sense that the largest and the smallest selections are non-decreasing.

Supermodular Games

Definition: The strategic game $\langle \mathcal{I}, (S_i), (u_i) \rangle$ is a supermodular game if for all *i*:

- 1. S_i is a compact subset of \mathbb{R} (or more generally S_i is a complete lattice in \mathbb{R}^{m_i}),
- 2. u_i is upper semicontinuous in s_i , continuous in s_{-i} ,
- 3. u_i has increasing differences in (s_i, s_{-i}) [or more generally u_i is supermodular in (s_i, s_{-i}) , which is an extension of the property of increasing differences to games with multi-dimensional strategy spaces].
- Apply Topkis' Theorem to best response correspondences

Corollary: Assume $\langle \mathcal{I}, (S_i), (u_i) \rangle$ is a supermodular game. Let

$$B_i(s_{-i}) = \arg \max_{s_i \in S_i} u_i(s_i, s_{-i}).$$

Then:

- 1. $B_i(s_{-i})$ has a greatest and least element, denoted by $\overline{B}_i(s_{-i})$ and $\underline{B}_i(s_{-i})$.
- 2. If $s'_{-i} \ge s_{-i}$, then $\overline{B}_i(s'_{-i}) \ge \overline{B}_i(s_{-i})$ and $\underline{B}_i(s'_{-i}) \ge \underline{B}_i(s_{-i})$.

Existence of a Pure Nash Equilibrium

• Follows from Tarski's fixed point theorem

Theorem [Tarski 55]: Let S be a compact sublattice of \mathbb{R}^k and $f: S \to S$ be an increasing function (i.e., $f(x) \leq f(y)$ if $x \leq y$). Then, the set of fixed points of f, denoted by E, is nonempty.

• Apply Tarski's fixed point theorem to best response correspondences

Main Result

• A different approach to understand the structure of Nash equilibria.

Theorem [Milgrom, Roberts 90]: Let $\langle \mathcal{I}, (S_i), (u_i) \rangle$ be a supermodular game. Then the set of strategies that survive iterated strict dominance (i.e., iterated elimination of strictly dominated strategies) has greatest and least elements \bar{s} and \underline{s} , which are both pure strategy Nash Equilibria.

Proof idea: Start from the largest or smallest strategy profile and iterate the best-response mapping.

Corollary: Supermodular games have the following properties:

- 1. Pure strategy NE exist.
- The largest and smallest strategies are compatible with iterated strict dominance (ISD), rationalizability, correlated equilibrium, and Nash equilibrium are the same.
- 3. If a supermodular game has a unique NE, it is dominance solvable (and lots of learning and adjustment rules converge to it, e.g., best-response dynamics).

Potential Games

Example: Cournot competition.

- n firms choose quantity $q_i \in (0,\infty)$
- The payoff function for player *i* given by $u_i(q_i, q_{-i}) = q_i(P(Q) c)$.
- We define the function $\Phi(q_1, \cdots, q_n) = q_1 \cdots q_n (P(Q) c)$
- Note that for all i and all q_{-i} ,

 $u_i(q_i, q_{-i}) - u_i(q'_i, q_{-i}) > 0$ iff $\Phi(q_i, q_{-i}) - \Phi(q'_i, q_{-i}) > 0$, for all $q_i, q'_i \in (0, \infty)$.

• Φ is an **ordinal potential function** for this game.

Example: Cournot competition.

- P(Q) = a bQ and arbitrary costs $c_i(q_i)$
- We define the function $\Phi^*(q_1, \cdots, q_n) = a \sum_{i=1}^n q_i - b \sum_{i=1}^n q_i^2 - b \sum_{1 \le i < l \le n}^n q_i q_l - \sum_{i=1}^n c_i(q_i).$
- It can be shown that for all i and all q_{-i} ,

 $u_i(q_i, q_{-i}) - u_i(q'_i, q_{-i}) = \Phi^*(q_i, q_{-i}) - \Phi^*(q_i, q'_{-i}), \text{ for all } q_i, q'_i \in (0, \infty).$

• Φ is an (exact) potential function for this game.

Potential Functions

Definition [Monderer and Shapley 96]:

(i) A function $\Phi: S \to \mathbb{R}$ is called an **ordinal potential function** for the game G if for all i and all $s_{-i} \in S_{-i}$,

 $u_i(x, s_{-i}) - u_i(z, s_{-i}) > 0$ iff $\Phi(x, s_{-i}) - \Phi(z, s_{-i}) > 0$, for all $x, z \in S_i$.

(ii) A function $\Phi: S \to \mathbb{R}$ is called a **potential function** for the game G if for all iand all $s_{-i} \in S_{-i}$,

$$u_i(x, s_{-i}) - u_i(z, s_{-i}) = \Phi(x, s_{-i}) - \Phi(z, s_{-i}), \text{ for all } x, z \in S_i.$$

G is called an ordinal (exact) potential game if it admits an ordinal (exact) potential. **Remarks:**

- A global maximum of an ordinal potential function is a pure Nash equilibrium (there may be other pure NE, which are local maxima)
 - Every finite ordinal potential game has a pure Nash equilibrium.
- Many learning dynamics (such as 1-sided better reply dynamics, fictitious play, spatial adaptive play) "converge" to a pure Nash equilibrium [Monderer and Shapley 96], [Young 98], [Marden, Arslan, Shamma 06, 07]

Congestion Games

- Congestion games arise when users need to share resources in order to complete certain tasks
 - For example, drivers share roads, each seeking a minimal cost path.
 - The cost of each road segment adversely affected by the number of other drivers using it.
- Congestion Model: $C = \langle N, M, (S_i)_{i \in N}, (c^j)_{j \in M} \rangle$ where
 - $N=\{1,2,\cdots,n\}$ is the set of players,
 - $M = \{1, 2, \cdots, m\}$ is the set of resources,
 - S_i consists of sets of resources (e.g., paths) that player i can take.
 - $c^{j}(k)$ is the cost to each user who uses resource j if k users are using it.
- Define congestion game $\langle N, (S_i), (u_i) \rangle$ with utilities $u_i(s_i, s_{-i}) = \sum_{j \in s_i} c^j(k_j)$, where k_j is the number of users of resource j under strategies s.

Theorem [Rosenthal 73]: Every congestion game is a potential game.

Proof idea: Verify that the following is a potential function for the congestion game:

$$\Phi(s) = \sum_{j \in \cup s_i} \left(\sum_{k=1}^{k_j} c^j(k) \right)$$

Network Games–II

- In the presence of heterogeneity in QoS requests, the resource allocation problem becomes nonstandard
 - Traditional network optimization techniques information intensive, rely on tight closed-loop controls, and non-robust against dynamic changes
- Recent literature used game-theoretic models for resource allocation among heterogeneous users in wireline and wireless networks
 - User terminals: players competing for network resources
 - Compatible with self-interested nature of users
 - Leads to distributed control algorithms
- Utility-maximization framework of market economics, to provide different access privileges to users with different QoS requirements in a distributed manner [Kelly 97], [Kelly, Maulloo, Tan 98], [Low and Lapsley 99], [Srikant 04]
 - Each user (or equivalently application) represented by a utility function that is a measure of his preferences over transmission rates.
- For wireless network games: Negative externality due to interference effects

Wireless Games

- Most focus on infrastructure networks, where users transmit to a common concentration point (base station in a cellular network or access point)
- Actions: Transmit power, transmission rate, modulation scheme, multi-user receiver, carrier allocation strategy etc.
- Utilities: Received signal-to-interference-noise ratio (SINR) measure of quality of signal reception for the wireless user:

$$\gamma_i = \frac{p_i h_i}{\sigma^2 + \sum_{j \neq i} p_j h_j},$$

where σ^2 is the noise variance (assuming an additive white Gaussian noise channel), and h_i is the channel gain from mobile *i* to the base station.

Examples of Utility Functions

• Spectral Efficiency [Alpcan, Basar, Srikant, Altman 02], [Gunturi, Paganini 03]

$$u_i = \xi_i \log(1 + \gamma_i) - c_i p_i,$$

where ξ_i is a user dependent constant and c_i is the price per unit power.

• Energy Efficiency [Goodman, Mandayam 00]

$$u_i = \frac{Throughput}{power} = \frac{R_i f(\gamma_i)}{p_i} \quad bits/joule,$$

where R_i is the transmission rate for user i and $f(\cdot)$ is an efficiency function that represents packet success rate (assuming packet retransmission if one or more bit errors)

- $f(\gamma)$ depends on details of transmission: modulation, coding, packet size
- **Examples**: $f(\gamma) = (1 2Q(\sqrt{2\gamma}))^M$ (BPSK modulation), (where M is the packet size, and $Q(\cdot)$ is the complementary cumulative distribution function of a standard normal random variable), $f(\gamma) = (1 e^{-\gamma/2})$ (FSK modulation)
- In most practical cases, $f(\gamma)$ is strictly increasing and has a sigmoidal shape.

Wireless Power Control Game

- Power control in cellular CDMA wireless networks
- It has been recognized that in the presence of interference, the strategic interactions between the users is that of strategic complementarities [Saraydar, Mandayam, Goodman 02], [Altman and Altman 03]

Model:

• Let $L = \{1, 2, ..., n\}$ denote the set of users (nodes) and

$$\mathcal{P} = \prod_{i \in L} [P_i^{\min}, P_i^{\max}] \subset \mathbb{R}^n$$

denote the set of power vectors $p = [p_1, \ldots, p_n]$.

- Each user is endowed with a utility function $f_i(\gamma_i)$ as a function of its SINR γ_i .
- The payoff function of each user represents a tradeoff between the payoff obtained by the received SINR and the power expenditure, and takes the form

$$u_i(p_i, p_{-i}) = f_i(\gamma_i) - cp_i.$$

Increasing Differences

 Assume that each utility function satisfies the following assumption regarding its coefficient of relative risk aversion:

$$\frac{-\gamma_i f_i''(\gamma_i)}{f_i'(\gamma_i)} \ge 1, \qquad \text{for all } \gamma_i \ge 0.$$

- Satisfied by α -fair functions $f(\gamma) = \frac{\gamma^{1-\alpha}}{1-\alpha}$, $\alpha > 1$ [Mo, Walrand 00], and the efficiency functions introduced earlier
- Show that for all i = 1..., n, the function u_i(p_i, p_{-i}) has increasing differences in (p_i, p_{-i}).

Implications:

- Power control game has a pure Nash equilibrium.
- The Nash equilibrium set has a largest and a smallest element, and there are **distributed algorithms** that will converge to any of these equilibria.
- These algorithms involve each user updating their power level locally (based on total received power at the base station).

Extensions-I

- Distributed multi-user power control in digital subscriber lines [Yu, Ginis, Cioffi 02], [Luo, Pang 06]
 - Model as a Gaussian parallel interference channel
 - Each user chooses its power spectral density to maximize rate subject to a power budget
 - Existence of a Nash equilibrium (due to concavity)
 - Best-response dynamics leads to a distributed iterative water filling algorithm, where each user optimizes its power spectrum treating other users' interference as noise
 - Convergence analysis by [Luo, Pang 06] based on Linear Complementarity Problem Formulation
- Power control in CDMA-based networks (no fading)
 - Single and multi-cell [Saraydar, Mandayam, and Goodman 02], [Alpcan, Basar, Srikant and Altman 02]
 - Joint power control-receiver design [Meshkati, Poor, Schwartz, Mandayam 05]
 - Adaptive modulation and delay constraints [Meshkati, Goldsmith, Poor, Schwartz 07]

Extensions-II

- Distributed control in collision channels
 - Aloha-like framework [Altman, El-Azouzi, Jimenez 04], [Inaltekin, Wicker 06]
 - Single packet perspective [MacKenzie, Wicker 03], [Fiat, Mansour, Nadav 07]
 - Rate-based equilibria [Jin, Kesidis 02], [Menache, Shimkin 07]
- Power control and transmission scheduling in wireless fading channels ("Water-Filling" Games)
 - CDMA-like networks [Altman, Avrachenko, Miller, Prabhu 07], [Lai and El-Gamal 08]
 - Collision Channels [Menache, Shimkin 08], [Cho, Hwang, Tobagi 08]
- Jamming Games [Altman, Avrachenkov, Garnaev 07], [Gohary, Huang, Luo, Pang 08]

Extensions-III

Game Theory for Nonconvex Distributed Optimization:

- Distributed Power Control for Wireless Adhoc Networks [Huang, Berry, Honig 05]
 - Two models: Single channel spread spectrum, Multi-channel orthogonal frequency division multiplexing
 - Asynchronous distributed algorithm for optimizing total network performance
 - Convergence analysis in the presence of nonconvexities using supermodular game theory
- Distributed Cooperative Control–"Constrained Consensus" [Marden, Arslan, Shamma 07]
 - Distributed algorithms to reach consensus in the "values of multiple agents" (e.g. averaging and rendezvous problems)
 - Nonconvex constraints in agent values
 - Design a game (i.e., utility functions of players) such that
 - * The resulting game is a **potential game** and the Nash equilibrium "coincides" with the social optimum
 - * Use learning dynamics for potential games to design distributed algorithms with favorable convergence properties

Network Design

• Sharing the cost of a designed network among participants [Anshelevich et al. 05]

Model:

- Directed graph N = (V, E) with edge cost $c_e \ge 0$, k players
- Each player *i* has a set of nodes *T_i* he wants to connect
- A strategy of player i set of edges S_i ⊂ E such that S_i connects to all nodes in T_i

Unique NE cost: $\sum_{i=1}^{k} 1/i = H(k)$

- Cost sharing mechanism: All players using an edge split the cost equally
- Given a vector of player's strategies $S = (S_1, \ldots, S_k)$, the cost to agent *i* is $C_i(S) = \sum_{e \in S_i} (c_e/x_e)$, where x_e is the number of agents whose strategy contains edge e

Price of Stability for Network Design Game

- The price of anarchy can be arbitrarily bad.
 - Consider k players with common source s and destination t, and two parallel edges of cost 1 and k.
- We consider the worst performance of the **best Nash equilibrium** relative to the system optimum.
 - Price of Stability

Theorem: The network design game has a pure Nash equilibrium and the price of stability is at most $H(k) = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{k}$.

Proof idea: The game is a **congestion game**, implying existence of a pure Nash equilibrium from [Rosenthal 73]. Use the potential function to establish the bound.

Extensions:

- Congestion effects
- More general cost-sharing mechanisms and their performance

Concluding Remarks

- New emerging control paradigm for large-scale networked-systems based on game theory and economic market mechanisms
- Many applications of decentralized network control
 - Sensor networks, mobile ad hoc networks
 - Large-scale data networks, Internet
 - Transportation networks
 - Power networks
- Future Challenges
 - Models for understanding when local competition yields efficient outcomes
 - Dynamics of agent interactions over large-scale networks
 - Distributed algorithm design in the presence of incentives and network effects