
Πληροφοριακά Συστήματα Διαδικτύου

Conceptual Modelling:
An Introduction



Information Modeling

 Information modeling means “models of 
information”
(NOT “models made by information”)

 We are interested in models of information 
about the real world, or somebody’s 
conception of the real world.



Information Modeling in Computer 
Science and Engineering

Information modeling is practiced and researched in several
areas within Computer Science and Engineering, including:
 Databases -- data modeling, using semantic data models 

to build databases;
 Software Engineering -- requirements modeling, using 

diagrammatic (structured, OO) techniques to build 
requirement specifications; software process modeling 
using finite state machines, statecharts, rules, Petri nets to 
build process models;

 Artificial Intelligence -- knowledge representation using 
logic-based notations, description logics, semantic 
networks, frames, etc. to build knowledge bases;

 ...



Types of Information Models

 Physical models use machine-oriented terms (e.g., records, fields, 
strings, variable names, B-trees,...) to model an application.
 ...conflicting representational and efficiency concerns!

 Logical models offer mathematical abstractions (e.g., arrays, lists, 
sets, relations) for modeling purposes, hiding the implementation 
details from the user (i.e the relational model in Databases).
 ...but logical symbol structures are flat and unintuitive.... can can’t 

describe complex situations! 
 Conceptual models use application-oriented terms and use 

application-oriented terms and organize information on the basis 
of principles derived from Cognitive Science, such as 
generalization, aggregation and classification.
 conceptual symbol structures model directly and naturally an 

application



 Goal: improve models and 
tools for representing 
information and processes

 Why: narrow the gap between 
concepts in the real world and 
their representation in 
conceptual models

 How: identify and formalize 
powerful modeling primitives, 
like generic relationships, for 
more accurate and intuitive 
descriptions of real-world 
concepts

Research on Conceptual Modeling



Conceptual Modeling

 “Conceptual Modeling is the activity of formally 
describing some aspects of physical and social world 
around us for the purposes of understanding and 
communication” (Mylopoulos)

 “Conceptual models offer abstract views on certain 
aspects of the real-world (descriptive view)” (Yourdon)

General
Real-World 
Concepts

represented by

interpreted as 

Conceptual 
Modeling 
Language



Characterizing Conceptual Models

Basic building  blocks – Terms 
descriptions, concepts, ...

Composition rules – Abstractions 
abstraction mechanisms 
semantic relationships 
structuring mechanisms,...

Analysis and management tools



Terms, Abstraction, and Tools

Characterization of  conceptual models by looking at the
basic building blocks, the structuring mechanisms, and the
tools they offer for building an information base:
 Primitive Terms - concepts built into a conceptual model, 

used to model an application (e.g. Entity, Activity, Goal, 
Time, Space,...)

 Abstraction Mechanisms (also called Semantic 
Relationships) -- primitive mechanisms for structuring (e.g. 
Generalization, Aggregation, Classification, 
Materialization,...)

 Tools and Analysis techniques Tools -- for creating, 
updating, searching, validating and managing an 
information base



Entities

 These represent classes of objects that have 
properties in common and an autonomous 
existence.
 City, Department, Employee, Purchase and Sale are 

examples of entities for a commercial organization.
 An instance of an entity is an object in the class 

represented by the entity.
 Stockholm, Helsinki, are examples of instances of the 

entity City, and the employees Peterson and Johanson
are examples of instances of the Employee entity.



Relationships

 They represent logical links between two or 
more entities.
 Residence is an example of a relationship that can 

exist between the entities City and Employee; Exam is 
an example of a relationship that can exist between 
the entities Student and Course.

 An instance of a relationship is an n-tuple made 
up of instances of entities, one for each of the 
entities involved.
 The pair (Johanssen,Stockholm), or the pair 

(Peterson,Oslo), are examples of instances in the 
relationship Residence.



Attributes

 These describe the elementary properties of 
entities or relationships.
 For example, Surname, Salary and Age are possible 

attributes of the Employee entity, while Date and 
Mark are possible attributes for the relationship Exam
between Student and Course.

 An attribute associates with each instance of 
an entity (or relationship) a value belonging to 
a set known as the domain of the attribute.

 The domain contains the admissible values for 
the attribute.



Generalizations

 These represent logical links between an entity E, known 
as parent entity, and one or more entities E1,...,En called 
child entities, of which E is more general, in the sense that 
they are a particular case.

 In this situation we say that E is a generalization of E1,...,En 
and that the entities E1,...,En are specializations (noted 
isa) of E.

Person
TaxCode
Surname

MaternityStatus

Age

Professional
TaxCode
Address 

Specialization

isa

WomanMan DoctorLawyer Engineer



Properties of Generalization

 Every instance of a child entity is also an 
instance of the parent entity.

 Every property of the parent entity (attribute, 
relationship or other generalization) is also a 
property of a child entity. This property of 
generalizations is known as inheritance.



Simple Example

Objects are structured along three main hierarchies:
 the classification hierarchy
 the generalization/specialization hierarchy
 the aggregation(attribute) hierarchy

attribute

instance of

isa

Person owns Car

John Fiat Punto

Woman Man



Several Generic Relationships

 Classification: an instance to its class (e.g., John and person)
 Generalization: a superclass to subclasses (e.g., person and employee)
 Aggregation: composites (e.g., car) formed from components (e.g., body 

and engine)
 Materialization: a class of categories (e.g., models of cars) and a class of 

more concrete objects (e.g., individual cars)
 Ownership: an owner class (e.g., persons) and a property owned (e.g., cars)
 Grouping: a member class (e.g., players in a team) to a grouping class (e.g., 

teams)
 Viewpoint: partial information about a class from a particular standpoint
 Generation: new output entities emerging from input entities
 Versioning: an object class and its time-varying versions
 Role: an object class (e.g., persons) and a role class (e.g., employees), 

describing dynamic states for the object class



Semantics of Generic Relationships

 Class and instance semantics: The semantics of generic 
relationships concerns both classes and instances of these 
classes. Must deal with both the class level and the instance 
level in a coordinated manner. (E.g., for generalization: a 
class can have several superclasses and several subclasses; 
an instance of a class is also an instance of all its 
superclasses)

 Cardinality: constrains the number of objects related by a 
relationship.

 Composition: A class plays several roles of the same generic 
relationship R in several specific relationships based on R.

 Transitivity: can follow from composition. E.g., Person 
Student  GraduateStudent imply Person 
GraduateStudent



Example
(from architectural design)

 hasGeometry: relates a symbolic object and a geometric 
object; each symbolic object has at most one associated 
geometric object

 hasPart: a fundamental relationship for design objects in 
general (e.g., a floor is composed of a set of rooms, a 
room has a set of walls and at least one entrance)

 adjacentTo: between two objects not related by has part 
and whose distance is less than a specific threshold

 connectedTo: similar to adjacent to, but the two objects 
have overlapping volumes

 hasRole (e.g., a door, a window may function as fire exit)
 isBlueprintFor: relates specifications of different levels of 

abstraction



Conceptual Design

Design choices:
 Should a concept be modeled as an 

entity or an attribute?
 Should a concept be modeled as an 

entity or a relationship?
 Identifying relationships: Binary or 

ternary? Aggregation?



Some Rules of Thumb

 If a concept has significant properties and/or 
describes classes of objects with an autonomous 
existence, it is appropriate to represent it as an entity.

 If a concept has a simple structure, and has no 
relevant properties associated with it, it is convenient 
to represent it with an attribute of another concept to 
which it refers.

 If a concept provides a logical link between two (or 
more) entities, it is convenient to represent it with a 
relationship.

 If one or more concepts are particular cases of 
another concept, it is convenient to represent them in 
terms of a generalization relationship.



Example

Consider the address of a person. Is it an entity, relationship, or 
attribute?

 Consider address for a telephone company database, which 
has to keep track of how many and what type of phones are 
available in any one household, who lives there (there may 
be several phone bills going to the same address) etc. for this 
case, address is probably best treated as an entity.

 Or, consider an employee database, where for each 
employee you maintain personal information, such as her 
address. Here address is best represented as an attribute.

 Or, consider a police database where we want to keep track 
of a person’s whereabouts, including her address (i.e., 
address from Date1 to Date2, address from Date2 to Date3, 
etc.) Here, address is treated best as a relationship.



Conceptual Modeling Strategies

 The design of a conceptual schema for 
a given set of requirements is an 
engineering process and, as such, can 
use design strategies from other 
disciplines:
 Top-down
 Bottom-up
 Middle-out
 Mixed



Top-Down Strategy

 The conceptual schema is produced by means of a 
series of successive refinements, starting from an 
initial schema that describes all the requirements by 
means of a few highly abstract concepts.

 The schema is then gradually expanded by using 
appropriate transformations that add detail.

 Moving from one level to the next involves 
modifications of the schema using a basic set of 
top-down transformations (i.e. from one entity to a 
generalization, from one relationship to an entity with 
relationships, adding attributes etc.)



Bottom-Up Strategy

 The initial specification is decomposed iteratively 
into finer-grain specifications, until a specification 
becomes atomic, i.e., consists of simple elements.

 Each atomic specification is then represented by a 
simple conceptual schema.

 The schemas obtained from atomic specifications 
are then integrated into a final conceptual schema.

 The final schema is obtained by means of a set of 
bottom-up transformations (i.e. generation of an entity, 
relationship, generalization, aggregation of attributes on 
an entity etc.)



Middle-Out Strategy

 This strategy can be regarded as a special case 
of the bottom-up strategy.

 It begins with the identification of only a few 
important concepts and, based on these, the 
design proceeds, spreading outward ‘radially’.

 First the concepts nearest to the initial concepts 
are represented, and we then move towards 
those further away by means of ‘navigation’ 
through the specification.



Mixed Strategy

 Here the designer decomposes the requirements 
into a number of components, as in the bottom-up 
strategy, but not to as fine-grain a level.

 Designer also defines a skeleton schema containing 
the main concepts of the application. This skeleton 
schema gives a unified view of the whole design 
and helps the integration of schemas developed 
separately.

 Then the designer examines separately these main 
concepts and can proceed with gradual 
refinements (following a top-down strategy) or 
extending them with concepts that are not yet 
represented (following a bottom-up strategy).



Qualities for a Conceptual Schema

 Correctness. Conceptual schema uses correctly the 
constructs made available by the conceptual model. As 
with programming languages, the errors can be syntactic 
or semantic.

 Completeness. Conceptual schema represents all data 
requirements and allows for the execution of all the 
operations included in the operational requirements.

 Readability. Conceptual schema represents the 
requirements in a way that is natural and easy to 
understand. Therefore, the schema must be self-
explanatory; for example, by choosing suitable names for 
concepts.

 Minimality. Schema avoids redundancies, e.g., data that 
can be derived from other data.



A Comprehensive Method for
Conceptual Design

1. Analysis of requirements
(a) Construct a glossary of terms.
(b) Analyze the requirements and eliminate all 
ambiguities.
(c) Arrange the requirements in groups.

2. Basic step
Identify the most relevant concepts and represent 
them in a skeleton schema.

3. Decomposition step (to be used if appropriate or 
necessary). Decompose the requirements with 
reference to the concepts present in the skeleton 
schema.



A Comprehensive Method for
Conceptual Design

4. Iterative step
(a) Refine concepts in the schema, based on the 
requirements.
(b) Add new concepts to the schema to describe 
any parts of the requirements not yet represented.

5. Integration step
Integrate the various subschemas into a general 
schema with reference to the skeleton schema.

6. Quality analysis
Verify the correctness, completeness, minimality and 
readability of the schema.



What is Metamodeling?

 “Meta” means literally “after” in Greek.
 In Computer Science, the term is used heavily 

and with several different meanings:
 In Databases, metadata means “data about data” 

and refer to things such as a data dictionary, a 
repository, or other descriptions of the contents and 
structure of a data source;

 In Conceptual Modeling, metamodel is a model of a 
data model, e.g., an ER model of the relational 
model, or an ER model of the ER model.



Metamodelling

 Data are modelled by metadata (“schemata”, 
“classes”,…) which are parts of the metamodel; 
these units are instances of metadata which 
are parts of a metamodel, etc.

 We’d like to have metamodels which are self-
descriptive to an arbitrary level of self-
description.



Structural Reflection

Entity

Person

John Object level

Class level

Metaclass level



Example 1

ArtificialObject

Decoration

Weight
Color

Size

Appearance

Neck

Pot

ObjectType appearance

size

decoration
neck

color

weight

Class level

Metaclass level

instanceOf

isa

attribute



Example 2

User

AdminTask

Correspondence

Engagement
Order

TaskUserGroup
assignedTo

Manager

Admin
Secretary

Salesman

Class level

Metaclass level

Object levelJohn
George Chris

instanceOf

isa

attribute



References

 P. Chen, P., The Entity-Relationship Model: Towards a Unified 
View of Data, ACM Transactions on Database Systems, 1976.

 Loucopoulos, P. and Zicari, R., (eds.) Conceptual Modeling, 
Databases and CASE: An Integrated View of Information 
System Development, Wiley, 1992.

 Atzeni, P., Ceri, S., Paraboschi, S., and Torlone, R.,. Database 
Systems, McGraw-Hill, 1999.

 [Peckham95] J. Peckham, B. MacKellar, and M. Doherty. Data 
model for extensible support of explicit relationships in design 
databases, Very Large Data Bases Journal, 4:157-191, 1995.

 [Winston87] Winston, M.E., Chaffin, R., and Herrmann, D., A 
taxonomy of part-whole relations, Cognitive Science, 11:417-
444, 1987.


	Conceptual Modelling:�An Introduction
	Information Modeling
	Information Modeling in Computer Science and Engineering
	Types of Information Models
	Research on Conceptual Modeling
	Conceptual Modeling
	Characterizing Conceptual Models 
	Terms, Abstraction, and Tools
	Entities
	Relationships
	Attributes
	Generalizations
	Properties of Generalization
	Simple Example
	Several Generic Relationships
	Semantics of Generic Relationships
	Example�(from architectural design)
	Conceptual Design
	Some Rules of Thumb
	Example
	Conceptual Modeling Strategies
	Top-Down Strategy
	Bottom-Up Strategy
	Middle-Out Strategy
	Mixed Strategy
	Qualities for a Conceptual Schema
	A Comprehensive Method for�Conceptual Design
	A Comprehensive Method for�Conceptual Design
	What is Metamodeling?
	Metamodelling
	Structural Reflection
	Example 1
	Example 2
	References

