
Ontology Languages

Πληροφοριακά Συστήματα Διαδικτύου

Ontology Languages

 “Ontology Languages for the Semantic Web” paper, IEEE
Intelligent Systems, Jan/Feb 2002, pp 54-60, analyze the
most representative ontology languages created for the
Web, and compare them using a common framework.

♦ XOL (XML-based Ontology Exchange Language)
♦ SHOE (Simple HTML Ontology Extension)
♦ OML (Ontology Markup Language)
♦ RDF(S) (Resource Description Framework (Schema))
♦ OIL (Ontology Interchange Language)
♦ DAML+OIL (DARPA Agent Markup Language + OIL)
♦ OWL (Ontology Web Language)

XML: fundament (w3c.org)

 It provides a standardized syntactical way to
represent and exchange tree structures.

 XML schema allow to define a schema for XML
documents and may already provide machine-
understandable semantics of data:

<name>
<first>John</first>
<last>Smith</last>

</name>
 Strength of XML: Its generality

RDF Schema (w3c.org)

 The Resource Description Framework
RDF=a standard datamodel for machine-

processable semantics.
 The basic construction in RDF is an object-

attribute-value triple.
 RDF Schema defines a set of modeling

primitives for structured vocabularies for
machine-processable semantics of information.
 Two crucial RDF Schema constructions are

subClassOf and subPropertyOf allowing
hierarchical structured vocabularies.

Requirements

Desirable features identified for a Web
Ontology Language :

 Compatible with existing Web standards (XML,
RDF, RDFS)

 Easy to understand and use
 Formally specified and of “adequate”

expressive power
 Possible to provide automated reasoning

support

Beyond RDF: OIL & DAML

 OIL (Ontology Inference Layer) extends RDF Schema
to a full-fledged ontology representation
language.
 intuitive syntax plus high expressive power
 well defined semantics
 can use Description Logic systems to reason
 http://www.ontoknowledge.org/oil/

 DAML (DARPA Agent Markup Language) / DAML-ONT
= US sister of OIL
 http://www.daml.org/

From OIL to DAML+OIL

 Efforts merged to produce DAML+OIL (development was
overseen by joint EU/US committee)

 DAML+OIL builds on top of RDFS
 RDFS based syntax
 Inherits RDFS ontological primitives (subclass, range, domain)
 Adds much richer set of primitives (transitivity, cardinality,...)

 DAML+OIL designed to describe the structure of a domain
(schema)
 Object oriented: classes (concepts) and properties (roles)
 DAML+OIL ontology consists of set of axioms asserting

characteristics of classes and properties
 E.g., Person is kind_of Animal whose parents are Persons

 http://www.w3.org/Submission/2001/12/

How DAML+OIL builds on RDFS

 Extends expressive power
 Constraints (restrictions) on properties of classes

(existential/universal/cardinality)
 Boolean combinations of classes and restrictions
 Equivalence, disjointness, coverings
 Necessary and sufficient conditions
 Constraints on properties

 Provides well defined semantics
 Meaning of DAML+OIL statements is formally specified
 Both model theoretic and axiomatic specifications

provided
 Allows for machine understanding and automated

reasoning

OWL (Ontology Web Language)

 OWL is a W3C Recommendation
 The purpose of OWL is identical to RDFS i.e. to

provide an XML vocabulary to define classes,
properties and their relationships.
 RDFS enables you to express very rudimentary

relationships and has limited inferencing capability.
 OWL enables you to express much richer relationships,

thus yielding a much enhanced inferencing
capability.

 The benefit of OWL is that it facilitates a much
greater degree of inferencing than you get with
RDF Schemas.

Origins of OWL

DAML

DAML+OIL

OIL

OWL

RDF

All were influenced by RDF

OWL is now a W3C recommendation

Origins of OWL

 OWL and RDF Schema enables machine-
processable semantics

XML/DTD/XML Schemas

RDF Schema

OWL
Semantics

Syntax

Full: Very expressive,
no computation guarantees

DL (Description Logic): Maximum
expressiveness, computationally
complete.

Lite: Simple classification hierarchy
with simple constraints.

Versions of OWL

 Depending on the intended usage, OWL provides
three increasingly expressive sublanguages

OWL Full

OWL DL

OWL Lite

Advantages/Disadvantages of
versions

 Full:
 The advantage of the Full version of OWL is that you

get the full power of the OWL language.
 The disadvantage is that it is very difficult to build a

tool for this version. Also, the user of a Full-compliant
tool may not get a quick and complete answer.

 DL/Lite:
 The advantage of the DL or Lite version of OWL is that

tools can be built more quickly and easily, and users
can expect responses from such tools to come
quicker and be more complete.

 The disadvantage is that you don't have access to
the full power of the language.

OWL DL

 OWL is based on Description Logic
 Description Logic is a fragment of

first-order logic
 OWL inherits from Description Logic

 The open-world assumption
 The non-unique-name assumption

Open-world assumption

 We cannot conclude some statement x
to be false simply because we cannot
show x to be true i.e. we may not
deduce falsity from the absence of truth

 It is the opposite of the closed world
assumption, which holds that any
statement that is not known to be true is
false.

Open-world assumption: Example

 Statement: Marios is a citizen of
Greece

 Question: Is George a citizen of
Greece?

 "Closed world" (e.g. SQL) answer: No
 "Open world" answer: unknown

("I don’t know if he is a citizen, but that’s
not enough reason to conclude that he
isn’t“)

Unique-name assumption (UNA)

 When two individuals are known by
different names, they are in fact
different individuals

 This is an assumption that
sometimes works (e.g. Product
codes) and sometimes doesn’t
(e.g. Social environment)

 OWL does not make the unique-
name assumption

Describing classes in OWL

OWL vs. RDFS
 Abstraction mechanism to group resources

with similar characteristics
 OWL allows greater expressiveness, but
 OWL (DL/Lite) puts certain constraints on the

use of RDF
 i.e. a class may not act as an instance of another

(meta)class (the same holds for properties)

<rdfs:Class rdf:ID="River">
<rdfs:subClassOf rdf:resource="#Stream"/>

</rdfs:Class>

<owl:Class rdf:ID="River">
<rdfs:subClassOf rdf:resource="#Stream"/>

</owl:Class>

RDFS OWL

Describing classes in OWL

Complex Classes
 Intersection of classes (owl:intersectionOf)

 OR (A ∪ B)

 Union of classes (owl:unionOf)
 AND (A ∩ B)

 Complement (owl:complementOf)
 NOT

 Enumeration (owl:oneOf)
 Disjoint Classes (owl:disjointWith)

Describing classes in OWL

Property Restrictions
 Defining a Class by restricting its possible

instances via their property values
 OWL distinguishes between the following

two:
 Value constraint
 Cardinality constraint

Describing classes in OWL

Restrictions on Property Classes
 Properties:

 allValuesFrom: rdfs:Class (lite/DL owl:Class)
 hasValue: specific Individual
 someValuesFrom: rdfs:Class (lite/DL owl:Class)
 cardinality: xsd:nonNegativeInteger (in lite {0,1})
 minCardinality: xsd:nonNegativeInteger (in lite {0,1})
 maxCardinality: xsd:nonNegativeInteger (in lite {0,1})

Describing properties in OWL

OWL vs. RDFS
 RDF Schema provides some of predefined properties:

 rdfs:range used to indicate the range of values for a property.
 rdfs:domain used to associate a property with a class.
 rdfs:subPropertyOf used to specialize a property.
 …

 OWL provides additional predefined properties:
 owl:cardinality (indicate cardinality)
 owl:hasValue (at least one of the specified property values)
 …

 OWL provides additional property classes, which allow
reasoning and inferencing:
 owl:FunctionalProperty

 owl:TransitiveProperty

 …

Describing properties in OWL

OWL Property Classes
rdf:Property

owl:ObjectProperty owl:DatatypeProperty owl:FunctionalProperty owl:InverseFunctionalProperty

owl:SymmetricProperty owl:TransitiveProperty

 An ObjectProperty relates one Resource to another
Resource.

 An DatatypeProperty relates one Resource to a Literal an
XML Schema data type.

Describing properties in OWL

 owl:TransitiveProperty (transitive property)
 E.g. “has better grade than”, “is ancestor of”

 owl:SymmetricProperty (symmetry)
 E.g. “has same grade as”, “is sibling of”

 owl:FunctionalProperty defines a property that
has at most one value for each object
 E.g. “age”, “height”, “directSupervisor”

 owl:InverseFunctionalProperty defines a
property for which two different objects cannot
have the same value

OWL tools

 Commercial Ontology Support Tools
 SNOBASE
 Cerebra

 Reasoners
 FaCT
 Racer
 Cerebra

 Editors
 OWL plug-in for Protégé

 APIs
 Jena
 Cerebra

 Parser/Validators

Reference: http://www.w3.org/2001/sw/WebOnt/impls

OWL 2.0

 OWL 2 extends OWL with a small but useful
set of features that have been requested by
users, which include extra syntactic sugar,
additional property and qualified cardinality
constructors, extended datatypes support,
simple meta-modelling, and extended
annotations.

 Apart from addressing problems with
expressivity, the goal of OWL 2 was to
provide a robust platform for future
development.

References

 W3C Documents
 Guide

http://www.w3.org/TR/owl-guide/

 Reference
http://www.w3.org/TR/owl-ref/

 Semantics and Abstract Syntax
http://www.w3.org/TR/owl-semantics/

 OWL Tutorial
 http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/

	Ontology Languages
	Ontology Languages
	XML: fundament (w3c.org)
	RDF Schema (w3c.org)
	Requirements
	Beyond RDF: OIL & DAML
	From OIL to DAML+OIL
	How DAML+OIL builds on RDFS
	OWL (Ontology Web Language)
	Origins of OWL
	Origins of OWL
	Versions of OWL
	Advantages/Disadvantages of versions
	OWL DL
	Open-world assumption
	Open-world assumption: Example
	Unique-name assumption (UNA)
	Describing classes in OWL
	Describing classes in OWL
	Describing classes in OWL
	Describing classes in OWL
	Describing properties in OWL
	Describing properties in OWL
	Describing properties in OWL
	OWL tools
	OWL 2.0
	References

