10. Unconstrained minimization

- terminology and assumptions
- gradient descent method
- steepest descent method
- Newton's method
- self-concordant functions
- implementation

Unconstrained minimization

minimize f(x)

- f convex, twice continuously differentiable (hence dom f open)
- we assume optimal value $p^* = \inf_x f(x)$ is attained (and finite)

unconstrained minimization methods

• produce sequence of points $x^{(k)} \in \operatorname{\mathbf{dom}} f$, $k=0,1,\ldots$ with

$$f(x^{(k)}) \to p^{\star}$$

• can be interpreted as iterative methods for solving optimality condition

$$\nabla f(x^\star) = 0$$

Initial point and sublevel set

algorithms in this chapter require a starting point $x^{(0)}$ such that

- $x^{(0)} \in \operatorname{dom} f$
- sublevel set $S = \{x \mid f(x) \le f(x^{(0)})\}$ is closed

2nd condition is hard to verify, except when *all* sublevel sets are closed:

- equivalent to condition that epi f is closed
- true if $\operatorname{\mathbf{dom}} f = \mathbf{R}^n$
- true if $f(x) \to \infty$ as $x \to \mathbf{bd} \operatorname{\mathbf{dom}} f$

examples of differentiable functions with closed sublevel sets:

$$f(x) = \log(\sum_{i=1}^{m} \exp(a_i^T x + b_i)), \qquad f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$

Strong convexity and implications

f is strongly convex on ${\cal S}$ if there exists an m>0 such that

 $\nabla^2 f(x) \succeq mI$ for all $x \in S$

implications

• for $x, y \in S$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||x - y||_2^2$$

....

hence, S is bounded

• $p^{\star} > -\infty$, and for $x \in S$,

$$f(x) - p^* \le \frac{1}{2m} \|\nabla f(x)\|_2^2$$

useful as stopping criterion (if you know m)

Descent methods

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \quad \text{with } f(x^{(k+1)}) < f(x^{(k)})$$

- other notations: $x^+ = x + t\Delta x$, $x := x + t\Delta x$
- Δx is the step, or search direction; t is the step size, or step length
- from convexity, $f(x^+) < f(x)$ implies $\nabla f(x)^T \Delta x < 0$ (*i.e.*, Δx is a *descent direction*)

General descent method.

```
given a starting point x \in \operatorname{dom} f.
```

repeat

1. Determine a descent direction Δx .

2. Line search. Choose a step size t > 0.

3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

Line search types

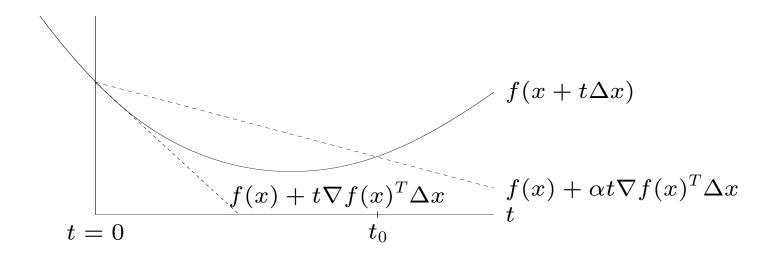
exact line search: $t = \operatorname{argmin}_{t>0} f(x + t\Delta x)$

backtracking line search (with parameters $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$)

• starting at t = 1, repeat $t := \beta t$ until

$$f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x$$

• graphical interpretation: backtrack until $t \leq t_0$



Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \text{dom } f$. **repeat** 1. $\Delta x := -\nabla f(x)$. 2. *Line search*. Choose step size t via exact or backtracking line search. 3. *Update*. $x := x + t\Delta x$. **until** stopping criterion is satisfied.

- stopping criterion usually of the form $\|\nabla f(x)\|_2 \leq \epsilon$
- convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$

 $c \in (0,1)$ depends on m, $x^{(0)}$, line search type

• very simple, but often very slow; rarely used in practice

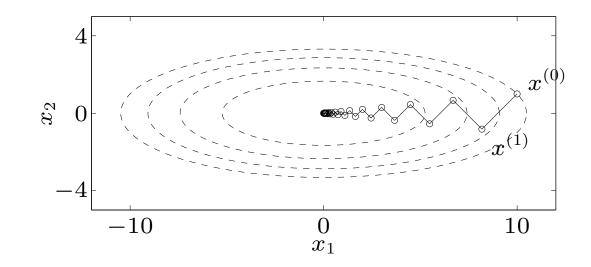
quadratic problem in \mathbf{R}^2

$$f(x) = (1/2)(x_1^2 + \gamma x_2^2) \qquad (\gamma > 0)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

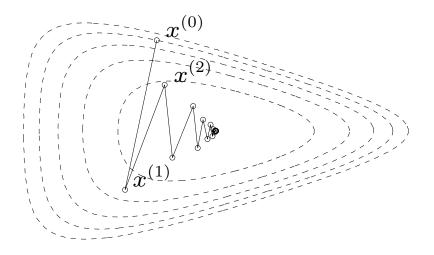
$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \qquad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

- very slow if $\gamma \gg 1 \text{ or } \gamma \ll 1$
- example for $\gamma = 10$:



nonquadratic example

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$



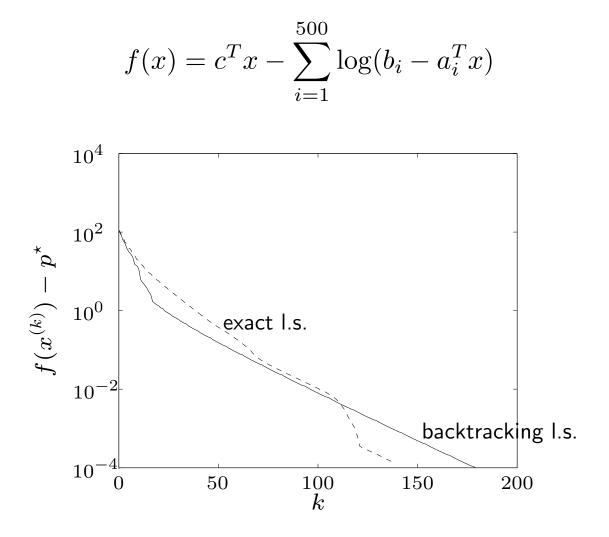
backtracking line search

exact line search

 $x^{(0)}$

 $x^{(1)}$

a problem in $\ensuremath{\mathsf{R}}^{100}$



'linear' convergence, i.e., a straight line on a semilog plot

Steepest descent method

normalized steepest descent direction (at x, for norm $\|\cdot\|$):

$$\Delta x_{\text{nsd}} = \operatorname{argmin}\{\nabla f(x)^T v \mid ||v|| = 1\}$$

interpretation: for small v, $f(x+v) \approx f(x) + \nabla f(x)^T v$; direction Δx_{nsd} is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

$$\Delta x_{\rm sd} = \|\nabla f(x)\|_* \Delta x_{\rm nsd}$$

satisfies $\nabla f(x)^T \Delta_{\mathrm{sd}} = - \| \nabla f(x) \|_*^2$

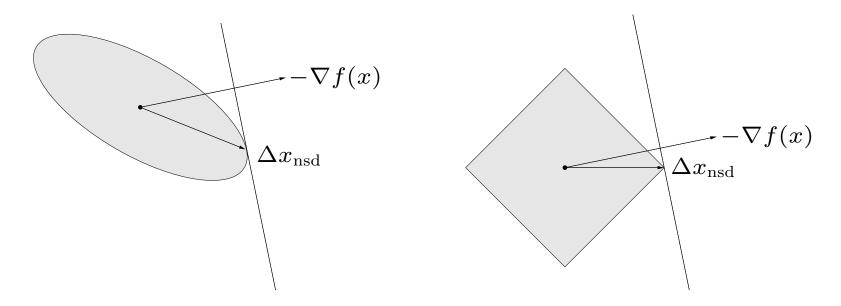
steepest descent method

- general descent method with $\Delta x = \Delta x_{\rm sd}$
- convergence properties similar to gradient descent

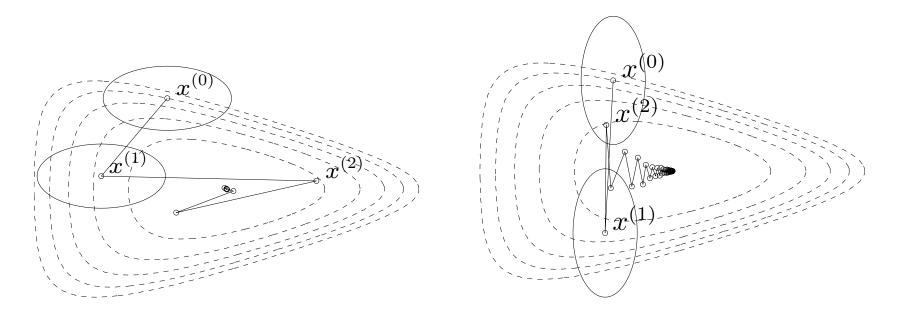
examples

- Euclidean norm: $\Delta x_{\rm sd} = -\nabla f(x)$
- quadratic norm $||x||_P = (x^T P x)^{1/2}$ $(P \in \mathbf{S}_{++}^n)$: $\Delta x_{sd} = -P^{-1} \nabla f(x)$
- ℓ_1 -norm: $\Delta x_{sd} = -(\partial f(x)/\partial x_i)e_i$, where $|\partial f(x)/\partial x_i| = \|\nabla f(x)\|_{\infty}$

unit balls and normalized steepest descent directions for a quadratic norm and the ℓ_1 -norm:



choice of norm for steepest descent



- steepest descent with backtracking line search for two quadratic norms
- ellipses show $\{x \mid ||x x^{(k)}||_P = 1\}$
- equivalent interpretation of steepest descent with quadratic norm $\|\cdot\|_P$: gradient descent after change of variables $\bar{x} = P^{1/2}x$

shows choice of ${\cal P}$ has strong effect on speed of convergence

Newton step

$$\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

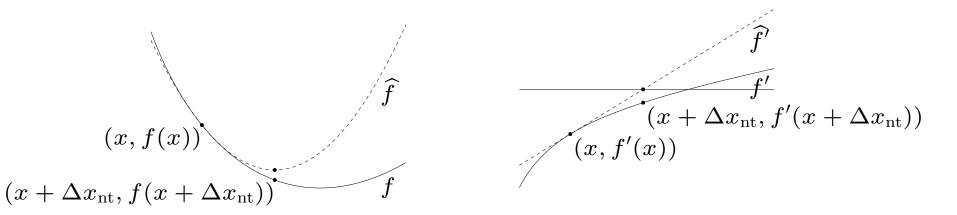
interpretations

• $x + \Delta x_{nt}$ minimizes second order approximation

$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

• $x + \Delta x_{nt}$ solves linearized optimality condition

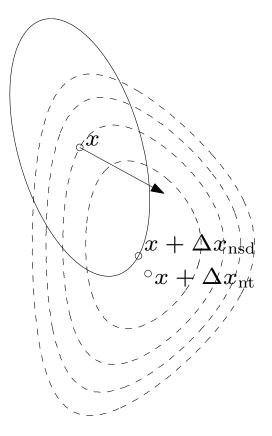
$$\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$



Unconstrained minimization

• $\Delta x_{\rm nt}$ is steepest descent direction at x in local Hessian norm

$$||u||_{\nabla^2 f(x)} = (u^T \nabla^2 f(x)u)^{1/2}$$



dashed lines are contour lines of f; ellipse is $\{x + v \mid v^T \nabla^2 f(x)v = 1\}$ arrow shows $-\nabla f(x)$

Newton decrement

$$\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)\right)^{1/2}$$

a measure of the proximity of x to x^\star

properties

• gives an estimate of $f(x) - p^*$, using quadratic approximation \widehat{f} :

$$f(x) - \inf_{y} \widehat{f}(y) = \frac{1}{2}\lambda(x)^2$$

• equal to the norm of the Newton step in the quadratic Hessian norm

$$\lambda(x) = \left(\Delta x_{\rm nt} \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2}$$

- directional derivative in the Newton direction: $\nabla f(x)^T \Delta x_{nt} = -\lambda(x)^2$
- affine invariant (unlike $\|\nabla f(x)\|_2$)

Newton's method

given a starting point $x \in \text{dom } f$, tolerance $\epsilon > 0$. repeat 1. Compute the Newton step and decrement. $\Delta x_{\text{nt}} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).$ 2. Stopping criterion. quit if $\lambda^2/2 \le \epsilon$. 3. Line search. Choose step size t by backtracking line search. 4. Update. $x := x + t \Delta x_{\text{nt}}.$

affine invariant, *i.e.*, independent of linear changes of coordinates:

Newton iterates for $\tilde{f}(y) = f(Ty)$ with starting point $y^{(0)} = T^{-1}x^{(0)}$ are

$$y^{(k)} = T^{-1}x^{(k)}$$

Classical convergence analysis

assumptions

- f strongly convex on S with constant m
- $\nabla^2 f$ is Lipschitz continuous on S, with constant L > 0:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L \|x - y\|_2$$

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants $\eta \in (0, m^2/L)$, $\gamma > 0$ such that

- if $\|\nabla f(x)\|_2 \ge \eta$, then $f(x^{(k+1)}) f(x^{(k)}) \le -\gamma$
- if $\|\nabla f(x)\|_2 < \eta$, then

$$\frac{L}{2m^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^2$$

damped Newton phase $(\|\nabla f(x)\|_2 \ge \eta)$

- most iterations require backtracking steps
- function value decreases by at least γ
- if $p^* > -\infty$, this phase ends after at most $(f(x^{(0)}) p^*)/\gamma$ iterations

quadratically convergent phase ($\|\nabla f(x)\|_2 < \eta$)

- all iterations use step size t = 1
- $\|\nabla f(x)\|_2$ converges to zero quadratically: if $\|\nabla f(x^{(k)})\|_2 < \eta$, then

$$\frac{L}{2m^2} \|\nabla f(x^l)\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^k)\|_2\right)^{2^{l-k}} \le \left(\frac{1}{2}\right)^{2^{l-k}}, \qquad l \ge k$$

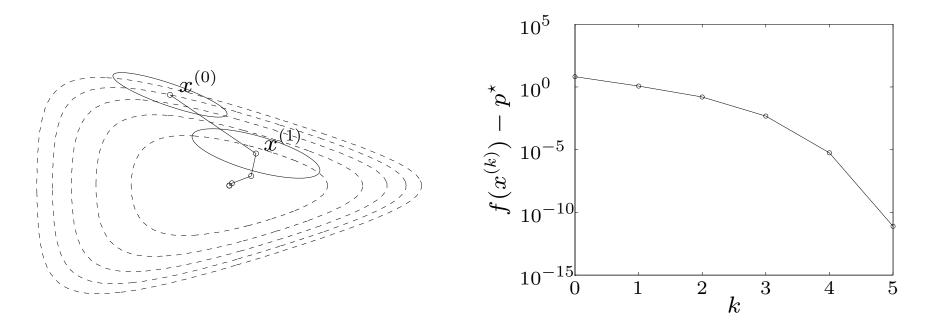
conclusion: number of iterations until $f(x) - p^* \leq \epsilon$ is bounded above by

$$\frac{f(x^{(0)}) - p^{\star}}{\gamma} + \log_2 \log_2(\epsilon_0/\epsilon)$$

- γ , ϵ_0 are constants that depend on m, L, $x^{(0)}$
- second term is small (of the order of 6) and almost constant for practical purposes
- in practice, constants m, L (hence γ , ϵ_0) are usually unknown
- provides qualitative insight in convergence properties (*i.e.*, explains two algorithm phases)

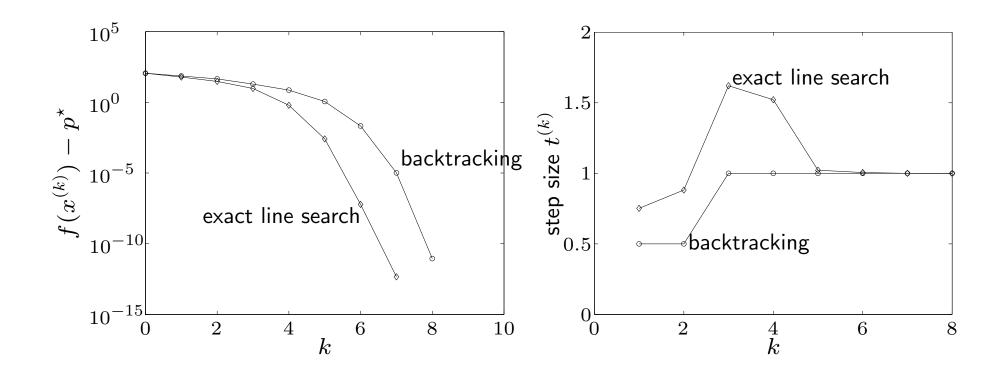
Examples

example in \mathbb{R}^2 (page 10–9)



- backtracking parameters $\alpha=0.1$, $\beta=0.7$
- converges in only 5 steps
- quadratic local convergence

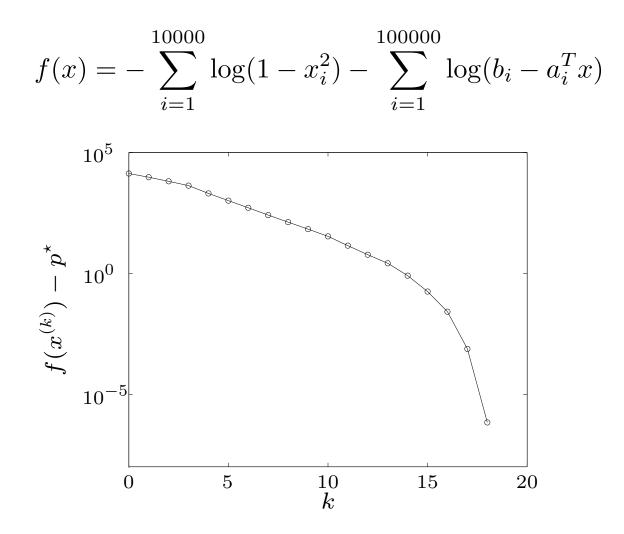
example in \mathbf{R}^{100} (page 10–10)



• backtracking parameters $\alpha = 0.01$, $\beta = 0.5$

- backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm

example in \mathbf{R}^{10000} (with sparse a_i)



- backtracking parameters $\alpha=0.01$, $\beta=0.5.$
- performance similar as for small examples

Self-concordance

shortcomings of classical convergence analysis

- depends on unknown constants (m, L, ...)
- bound is not affinely invariant, although Newton's method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions ('self-concordant' functions)
- developed to analyze polynomial-time interior-point methods for convex optimization

Self-concordant functions

definition

- $f: \mathbf{R} \to \mathbf{R}$ is self-concordant if $|f'''(x)| \le 2f''(x)^{3/2}$ for all $x \in \mathbf{dom} f$
- $f : \mathbf{R}^n \to \mathbf{R}$ is self-concordant if g(t) = f(x + tv) is self-concordant for all $x \in \mathbf{dom} f$, $v \in \mathbf{R}^n$

examples on R

- linear and quadratic functions
- negative logarithm $f(x) = -\log x$
- negative entropy plus negative logarithm: $f(x) = x \log x \log x$

affine invariance: if $f : \mathbf{R} \to \mathbf{R}$ is s.c., then $\tilde{f}(y) = f(ay + b)$ is s.c.:

$$\tilde{f}'''(y) = a^3 f'''(ay+b), \qquad \tilde{f}''(y) = a^2 f''(ay+b)$$

Self-concordant calculus

properties

- preserved under positive scaling $\alpha \geq 1,$ and sum
- preserved under composition with affine function
- if g is convex with dom $g = \mathbf{R}_{++}$ and $|g'''(x)| \leq 3g''(x)/x$ then

$$f(x) = \log(-g(x)) - \log x$$

is self-concordant

examples: properties can be used to show that the following are s.c.

- $f(x) = -\sum_{i=1}^{m} \log(b_i a_i^T x)$ on $\{x \mid a_i^T x < b_i, i = 1, \dots, m\}$
- $f(X) = -\log \det X$ on \mathbf{S}_{++}^n
- $f(x) = -\log(y^2 x^T x)$ on $\{(x, y) \mid ||x||_2 < y\}$

Convergence analysis for self-concordant functions

summary: there exist constants $\eta \in (0, 1/4]$, $\gamma > 0$ such that

• if $\lambda(x) > \eta$, then

$$f(x^{(k+1)}) - f(x^{(k)}) \le -\gamma$$

• if $\lambda(x) \leq \eta$, then

$$2\lambda(x^{(k+1)}) \le \left(2\lambda(x^{(k)})\right)^2$$

(η and γ only depend on backtracking parameters α , β)

complexity bound: number of Newton iterations bounded by

$$\frac{f(x^{(0)}) - p^{\star}}{\gamma} + \log_2 \log_2(1/\epsilon)$$

for $\alpha = 0.1$, $\beta = 0.8$, $\epsilon = 10^{-10}$, bound evaluates to $375(f(x^{(0)}) - p^{\star}) + 6$

numerical example: 150 randomly generated instances of

minimize
$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$

 $\bigcirc m = 100, n = 50$
 $\bigcirc m = 1000, n = 500$
 $\diamondsuit m = 1000, n = 500$
 $\circlearrowright m = 1000, n = 500$
 $\bigcirc m = 1000, n = 500$

- number of iterations much smaller than $375(f(x^{(0)}) p^{\star}) + 6$
- bound of the form $c(f(x^{(0)}) p^{\star}) + 6$ with smaller c (empirically) valid

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

$$H\Delta x = g$$

where $H=\nabla^2 f(x)$, $g=-\nabla f(x)$

via Cholesky factorization

$$H = LL^T, \qquad \Delta x_{\rm nt} = L^{-T}L^{-1}g, \qquad \lambda(x) = \|L^{-1}g\|_2$$

- cost $(1/3)n^3$ flops for unstructured system
- $\cos t \ll (1/3)n^3$ if H sparse, banded

example of dense Newton system with structure

$$f(x) = \sum_{i=1}^{n} \psi_i(x_i) + \psi_0(Ax + b), \qquad H = D + A^T H_0 A$$

- assume $A \in \mathbf{R}^{p \times n}$, dense, with $p \ll n$
- D diagonal with diagonal elements $\psi_i''(x_i)$; $H_0 = \nabla^2 \psi_0(Ax + b)$

method 1: form H, solve via dense Cholesky factorization: (cost $(1/3)n^3$) **method 2** (page 9–15): factor $H_0 = L_0 L_0^T$; write Newton system as

$$D\Delta x + A^T L_0 w = -g, \qquad L_0^T A\Delta x - w = 0$$

eliminate Δx from first equation; compute w and Δx from

$$(I + L_0^T A D^{-1} A^T L_0)w = -L_0^T A D^{-1} g, \qquad D\Delta x = -g - A^T L_0 w$$

cost: $2p^2n$ (dominated by computation of $L_0^T A D^{-1} A^T L_0$)

Unconstrained minimization