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1 Regret Minimization

In this lecture, our goal is to build a strategy with good performance when dealing with repeated games.
Let us start with a simple model of regret. In this model a player performs a partial optimization on
his actions. Following each action he updates his belief and selects the next actions, dependent on the
outcome. We will also show that for a familty of games, socially concave games, if all the players play a
strategy to minimize the regret, the game converges to a Nash equilibrium.

2 Full Information Model

The model is defined as follows:

• Single player N = {1}

• A set of actions A={a1,..,am}

• For each step t the player chooses an action ai (or a distribution pt over A)

• For each step t the player receives a loss lt ∈ [0, 1]m where lti ∈ [0, 1] is the loss of action ai ∈ A

• A player’s loss at step t is

m∑
i=1

ptil
t
i = ltON .

• Accumulative loss for a player is LTON =

T∑
t=1

~lt ~pt =

T∑
t=1

ltON

2.0.1 Question: How to measure the player’s achievement?

We must define a way measure the player’s achievements. The first proposal is to measure the total
loss. In this case, the adversary can create a serie choosing all the losses to be 1, and therefore in won’t
matter which strategy the player will choose, he will get the same achievement.
Another way is to compare the player’s loss to the loss that he would get by choosing the best action at

each step which results in a minimal loss OPT =

T∑
t=1

mini{lti}. This measure is similar to competitive

online analysis and in our setting no interesting bound can be achieved. We introduce a new metric,
which will help us measure the player’s achievements.

3 External Regret

Let

LTi =

T∑
t=1

lti the total loss of action ai (1)

1These notes are based in part on the scribe notes of Lior Shapira and Eyal David from 2005/2006 and on the scribe
notes of Eitan Yaffe and Noa Bar-Yosef from 2003/2004
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Let H be a policy set. (Note that the most common choice is H = A)

LTbest = minh∈HL
T
h

Definition Regret = min{LTON − LTbest, 0}.

We define the Regret as a way to measure the algorithm’s performance and we wish to minimize the
Regret. This reflects our desire to achieve performance close to the best static choice of action.

3.1 Minimizing External Regret - Deterministic Greedy Algorithm

For convenience we’ll assume lti ∈ {0, 1} (so cumulative loss values will be integers). The algorithm G
will try to minimize the Regret in the following way:

• For step t = 1 we choose a1.

• For step t > 1 we choose the best action until now, i.e.,

at = argmin
i
Lt−1i

Theorem 1 LTG ≤ m · LTbest + (m− 1)

Proof: We define ck to be the loss of G(the greedy algorithm) from time t, the first time in which
Ltbest = k and until time t′,the first time in which Lt

′

best = k + 1. At time t there are at most m actions
with Lti = k. Each time G pays 1, the number of actions with a loss of k is reduced by 1. Therefore

ck ≤ m, which implies that LG =

LT
best∑
k=0

ck ≤ m · LTbest + (m− 1)

�

Theorem 2 For each deterministic algorithm D exists a series for which LTD ≥ m · LTbest + Tmod(m)

Proof: The opponent, at time t, defines a loss of 1 on at, the action that D selects at time t
and 0 on the other actions. Algorithm D pays exactly LTD = T . However, by averaging there is an
action i, such that LTi ≤ b Tmc. This occurs because T ”losses” are divided between m actions. And so
LTD ≥ m · LTbest + Tmod(m) �

4 Randomized Algorithms

4.1 Randomized Greedy Algorithm - RG

Let St = {i|Lti = Ltbest}. The algorithm will randomly choose the action in the following way:

• For t = 1 we select ati at random with pti = 1
m .

• For t > 1 we select ati at random between the actions who had the minimal loss. I.e.

pti =

{ 1
|St−1| if i ∈ St−1

0 otherwise

Theorem 3 LRG ≤ (ln(m) + 1) · LTbest + lnm
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Proof: We define ck as before. We assume that the opponent chooses to give a loss of 1 to one
action out of St. First, it is always better for the opponent to select to give a loss to some action in St

because he knows that the player will choose his action out of that set. In addition it is better to choose
two actions in differing rounds rather than the same round because

∀r,m ∈ N
r

m
≤ 1

m
+

1

m− 1
+ ...+

1

m− r + 1
.

Therefore the expected loss for a round is

E[ck] =

m∑
i=1

1

i
≤ ln(m) + 1

and therefore

LRG = E[

LT
best∑
k=0

ck] = (ln(m) + 1) · LTbest + ln(m).

�

4.2 Randomized Weighted Majority algorithm

We saw that using randomization we improved from a ratio of m to O(ln(m)). How can RG be improved?
We notice that performance suffers when St is small and so we’ll try giving actions a positive probability,
even if they aren’t in St.

The idea:

• For each action ai we define a weight wti such that wti = (1− η)L
t−1
i , when initially w1

i = 1 (since
Li0 = 0)

• The RWM algorithm selects a distribution pti =
wt

i

W t where W t =

m∑
i=1

wti . (initially p1i = 1
m ).

The algorithm:

• for t = 1 : w1
i = 1, p1i = 1

m .

• for t ≥ 2 :

wti =

{
(wt−1i )(1−η) if lt−1i = 1

wt−1i if lt−1i = 0

W t =

m∑
i=1

wti .

pti =
wt

i

W t .

Theorem 4

For η ≤ 1

2
LTRWM ≤ (1 + η)LTbest +

ln(m)

η
. (2)

For η = min{1

2
, d ln(m)

T
e} LTRWM ≤ LTbest + 2

√
T ln(m). (3)

Proof: The main idea is to follow the value of W t. On the first hand we know that if RWM will
have a large loss, then W t will decrease significantly. On the second hand,

WT ≥ wTbest = (1− η)L
T
best . (4)
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and this gives us a bound to the maximum loss of RWM. Let

F t =

∑
i:lti=1

wti

W t
(5)

the weight of the actions with loss 1 in step t. Note that F t is exactly the loss of the algorithm RWM
in step t, directly by the definition of the algorithm.

W t+1 = W t(1− F t) +W tF t(1− η) = W t − ηF tW t = W t(1− ηF t). (6)

And, because the decrease of W t is proportional to the loss of RWM, we get that

(1− η)L
T
best ≤WT+1 = W 1

T∏
t=1

(1− ηF t) = m

T∏
t=1

(1− ηF t). (7)

After taking the log of both sides, we get

LTbest ln(1− η) ≤ ln(m) +

T∑
t=1

ln(1− ηF t) (8)

and because ln(1− z) ≤ −z, we have

LTbest ln(1− η) ≤ ln(m)−
T∑
t=1

ηF t = ln(m)− ηLTRWM . (9)

Rearranging the terms we get that:

LTRWM ≤
ln(m)

η
− ln(1− η)

η
LTbest (10)

Since − ln(1− z) ≤ z + z2 for each z ∈ [0, 12 ].

LTRWM ≤ (1 + η)LTbest +
ln(m)

η
(11)

�

4.2.1 Lower bounds for WM

1. For m operations and T = 1
2 , we get that Regret = Ω(ln(m)). This is because of the following:

We can create a distribution for the loss, such that with probability 1
2 we have lti = 1 and with

probability 1
2 we have lti = 0.

This means that with high probability there is an action which has a zero loss, which means that
with high probability Lbest = 0.

1− (1− (
1

2
)T )m = 1− (1− 1√

m
)m ≈ 1− e−

√
m (12)

Hence, the loss’s expectation for the best action is

E[LTbest] ≤ e−
√
m ln(m) ≈ 0. (13)

For each online algorithm, there is an expectation of loss 1
2 for each time t. Therefore

E[LTON ] =
1

2
T =

1

2
(
1

2
ln(m)) (14)

E[RegretON ] ≥ 1

2
(
1

4
ln(m)) = Ω(ln(m)) (15)
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2. For 2 operations and time T we get Regret = Ω(
√
T ). We create the distribution for the actions’

loss such that with probability 1
2 we give (0, 1) and with probability 1

2 we give (1, 0).
For every Online Algorithm E[LTON ] = 1

2T . For Lbest there is always an action with loss of at most
1
2T , and with constant probability the loss of the best action is at most 1

2T − c
√
T .

Hence, E[RegretON ] ≥ c′
√
T .

5 Socially Concave Games

In this part of the lecture we return to games with muliple players and analyze what happens if all the
players use an external regret minimization strategy. In particular, we show that for a certain class of
games such strategies lead to a convergence towards equilibrium.

Definition Socially Concave Games

Let G be a game with players N = {1, ..., n}, utility functions ui and actions taken from a set A. We
say that G is socially concave if two requirements hold:

1. There exists a convex combination {λi} such that the function g(x) =
∑
i∈N

λiui(x) is a concave

function. (A convex combination means ∀i, λi ≥ 0 and
∑
i

λi = 1).

2. For every player i and an action ai ∈ A, we have that h(y) = ui(ai, y) is a convex function. In
other words, fixing the player’s behavior and looking at the actions of the other players gives a
convex function.

5.1 Example of a socially concave game - Linear Cournot

An example of a socially concave game is a linear cournot competition, where the production costs for
each player are convex in the amount produced. The utiliy functions are givn by:

ui(s) := sip(s)− ci(si)

The price is a linear function in the total amount produced:

p(s) := a− b
∑

si

We show that the two requirements of a socially concave game hold:

1. Choosing a uniform combination λi gives:

g(s) =
1

n

∑
ui(s) =

1

n
[
∑
i∈N

si(a− b
∑
j∈N

sj)−
∑
i∈N

ci(si)]

Taking the second derivative of the first sum shows it is concave. The second sum is a sum of
concave functions and thus concave. The whole expression is therefore a concave function.

2. For a player i and a fixed action si the utility function becomes linear in the other actions and in
particular convex:

ui(si, x−i) = si(a−
∑
j 6=i

xj − si)− ci(si)

5.2 Equilibrium of socially concave games under regret minimization

In order to formally state the theorem we define an ε-Nash equilibrium:

Definition ε-Nash equilibrium

Let G = (N,A, {ui}) be a game. x ∈ An is an ε-Nash equilibrium if for every player i ∈ N and every
action ai ∈ A it holds that:

ui(x) ≥ ui(ai, x−i)− ε
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Theorem 5 G is a socially concave game. Assume each player i uses a strategy with external regret at
most Ri(t). Assume also that the game is played t times. Then the following holds:

1. The average state x̂t is ε-Nash, where:

x̂t :=
1

t

t∑
τ=1

xτ

and:

ε =
1

λmin

∑
j∈N

Rj(t)λj
t

2. The average utility of each player ûti is close to the utility of the average state:

ûti :=
1

t

t∑
τ=1

ui(x
τ )

and:

|ûti − ui(x̂ti)| ≤
1

λi

∑
j∈N

λjRj(t)

t

Proof: We have:

ûti =
1

t

t∑
τ=1

ui(x
τ )

≥ max
ai∈A

1

t
[

t∑
τ=1

ui(ai, x
τ
−i)−Ri(t)]

≥ 1

t
[

t∑
τ=1

ui(BR(x̂t−i), x
τ
−i)−Ri(t)]

≥ ui(BR(x̂t−i), x̂
t
−i)−

Ri(t)

t

where the last inequality is due to convexity (requirement no. 2 in the definition of concave games).
Since the best response brings the utility of player i to maximum, we have:

ûti ≥ ui(BR(x̂t−i), x̂
t
−i)−

Ri(t)

t
≥ ui(x̂t)−

Ri(t)

t
(16)

On the other hand, we have from the concavity of g(x):

∑
i∈N

λiui(x̂
t) = g(

1

t

t∑
τ=1

xτ )

≥ 1

t

t∑
τ=1

g(xτ )

=
1

t

t∑
τ=1

∑
i∈N

λiui(x̂
τ )

=
∑
i∈N

λi
1

t

t∑
τ=1

ui(x̂
τ )

=
∑
i∈N

λiû
t
i
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Thus we get: ∑
i∈N

λiui(x̂
t) ≥

∑
i∈N

λiû
t
i (17)

By taking the convex combination of inequality (16) for all players, and combining it with inequality
(17) we get: ∑

i∈N
λiû

t
i ≥

∑
i∈N

λiui(BR(x̂t−i), x̂
t
−i)−

∑
i∈N

λiRi(t)

t

≥
∑
i∈N

λiui(x̂
t)−

∑
i∈N

λiRi(t)

t

≥
∑
i∈N

λiû
t
i −

∑
i∈N

λiRi(t)

t

Thus,

|
∑
i∈N

λi[ui(BR(x̂t−i), x̂
t
−i)− ui(x̂t)]| ≥

∑
i∈N

λiRi(t)

t
(18)

But since this is in fact a sum of positive values (the utility of the best response for player i is always
equal or greater than choosing any other action), we can ommit the absolute value. Dividing by λmin
and using a simple mean bound, we get:

∀i, ui(BR(x̂t−i), x̂
t
−i)− ui(x̂t) ≤

1

λi

∑
i∈N

λiRi(t)

t
= ε (19)

Because this is true for the best response, it holds for any other action player i can take. We have shown
that x̂ is an ε-Nash equilibrium.

It remains to show the second part of the theorem. From (16) it follows that:∑
j∈N

λj [uj(x̂
t)− ûtj ] ≥ 0 (20)

Therefore, for a specific player i we have:

ui(x̂
t)− ûti ≤

1

λi

∑
j∈N,j 6=i

λj [uj(x̂
t)− ûtj ] (21)

Combining this with (17) we get

ui(x̂
t)− ûti ≤

1

λi

∑
j∈N

λjRj(t)

t
(22)

Thus:

|ui(x̂t)− ûti| ≤
1

λi

∑
j∈N

λjRj(t)

t
(23)

�


