Application of Antenna Arrays to Mobile
Communications, Part |I: Beam-Forming
and Direction-of-Arrival Considerations
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Array processing involves manipulation of signals induced on
various antenna elements. Its capabilities of steering nulls to
reduce cochannel interferences and pointing independent beams
toward various mobiles, as well as its ability to provide estimates
of directions of radiating sources, make it attractive to a mobile
communications system designer. Array processing is expected
to play an important role in fulfilling the increased demands of
various mobile communications services. Part | of this paper
showed how an array could be utilized in different configurations to
improve the performance of mobile communications systems, with
references to various studies where feasibility of an array system
for mobile communications is considered.

This paper provides a comprehensive and detailed treatment
of different beam-forming schemes, adaptive algorithms to adjust
the required weighting on antennas, direction-of-arrival estimation
methods—including their performance comparison—and effects of
errors on the performance of an array system, as well as schemes
to alleviate them. This paper brings together almost all aspects of
array signal processing. It is presented at a level appropriate to
nonexperts in the field and contains a large reference list to probe
further.

Keywords—Beam forming, conjugate gradient method, eigen-
structure methods, ESPRIT, least square algorithm, linear pre-
diction method, maximum entropy, maximum likelihood method,
minimum norm, mobile communications, multipath arrivals, MU-
SIC, MVDR estimator, neural networks, recursive least square
algorithm, weighted subspace fitting.

NOMENCLATURE

A L by M matrix, with its columns being
the steering vectors.

A; Amplitude of theith source using fre-
guency modulation.

a, DenotesL — 1 weights after the:th tap in
TDL structure in a beam-space processor.

AlC Akaike’s information criterion.

B Blocking matrix or the matrix prefilter for

a narrow-band beam-space processor.
Bit error rate.
Binary phase shift keying.
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LJ x J constraint matrix.

Speed of propagation of a plane wave
front.

Concurrent nulling and location.

Code division multiple access.

Constant modulus algorithm.
Cramer—Rao lower bound.

Interelement spacing of a linear equis-
paced array.

Message symbol in TDMA system and
message sequence in CDMA system (as-
sociated with theth source).

Direction of arrival.

Expectation operator.

Vector of all zeros except the first ele-
ment, which is equal to unity.

Estimation of signal parameters via rota-
tional invariance technique.
J-dimensional vector specifying the fre-
guency response in the look direction.
Center frequency.

Nyquist frequency.

Fractional bandwidth.

Frequency division multiple access.

Fast Fourier transform.

First principal vector.

Finite impulse response.

Array gain of the optimal processor.
Cross-power spectrum of two broad-band
signalsz(¢) and y(t).

Pseudo-random noise binary sequence
having the valuest1 or —1.

Unbiased estimate of the gradient of the
mean squared error or the mean output
power.

Gaussian minimum shift keying.
Generalized side-lobe canceller.

Global system for mobile communica-
tions.

Transfer function.

1195



HEOS
1
J

Jo

MAP
MDL
MEM
min-norm
ML

MLM
MMSE
MSE
MVDR

MUSIC
N

N;
ne(t)
NAME
P
Pa(6)
Prp(6)
Pur(6)
Pyn(6)
Pyu(0)
Py (9)
Py
P(w)
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Highly elliptical orbit satellite.

Identity matrix.

Number of taps in a tapped delay line
structure.

Reflection matrix with all its elements
along the secondary diagonal being equal
to unity and zero elsewhere.
Cumulative mean square error at thih
iteration, cost function.

Number of elements in a subarray.
Covariance matrix of the weights at the
nth iteration.

Number of elements in an array.
Natural logarithm of[-].

Least mean square.

Least square.

Number of directional sources, number of
beams in a beam-space processor.
Misadjustment.

Complex modulating function of th&h
source.

Modulating function of the signal at time
instantn.

Modulating function of the signal source
at time instant:.

Maximum a posteriori

Minimum description length.

Maximum entropy method.

Minimum norm.

Maximum likelihood.

Maximum likelihood method.

Minimum mean squared error.

Mean squared error.

Minimum variance distortionless re-
sponse.

Multiple signal classification.

Number of samples.

Number of possible combinations of ele-
ments with lagi.

Random noise component on thih el-
ement.

Noise-alone matrix inverse.

Projection operator.

Power estimated by Barrette method as a
function of 6.

Power estimated by linear prediction
method as a function of.

Power estimated by MEM as a function
of 6.

Power estimated by minimum norm
method as a function df.

Power estimated by MUSIC method as a
function of 6.

Power estimated by MVDR method as a
function of 6.

Output noise power.

Mean output power of the processor for
a givenw.

RLS
RMS

TAM
TDL
TDMA
TLS
Tr(R)
Un

Us

Power of theith source as measured at
the reference element.

Power of a directional interference.
Power of the source in the look direction,
referred to as the signal source.

Mean output power of the conventional
processor.

Sampling pulse.

Postbeam-former interference canceller.
Quadrature phase shift keying.

M — 1 dimensional vector denoting out-
puts of M — 1 auxiliary beams of a
beam-space processor.

Array correlation matrix.

Array correlation matrix estimate at time
instantn.

mth subarray matrix of the forward
method.

mth subarray matrix of the backward
method.

Noise-only array correlation matrix.
Reference signal.

ith correlation lag.

Position vector of theth element.
L.J-dimensional vector denoting correla-
tion between the desired signal and the
array signal vector.

Recursive least square.

Root mean square.

Steering vector in the look direction.
Steering vector in directiof¢y, 67).
Steering vector associated with the direc-
tion (¢,, 8;) or theith source.

Steering vector associated with the direc-
tion 6.

M by M matrix denoting the source
correlation.

Power density of broad-band signsk).
Sample matrix inversion.
Signal-to-noise ratio.

Signal-plus-noise matrix inverse.
Standard deviation.

Delay between successive taps of TDL
filter.

Bulk delay.

Steering delay in front ofth element to
steer an array i, éo) direction.
Steering delay in front ofth element to
steer an array in look direction.

Toeplitz approximation method.

Tap delay line.

Time division multiple access.

Total least square.

Trace of R.

Matrix with its L—M columns being the
eigenvectors corresponding to tiie-Af
smallest eigenvalues af.

Matrix with its A columns being the
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eigenvectors corresponding to th&/ A Sampling interval.
largest eigenvalues. Ag Magnitude of the displacement vector.
U, Unit-norm eigenvector corresponding to bo Forgetting factor.
Ae. 6 Complex scalar denoting the correlation
Uy Column vector of all zeros except one between the signal and an interference.
element, which is equal to one. 8y (f) Correlation between two broad-band sig-
ULA Uniformly spaced linear array. nals z(t) and y(¢).
Vin) Difference between estimated weights e(+) Error signal.
and the optimal weights at thesth &(n) Error signal between the reference signal
iteration. and modified output.
Vy(w(n))  Variance of the gradient. A&(n) Change in error signal when array output
(i, 6;) Unit vector in direction(¢;, ;). is perturbed by a small amouriy.
W Matrix prefilter to block the look direc- e(w(n)) Error between the array output and the
tion in a broad-band beam-space proces- reference signal for a givew(n).
sor. (¢bo, bo) Look direction.
wy Weighting on‘th element for the narrow- (¢1,0r1) Direction of an interference.
band beam former. (¢, 0:) Direction of theith source.
w Array weight vector. &(t) Message part of thdth source using
w Mean of the estimated weights at thtéh frequency modulation.
iteration. A L by L diagonal matrix withh,, £ = 1,
wn—+1) Array weight vector at time instamt+1, L being its diagonal entries.
new weights computed at th@ + 1)th A¢ /th eigenvalue of the array correlation
iteration matrix.
w, Array weights of the conventional beam Amax Maximum eigenvalue of?.
former. M(PRP)  ‘th eigenvalue ofPRP.
W, L weights after th¢m — 1)th tap in TDL Amax(PRP) Maximum eigenvalue oPRP.
structure. 1o Constant.
w Weights of the optimal beam former. I Gradient step size.
WmsE Weights with minimum mean squared p(n) Step size at thesth iteration.
error. 0 Scalar quantity, which depends on the
WSF Weighted subspace fitting. direction of the interference relative to
i) Total signal induced on théth element the signal source and the array geometry.
due to all M directional sources and p(7) Correlation function of a broad-band sig-
background noise. nal.
x¢s(t) Signal induced on théth element due to Py (T) Cross-correlation function.
the signal sources only. b)) L by L matrix with U,, £ = 1, L being
z(n) Array signal vector at time instant. its columns.
z(t) Array signal vector at time instart a2 Variance of random noise.
z'(t) L—1 dimensional signal vector following 0—3 Variance of quantization noise.
matrix prefilter. (6;) Direction of theith source.
z.(t) Array signal vector at time instaritdue Te Time constant of théth trajectory.
to the signal sources only. Te(6;) Time taken by a plane wave arriving
zn(n) Array receiver vector not containing the from theith source in directior{é;) and
signal at time instant. measured from theth element to the
y(t) Output of a beam former at time reference point.
y(n) Output of a beam former when it is Te(Pi, 0;) Time taken by a plane wave arriving from
operating with weightsu(n). the ¢th source in direction(¢;, ;) and
7(n) Modified output of a beam former when measured from théth element.
it is operating with weightsuv(n). 7, (0) Differential delay between elementand
Ye(t) Output of the main beam of a beam-space j due to a source in directiof.
processor. * Complex conjugate.
Ya(t) Weighted output of the auxiliary beams OF Transpose of a vector or matrix.
of a beam-space processor. O Complex conjugate transpose of a vector
i Desired amplitude in the absence of in- or matrix.

terference.

INTRODUCTION

z Correlation between the reference signal l.
and the array signals vector.
Output SNR of the optimal processor.

The demand for wireless mobile communications ser-
vices is growing at an explosive rate, with the anticipation

o>

GODARA: ANTENNA ARRAYS AND MOBILE COMMUNICATIONS—PART I 1197



that communication to a mobile device anywhere on the Section V discusses the effect of errors and perturbations
globe at all times will be available in the near future. An on the performance of the array processing schemes. A
array of antennas mounted on vehicles, ships, aircraft, satel-signal model applicable to multipath situations is discussed,
lites, and base stations is expected to play an important role@nd it is pointed out how multipath degrades the per-

in fulfilling these services’ increased demand for channels formance of an array processing system. Various cures
and in realizing the dream that a portable communication Of Multipath degradation are highlighted in this section,

device the size of a wristwatch will be available at an Whlch also presents a d|scusspn on look direction _a_nd
affordable cost for such services. steering vector errors, element failure and element position

Part | of this paper showed how an antenna array could beerrors, and weight errors. References to many robust beam-

X . . ) . forming schemes are also included in this section. Section
used in various configurations to improve the performance ;
. oS . VI concludes this paper.
of mobile communications systems, with references to the-
oretical analyses, computer simulations, and experimental
system developments. Il. BEAM FORMING

Array signal processing involves the manipulation of  In this section, various beam-forming methods are dis-
signals induced on the elements of an array. The wide- cussed in detail. First, notation, terminology, and a signal
spread interest in the subject area has been maintainednodel useful for this purpose are introduced.
over decades due to its applicability to many walks of life.

The first issue of IEEE RANSACTIONS ONANTENNAS AND A. Terminology and Signal Model

PROPAGATION, published in 1964 [1], has been followed by
many special issues of various journals [2]—[6], a humber
of books [7]-[12], a selected bibliography [13], and a vast
amount of specialized research papers. Some of the gener
papers that discuss various issues include [14]-[31].

This paper provides a comprehensive review of various
beam-forming schemes, adaptive algorithms to adjust the
required weighting on antennas, DOA estimation methods,
and array-system sensitivity to parameter perturbations. As e (e, 65)
array signal processing has applications in many other T($iy0i) = —— ——
disciplines, this paper aims to provide a complete treatment . N
of the subject area by extending coverage to topics thatWherer, is the position vector of théth elementi(¢;, 6)
might not be directly relevant to mobile communications. 1S the unit vector in directior(¢;, 6;), c is the speed of
This paper, however, provides references where beam-Propagation of the plane wave front, andepresents the
forming and DOA estimation methods have been suggestedNner product. For a linear array of equispaced elements
for mobile communications systems. with lelement qucmgl aligned with thgx—e}ms such that

In Section II, a signal model useful for array processing the first element is situated at the origin, it becomes
is presented along with various beam-forming schemes, d
including descriptions of conventional delay and sum beam Te(0i) = (£ = 1) cosb;. )
formers, null steering, constrained beam forming and op-
timization using a reference signaL beam_space process- The Signal induced on the reference element due to the
ing, broad-band array processing in time and frequency ith source is norma”y eXpressed in CompleX notation as
domains, digital beam forming, and eigenstructure meth- 2w fot 3
ods. Section Il describes adaptive algorithms to adjust mi(t)e (3)

the Weltgh.ts gf an arrl?y' Thesetalgortljthlr_nl\jslnclude ?Ml’d with m;(t) denoting the complex modulating function. The
E&Cg nstralrle das W;. ?SRCLOSHSéS:Ze o tnormzllzet structure of the modulating function reflects the particular
» Structured gradient, ' » conjugate gradient -, 44 ation used in a communications system. For example,

method, and neural-network approach to beam forming. for an FDMA system, it is a frequency-modulated signal

Some discussion on implementation issues, convergencegiven bymi(t) _ Aiej&(t), with A; denoting the amplitude

characteristics of adaptive algorithms, and signal sensitivity andgi(#) denoting the message. For a TDMA system, it is
of the LMS algorithm is also provided in this section. givenz by ' '

Section IV describes various DOA estimation methods,
compares their performance, and analyzes their sensitiv- mi(t) = Zdi(”)p(t —nd) (4)
ity. These methods include spectral estimation, MVDR n
estimator, linear prediction, maximum entropy, ML, var-
ious eigenstructure methods—including many versions of

Consider an array ofl. omnidirectional elements im-
mersed in a homogeneous media in the far fieldMbf
llmcorrelated sinusoidal point sources of frequefigyLet
%he origin of the coordinate system be taken as the time
reference, as shown in Fig. 1. Thus, the time taken by a
plane wave arriving from théth source in directiori¢;, 6;)
and measured from thith element to the origin is given by

1)

where p(t) is the sampling pulse, the amplitud&(n)
denotes the message symbol, @i the sampling interval.

MUSIC a_Igorithrns—min-norm,_ CLOSEST, ESPRIT, a_nd For a CDMA systemyn;(t) is given by
WSEF. This section also contains a discussion on various
preprocessing and number-of-source estimation methods. m;(t) = d;(t)g(t) (5)
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_// ~ ~ Fig. 2. Narrow-band beam-former structure.
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X
bandpass filters, and so on. It follows from the figure that
an expression for the array output is given by

Fig. 1. Definition of coordinate system.

y(t) =Y wiw(t) ®)
=1

where d;(n) denotes the message sequence gidl is a .
. . . where x denotes the complex conjugate.
pseudo-random noise binary sequence having the values : .
41 or -1 [32]. Denoting the weights of the beam former as
In general, the modulating function is normally modeled w = [wy,wa, -+, wr]’ 9
as a complex low-pass process with zero mean and variance d sianals induced Il el
equal to the source power, as measured at the reference and signals induced on all elements as
element.. _ 2(t) = [z1(t), @2(t), -2 (O] (10)
Assuming that the wavefront on tlféh elements arrives
e(¢s,6;) seconds before it arrives at the reference element, € output of the beam former becomes
the signal induced on théh element due to théth source y(t) = wz(t) (11)

can be expressed as . _
where superscriptd and H, respectively, denote the trans-

pose and complex conjugate transpose of a vector or matrix.

The expression is based upon the narrow-band assump-ThrOnghOUt this papeny and x(t) are referred to as the

tion for array signal processing, which assumes that the array weight vector and the array signal vector, respectively.

. . . If the components og(¢) can be modeled as zero mean
bandwidth of the signal is narrow enough and that the array . .
. X . . 7 stationary processes, then for a giventhe mean output
dimensions are small enough for the modulating function

to stay almost constant during(¢;,8;) seconds, that is, power of the processor is given by

mi(t)ej%fo (t+7e(:,64)). ©)

the approximationn;(t) = m;(¢t + 7¢(¢:, 8;)) holds. P(w) = E[y(t) y*(t)]
Let z, denote the total signal induced due to Al di- — wH Rw (12)
rectional sources and background noise on/theelement. -
Then it is given by where E[-] denotes the expectation operator aRids the
u array correlation matrix defined by
ze=Y my(t)el? o T @) o (2) @) R=E[z(t) z(@). (13)
.Zzl . Elements of this matrix denote the correlation between
where n,(t) is a random noise component on tlith various elements. For examplB;; denotes the correlation

element, which includes background noise and electronic petween theith and thejth element of the array. Denote
noise generated in théth channel. It is assumed to be the steering vector associated with the directign 6;) or

temporally white with zero mean and variance equat}o the jth source by arL-dimensional complex vectas, as
It should be noted that if the elements were not omnidi-

rectional, then the signal induced on each element dueto a % = [exp(j2m fori(¢i,0:), - - exp(j2m forr (¢, 6:)]"

source is scaled by an amount equal to the response of the ) ) ) _ (14)

element under consideration in the direction of the source. Algebraic manipulation using (7), (10), and (13) leads to
Consider a narrow-band beam former, shown in Fig. 2, the following expression for?

where signals from each element are multiplied by a M

complex weight and summed to form the array output. The R= Zp@gf{ + 021 (15)

figure does not show components such as preamplifiers, i=1
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where[ is an identity matrix angh; denotes the power of  form an orthonormal set, this leads to the following expres-
the ith source measured at one of the elements of the array.sion for R

It should be noted thap; is the variance of the complex M
modulating functionm;(¢) when it is modeled as a zero R— Z)‘ZUZU? + o2, (22)
mean low-pass random process, as mentioned previously. -

Using matrix notation, the correlation matri may be

expressed in the following compact form: There are many schemes to select the weights of the beam

former depicted in Fig. 2, each with its own characteristics
R=ASAY 4 521 (16) and limitations. Some of these are now discussed.

where columns of thd by A matrix A are made up of
steering vectors, i.e.,

B. Conventional Beam Former

A conventional beam former is a simple beam former,
A=1[81,89,""",Spm] 17) sometimes known as the delay-and-sum beam former, with

. . all its weights of equal magnitudes. The phases are selected
and M by M matrix S denotes the source correlation. For to steer the array in a particular directiéng, 6o), known

uncorrelated sources, it is a diagonal matrix with as the look direction. Witly, denoting the steering vector
. in the look direction, the array weights are given by
o _ )P, =]
’ ' W, = 7350 (23)

Sometimes, it is useful to expressin terms of its eigen- L
values and their associated eigenvectors. The eigenvalues of he array with these weights has unity response in the look
R can be divided into two sets when the environment con- direction, that is, the mean output power of the processor
sists of uncorrelated directional sources and uncorrelateddue to a source in the look direction is the same as the
white noise. source power. This may be understood as follows.

The eigenvalues contained in one set are of equal values. Assume that there is a source of powerin the look
Their value does not depend upon the directional Sourcesdirection, hereafter referred to as the Signal source, with
and is equal to the variance of the white noise. The ms(f) denoting its modulating function. The signal induced
eigenvalues contained in the second set are a function ofon thefth element due to this source only is given by
the parameters of the directional sources, and their number es(t) = mg(£)e 2o (H7e(00.00)) (24)
is equal to the number of these sources. Each eigenvalue of ® ® '
this set is associated with a directional source, and its value  Thys, in vector notation, using a steering vector to denote
changes with the change in the source power of this sourcerejevant phases, the array signal vector due to the look
The eigenvalues of this set are bigger than those associatedjrection signal becomes
with white noise. Sometimes, these eigenvalues are referred ,
to as the signal eigenvalues, and the others belonging to the z,(t) = my(t)e ™ hts, (25)
first set are referred to as the noise eigenvalues. Thus, the ) )
R of an array ofL elements immersed in/ directional ~ @nd the output of the array with weight vector becomes
sources _and t_he white noise h&s signal eigenvalues and y(t) = whz (1)
L-M noise eigenvalues. ;

Denotin i [ [ = ms () (26)

g theL eigenvalues ofRR in descending order
by A¢, £ =1, L and their corresponding unit-norm eigen- yie|ding the mean output power of the processor
vectors bylU,, £ = 1, L, the matrix takes the following
form: P(w,) = Ely(t) v'(t)]
R=3xAxH (19) = Ds- (27)
Thus, the mean output power of the conventional beam
former steered in the look direction is equal to the power
A1 of the source in the look direction. The process is similar to
. 0 steering the array mechanically in the look direction except
A= A (20) that it is done electronically by adjusting the phases. This is
0 . also referred to as electronic steering, and phase shifters are
AL used to adjust the required phases. It should be noted that
the aperture of an electronically steered array is different
from that of a mechanically steered array.
Y=[U, --- U] (21) The concept of a delay-and-sum beam former can be
further understood with Fig. 3, which shows an array with

This representation sometimes is referred to as the spectwo elements separated by distarkédssume that a plane

tral decomposition oR. Using the fact that the eigenvectors wave arriving from directior® induces voltages(¢) on the

with a diagonal matrix

and
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s(t-T)

Output s(t-T )

i

Fig. 3. Two-element delay-and-sum beam-former structure.

first element. As the wave arrives at the second elerfient wheres; denotes the steering vector in directiopy, 67).
seconds later, with In the next section, a beam former that puts nulls in the
4 directions of interferences is described.
T = —cosf (28)
¢ C. Null-Steering Beam Former
the induced voltage on the second element egs(als T). A null-steering beam former is used to cancel a plane
If the voltage induced at the first element is delayed by wave arriving from a known direction and thus produces a
an amount equal t&, producing voltages(t — T'), and no null in the response pattern in the DOA of the plane wave.
delay is provided at the second element, then both voltageOne of the earliest schemes, referred to as DICANNE [33],
waveforms appear in phase and the output of the beam[34], achieves this by estimating the signal arriving from
former is produced by summing these waveforms. A scaling a known direction by steering a conventional beam in the
of each waveform by 0.5 provides the gain in directtbn  direction of the source and then subtracting the output of
equal to unity. this from each element. An estimate of the signal is made
In an environment consisting of only uncorrelated noise by delay-and-sum beam forming using shift registers to
and no directional interferences, this beam former provides provide the required delay at each element such that the
maximum SNR. For uncorrelated noise, tRg is given by signal arriving from the beam-steering direction appears in
phase after the delay. Then these waveforms are summed
Ry =01 (29) with equal weighting. This signal is then subtracted from
each element after the delay. The process is very effective
for canceling strong interference and could be repeated for
multiple interference cancellation.
5 Though the process of subtracting the estimated in-
— (30) terference using a delay-and-sum beam former used by
L DICANNE scheme is easy to implement for single inter-
It shows that the noise power at the array output is ference, it becomes cumbersome as the number of inter-
L times less than that present on each element. Thusferences grows. A beam with unity response in the desired
the processor with unity gain in the signal direction has direction and nulls in interference directions may be formed
reduced the uncorrelated noise By yielding the output ~ by estimating the weights of a beam former, shown in
SNR = p,L/c2. As the input SNR ig, /o2 this provides Fig. 2, using suitable constraints [22], [34]. Assume that
an array gain, which is defined as the ratio of the output iS the steering vector in the direction where unity response
SNR to the input SNR, equal tb the number of elements i required and that,, ---, s, are k steering vectors
in the array. associated withk directions where nulls are required.
Though this beam former provides maximum output SNR The desired weight vector is the solution of following
when there is no directional jammer operating at the same Simultaneous equations:
frequency, it is not effective in the presence of directional wHSO -1 (32)
jammers, intentional or unintentional. The response of the e ,
processor toward a source in directigy, 6;) is given by w's =0, i=1-,k (33)

Using matrix notation, this becomes
w4 =¢f (34)

and the output noise power of the beam former

o
Py =w/ Ryw,

g

1
wlls; = E§5I§f (31)
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where A is a matrix with its columns being the steering whereRy is the array correlation matrix of the noise alone,
vectors associated with all directional sources, including that is, it does not contain any signal arriving from the
the look direction, that is look direction(¢o, 6p), and o is a constant. For an array

constrained to have a unit response in the look direction,

A
A= 50,515, 5] (35) this constant becomes
and ¢, is a vector of all zeros except the first element, — 1 (40)
S =1 : PO = -1
which is one, that is sg By sg
e, =[1,0,---,0]%. (36) leading to the following expression for the weight vector:
-1
Fork =L —1, Ais a square matrix. Assuming that the W= 51\—_%0 (41)
inverse ofA exists, which requires that all steering vectors sy iy 3o
are linearly independent [35], the solution for the weight  As the weights are computed using NAME, the processor
vector is given by with these weights is referred to as the NAME processor
wh = L AL, 37) [42]. It is also known as the ML filter [43], as it finds the

ML estimate of the power of the signal source, assuming

In case the steering vectors are not linearly independent,all sources as interferences. It should be ndtgdmay not
A is not invertible, and its pseudo inverse can be used in be invertible when the background noise is very small. In

its place. that case, it becomes a rank deficient matrix.
It follows from this equation that due to the structure of  In practice, when the estimate of the noise-alone matrix
the vectore, , the first row of the inverse of matrid forms is not available, the totak (signal plus noise) is used to

the weight vector. Thus, the weights selected as the firstestimate the weights and the processor is referred to as the
row of the inverse of matrixi have the desired properties SPNMI processor. An expression for the weights for this
of unity response in the look direction and nulls in the case is given by

directions of interferences. X R-ls,
When the number of required nulls is less thar 1, A L= FRoig (42)
is not a square matrix. A suitable estimate of weights may 0
be produced using These weights are the solution of the following optimiza-
tion problem:
w' = AT (AAT) 7L (38)

minimize  w" Rw
Though the beam pattern produced by this beam former _ﬁ =
has nulls in the directions of interferences, it is not designed subjectto  w"sy = 1. (43)

to minimize the uncorrelated noise at the array output. Itis  Thus. the processor weights are selected by minimizing
possible to achieve this by selecting weights that minimize ho mean output power of the processor while maintaining

the mean output power subject to the above constraints [36]. ity response in the look direction. The constraint ensures
An application of a null-steering scheme for detecting an ¢ the signal passes through the processor undistorted.
amplitude modulated signal by placing nulls in the known Therefore, the output signal power is the same as the
directions of interferences is described in [37], which is |45, _girection source power. The minimization process
able to cancel a strong jammer in a mobile communications then minimizes the total noise, including interferences
system. The use of a null-steering scheme for a transmitting 3ny yncorrelated noise. Minimizing the total output noise
array employed at a base station, discussed in [38], min-\yhile keeping the output signal constant is the same as
imizes the mterference; toward other cqchannel _mOb”?S-maximizing the output SNR.
A performance analysis of a null-steering algorithm is |t should be noted that the weights of the NAMI processor
presented in [39]. and the SPNAMI processor are identical, and in the absence
of errors, the processor performs identically in both cases.
D. Optimal Beam Forming This fact can be proved as follows.
The null-steering scheme described in the previous sec- The Matrix Inversion Lemma for an invertible matrix
tion requires knowledge of the directions of interference and a vectorz states that

sources, and the beam former using the weights estimated ALyt 41
by this scheme does not maximize the output SNR. The (A+zz™)yt =47 - Traiais 44
optimal beam-forming method described in this section _ = =
overcomes these limitations. Since

L_et an L-dimensional complex ve_cto@_; represent the . R =p,sost! + Ry (45)
weights of the beam former shown in Fig. 2, which maxi- _ _
mizes the output SNR. For an array that is not constrained, it follows from the Matrix Inversion Lemma that
an expression fotv is given by [17], [24], [40], [41] P Ps RKfl sosh RKfl (46)

=Ry — .
i = poRyts, (39) 1+ s Ry sops
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A substitution forR—! in (42) and algebraic manipulation

An interesting special case is one where the interference

leads to the expression for weights given by (41), showing is much stronger compared to the background ngiges>

that the two expressions are identical.

The processor with these weights is referred to as the

optimal processor. The output SNR of the optimal
processor is given by [29]

1

& = psstt Ry s (47)

For a special case of the noise environment when no
direction interference is present, a simple calculation yields

So
.

w=

(48)

Thus, the weights of the optimal processor in the absence
of errors are the same as those of the conventional proces-

sor, implying that the conventional processor is the optimal

processor for this case. The output SNR and the array gain

G of the optimal processor for this case are, respectively,
given by

@:ﬁf (49)
and
G=1L (50)

For the case of one-directional interference of powger
the expression for the output SNR becomes

2
Lo+ o
o=t nl (51)
On 14+ ]THL
and the array gain is given by
0'2 0'2
@:pf_L(lJFPI)(pJFPrL) (52)
0% 14+pr
where
H H
p=1- S0 8181 So (53)

L2
is a scalar quantity and depends upon the direction of
the interference relative to the signal source and the ar-

ray geometry [29]. It follows from (23) and (53) after
rearrangement that

p=1-wsstw.. (54)

Thus, this parameter is characterized by the weights of

o2. For this case, these expressions may be approximated as

oL
g (55)
O—Tl
and
. L
G2l (56)
O—Tl

When interference is away from the main lobe of the
conventional processgs = 1, it follows that the output
SNR of the optimal processor in the presence of a strong in-
terference is the same as that of the conventional processor
in the absence of interference, implying that the processor
has almost completely canceled the interference, yielding a
very large array gain.

The performance of the processor in terms of its output
SNR and the array gain is not affected by the look-direction
constraint, as it only scales the weights. Therefore, the
treatment presented above is valid for the unconstrained
processor.

For the optimal beam former to operate as described
above and to maximize the SNR by canceling interferences,
the number of interferences must be less than or equal to
L — 2, as an array withL, elements had — 1 degrees
of freedom and one has been utilized by the constraint
in the look direction. This may not be true in a mobile
communications environment due to existence of multipath
arrivals, and the array beam former may not be able to
achieve the maximization of the output SNR by suppressing
every interference. As argued in [46], however, the beam
former does not have to suppress interferences to a great
extent and cause a vast increase in the output SNR to
improve the performance of a mobile radio system. An
increase of a few decibels in the output SNR can make
a large increase in the channel capacity of the system
possible.

In mobile communications literature, the optimal beam
former is often referred to as the optimal combiner. Dis-
cussion on the use of the optimal combiner to cancel
interferences and to improve the performance of mobile
communications systems can be found in [46]-[49].

It should be noted that the optimal beam former described
in this section, also known as the MVDR beam former, does
not require the knowledge of the directions and power levels
of the interferences as well as the level of the background
noise power to maximize the output SNR. It requires only
the direction of the desired signal. In the next section,
a processor is described that requires a reference signal
instead of the desired signal direction.

the conventional processor. As this parameter characterizes

the performance of the optimal processor, it implies that
the performance of the optimal processor in terms of its
interference cancellation capability depends to a certain

E. Optimization Using Reference Signal

A narrow-band beam-forming structure that employs a
reference signal [24], [27], [28], [50]-[52] to estimate the

extent upon the response of the conventional processor toweights of the beam former is shown in Fig. 4. The array
the interference. This fact has been further highlighted in output is subtracted from an available reference sig(al

[44] and [45].
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to generate an error signalt) = r(t)

H

— w" z(t), which is
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Fig. 4. Structure of narrow-band beam former using a reference signal.

used to control the weights. Weights are adjusted such thatthe output would consist of the signal that has not been
the MSE between the array output and the reference signalcanceled but strong interferences have been reduced.
is minimized. The MSE is given by When an adaptive scheme (discussed in Section I111-B)
MSE = E[|e(t)]] is used to estimaté, s, the strong jammer gets canceled
first as the weights are adjusted to put a null in that direction
= E[lr®)P] + w" Rw — 20" 2 (57) to leave signal-to-jammer ratio sufficient for acquisition.
Arrays using reference signals equal to zero to adjust
weights are referred to as power-inversion adaptive arrays
z=Ez(t) r(t)] (58) [63]. The MSE minimization scheme (the Wiener filter) is
i ) , a closed-loop method compared to the open-loop scheme
is the correlation between the reference signal and the arrayy¢ pyvpR (the ML filter) described in the previous section.
signals vectorz(f). _ _ _ In general, the Wiener filter provides higher output SNR
.The. MSE surfa_ce IS a qugdrauc_ function of and is compared to the ML filter in the presence of a weak signal
m'”'m'ze‘?' bY setting its gradient \,N'th respect@egual source. As the input signal power becomes large compared
to zero, yielding the well-known Wiener—Hoff equation for  1e hackground noise, the two processors give almost the
the optimal weight vector same results [54]. This result is supported by a simulation
e = Rz (59) study for a two-vehicle mobile com_municatioqs situgtion in
[55]. The increased SNR by the Wiener filter is achieved at
The MMSE of the processor, also known as the Wiener the cost of signal distortion caused by the filter. It should
filter, using these weights is given by be noted that the optimal beam former does not distort the
— (2] _ L Hp—1 signal.
MMSE = Ellr()I"] - 2" Bz (60) The required reference signal for the Wiener filter may
The scheme may be employed to acquire a weak signalbe generated in a number of ways, depending upon the
in the presence of a strong jammer, as discussed in [50],application. In digital mobile communications, a synchro-
by setting the reference signal to zero and initializing the nization signal may be used for initial weight estimation,
weights to provide an omnidirectional pattern. The process followed by the use of detected signal as a reference signal.
starts to cancel strong interferences first and the weak signalln systems using a TDMA scheme, a sequence that is user
later. Thus, intuitively, there is expected to be a time when specific may be a part of every frame for this purpose [56].

where
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The use of a known symbol in every frame has also been {x®

suggested [57]. In other situations, the use of an antenna

for this purpose has been examined to show the suitability

to provide a reference signal [57]. X0
Studies of mobile communications systems using ref- Y

erence signals to estimate array weights have also been

reported in [58]-[60].

Main Beam

F. Beam-Space Processing Y w0

In contrast to element-space processing, where signals

derived from each element are weighted and summed to Fixed Weights Output y(»
produce the array output, beam-space processing is a two- N
stage scheme where the first stage takes the array signals Auxilary Beams
as input and produces a set of multiple outputs, which are 9,0 —
then weighted and combined to produce the array output. B 9.
These multiple outputs may be thought of as the output ' ©
of multiple beams. The processing done at the first stage _quu_g
is by fixed weighting of the array signals and amounts Matrix
to produce multiple beams steered in different directions. Prefilter
These weights are normally not adaptive, that is, they areFrig. 5. Structure of a general beam-space processor.
not adjusted during adaption cycle. The weights applied
to different beam outputs to produce the array outputs are
optimized to meet a specific optimization criteria and are
adjusted during the adaption cycle.

In general, for an.-element array, a beam-space proces-
sor consists of a main beam steered in the signal direction
and a set of not more thah — 1 secondary beams. The
weighted output of the secondary beams is subtracted from g =z (t)B (61)
the main beam. The weights are adjusted to produce an =

estimate of the interference present in the main beam.\yhereis — 1 dimensional vectoy(t) denotes the outputs of
The subtraction process then removes this interference.;s _ | peams and the matrig. referred to as the blocking
The secondary beams, also known as auxiliary beams, aréyatrix or the matrix prefilter, has the property thatifs— 1
designed such that they do not contain the desired signalcolymns are linearly independent and that the sum of the
from the look direction to avoid the signal cancellation gjements of each column equals zero, implying that- 1

in the subtraction process. A general structure of such peams are independent and have nulls in the look direction.

a processor is shown in Fig. 5. Beam-space processorstor an array that is not presteered, the matrix needs to
have been studied under many different names, including satisfy

Howells—Applebaum array [24], [51], [61], GSC [62], [63],

Adjustable Weights

array signals induced from a source in the look direction is
identical after the presteering, and this gets canceled in the
subtraction process from the adjacent pairs. The process can
be generalized to produck/ — 1 beams fromL-element
array signalsc(t) using a matrixB such that

partitioned processor [64], [65], partially adaptive arrays siiB=0 (62)
[66]-[72], PIC [73]-[77], adaptive-adaptive arrays [78], and
multiple-beam antennas [79]-[81]. where s, is the steering vector associated with the look

The pattern of the main beam is normally referred to direction.
as the quiescent pattern, and is chosen such that it has a It is assumed in the above discussion thdt < L,
desired shape. For a linear array of equispaced elementsmplying that the number of beams is less than or equal
with equal weighting, the quiescent pattern has the shapeto the number of elements in the array. When the number
of sin Lz /sinz, with L being the number of elements in of beams is equal to the number of elements in the array,
the array, whereas for Chebyshev weighting (the weighting the processing in the beam space has not reduced the degree
dependent upon the coefficients of the Chebyshev poly- of freedom of the array, that is, its null-forming capability
nomial), the pattern has equal side-lobe levels [82]. The has not been reduced. In this sense, these arrays are fully
pattern of the main beam may be adjusted by various formsadaptive and have the same capabilities as those of the array
of constraints [51] and pattern synthesis techniques, whichusing element-space processing. In fact, in the absence of
are discussed in [83]-[87] and the references therein. errors, both processing schemes produce identical results.

There are many schemes to generate the outputs of auxOn the other hand, when the number of beams is less
iliary beams such that no signal from the look direction is than the number of elements, the arrays are referred to
contained in them, that is, the beams have nulls in the look as partially adaptive. The null-steering capabilities of these
direction. In its simplest form, this can be accomplished by arrays have reduced to that equal to the number of auxiliary
subtracting the array signals from presteered adjacent pairdbeams. When adaptive schemes are used to estimate the
[26], [88]. This relies on the fact that the component of the weights, the convergence is generally faster for these arrays.
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The MSE for these arrays, however, is also high comparedthe formation of beams pointed in these directions may lead
to that of the fully adaptive arrays [89]. to more efficient interference cancellation [78], [92].

These arrays are useful in situations where the number The auxiliary beam outputs are weighted and summed,
of interferences is much less than the number of elements.and the result is subtracted from the main beam output to
They offer a computational advantage over element-spacecancel the unwanted interference present in the main beam.
processing, as one needs only to adjist— 1 weights The weights are adjusted to cancel the maximum possible
compared toL weights for the element-space case with interference. This is normally done by minimizing the total
M < L. Moreover, beam-space processing requires lessmean output power after subtraction by solving the uncon-
computation than the element-space case to calculate thestrained optimization problem, and leads to maximization
weights in general, as it solves an unconstrained opti- of the output SNR in the absence of the desired signal
mization compared to the constrained optimization prob- in auxiliary channels. The presence of the signal in these
lem solved in the later case. It should be noted that for channels causes signal cancellation from the main beam,
the element-space processing case, the constraints on thalong with interference cancellation. A detailed discussion
weights are imposed to prevent the signal arriving from the on the principles of signal cancellation in general and some
look direction from being distorted and to make the array possible cures is given in [28], [52], and [93].
more robust against errors. For the beam-space case, these Use of multiple-beam array-processing techniques for
are transferred to the main beam, leaving the adjustablemobile communications has been reported in various studies
weights free from constraints. [94]-[98], including development of a 16-element array

A performance comparison of an element-space proces-system using digital hardware to study its feasibility [99].
sor and a beam-space processor for the case of a single
interference case is presented in [90]. The beam-spaceG. Broad-Band Beam Forming
processor considered is a single auxiliary beam processor, The peam-former structure of Fig. 2 discussed earlier is
referred to as the PIC processor, which is useful for o narrow-band signals. As the signal bandwidth increases,
canceling single interference only. The study shows that he performance of the beam former using this structure

in the absence of errors, both processors produce identicagtartS to deteriorate [100]. For processing broad-band sig-
results, whereas in the presence of look-direction errors, the,51s a TDL structure. shown in Fig. 6, is normally used

beam-space processor produces superior performance. They 00]-[108]. A lattice structure consisting of a cascade of

situation arises when the known direction of the signal is J simple lattice filters sometimes is also used [109]-[113],

different from the actual direction. _ _ offering some processing advantages.
The weights of the processor are constrained with the 1he steering delays in front of each element in Fig. 6

knowledge of the look direction. When the actual signal g pure time delays and are used to steer the array in a
direction is different from the one that is used to constrain given look direction(go, 8o). If 7¢(co,60) denotes the time
weights, the element-space processor cancels this signal ag;xen by the plane wave arriving from directi¢m, 6o)

if it was an interference close to the look direction. The 5,4 measured from the reference point to treelement

beam-space processor, on the other hand, is designed tgnen the steering delad; (o, 60) may be selected using
have the main beam steered in the known look direction,

and the auxiliary beams are formed to have null in this Ty(bo, b0) = To + e(po,00), £=1,2,---,L (63)
direction. The response of the main beam does not alter ,

much away from the look direction, and thus the signal WhereTo is a bulk delay such thak(¢o, 6o) > 0, V.

level in the main beam is not affected. Similarly, when I s(t) denote the signal induced, on an element present
a null of the auxiliary beams is placed in the known at the center of the coqrdlnate system, due to a broad-band
look direction, a very small amount of the signal leaks source of power de.nsnﬁ(f).theln the output of theth

in the auxiliary beam due to a source very close to the SENSOr pre-steered ibo, o), is given by

nyll. Thus, the subtrac.tion process dpes not affect the ze(t) = s(t + 76(,0) — Tu(bo, 60)). (64)
signal level in the main beam, yielding a very small

signal cancellation in beam-space processing compared td~or a source in(¢o, fp), it becomes

element-space processing. For details of the effect of other

errors on beam-space processors, particularly GSC, see, for w(t) =s(t=To) £=1,2,--,L (65)
example, ,[91]' i ) yielding identical waveforms after pre-steering delays.

The auxiliary beam-forming techniques other than the use * o Tp| structure shown in the figure following the
011: a blocking r:natrlx (described above) mpludes formathn steering delay on each channel is a FIR filter. The co-
?hej\{j ir_ecltic?rrlt ;gﬁ'\r:::f:fei?(isa;dk;%wstl?rr;]eObe(;?nmsSalrr:a efficients of these f_ilters are C(_)nstrained to specify the

' frequency response in the look direction. It should be noted

referred to gs C}rthogt?nal beams tg |mply| thr?t the xve_lg:t that these coefficients are real compared to the complex
vectors used to form beams are orthogonal, that is, their dotyyeiants of the narrow-band processor.

product is equal to zero. The eigenvectorsioftaken as Let w, defined by
weights to generate auxiliary beams fall into this category. -
In situations where the DOA's of interferences are known, w = [wy,wy, -, wy]* (66)
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Fig. 6. Broad-band beam-former structure using TDL filter.

denote LJ coefficients of the filter structure withy,,
denoting theL coefficients after the€ A/ — 1)th tap. The
mean out power of the beam former for a givens given

by
P(w) = w” Rw (67)

where theLJ x L.J-dimensional real matrix? denotes

<

It is related to the spectrum of the signal by the Fourier
transform, that is

o) = [ s (70)

Thus, from the knowledge of the spectra of sources and
their DOA’s, the correlation matrix may be calculated. In

the array correlation matrix, with its elements representing practice, this can also be estimated by measuring signals at
the correlation between various tap outputs. The correlationthe output of various taps.

between the outputs of tHé — 1)th tap on thenth channel
and the(k — 1)th tap on thenth channel is given by

(Rm,n)é,k = p[(m - ”)T + Té((/)oa 90) - Tk(¢07 90)
+ (¢, ) — 7, 0)] (68)

with p(7) denoting the correlation function
p(7) = Els(t)s(t +7)]. (69)

GODARA: ANTENNA ARRAYS AND MOBILE COMMUNICATIONS—PART I

In situations where one is interested in finding coeffi-
cients such that the beam former cancels the directional
interferences and has the specified response in the look
direction, the following beam-forming problem is normally
considered:

minimize  w' Rw (71)
subjectto  CTw=F (72)
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Fig. 7. Structure of partitioned realization of the broad-band beam former.

where £ is a J-dimensional vector that specifies the fre-
guency response in the look direction afids anL.J x J
constraint matrix. For a point constraint in the look direction

1 0

(73)
0 1
with 1 denoting theL-dimensional vector of 1s. Lefy

denote the solution of the above problem. It is given by
[25]

@ =RC(CTRO)7IE. (74)

The point-constraint minimization problem specifiés
constraints on the weights such that the suniofeights
on all the channels before thi¢h delay is equal td’;. For

all pass frequency responses in the look direction, all but

onefy, j=1,---,J are selected to be equal to zero. For
Jj close to(J + 1)/2, F; is taken to be unity. Thus, the

constraints specify that the sum of the weights across the

array is zero except for one near the middle of the filter,
which is equal to unity.

The implication of these constraints is that the array

point constraint in the known direction of the signal would
cancel the desired signal as if it were an interference. The
other directional constraints to improve the performance
of the beam former in the presence of the look-directional
constraints include multiple linear constraints [117], [118]
and inequality constraints [119]-[121].

A set of nondirectional constraints to improve the per-
formance of the beam former under look-direction errors
is discussed in [122]. These are referred to as correlation
constraints, which use the known characteristics of the
desired signal to estimate ai/-dimensional correlation
vector r, between the desired signal and the array signal
vector. The beam-forming problem using these constraints
becomes

w? Rw

T,
TqW = po

minimize
subject to

(75)
(76)

where pg is a scalar constant that specifies the correlation

between the desired signal and the array output.
Application of broad-band beam-forming structures using

TDL filters to mobile communications has been considered

in [56] and [123]—-[125] to overcome multipath fading and
large delay spread in a TDMA as well as a CDMA system.

pattern has a unity response in the look direction. This pat- H. Partitioned Realization

tern can be broadened by specifying additional constraints,

The broad-band beam-former structure shown in Fig. 6

such as derivative constraints [114]-[116], along with the is sometimes referred to as an element-space processor
constraints discussed above. The derivative constraints sebr direct form of realization, compared to a beam-space

the derivatives of the power pattern with respect é&to
and ¢ equal to zero in the look direction. The higher the

order of derivatives, that is, the first order, second order,

processor or partitioned form of realization, as shown in
Fig. 7. The structure shown in Fig. 7 is discussed below
for a point constraint, that is, the response is constrained to

etc., the broader the beam in the look direction normally be unity in the look direction. A discussion of partitioned
becomes. A broader beam is useful when the actual signalrealization for derivative constraints may be found in [126].

direction and the known direction of the signal is not

The steering delays are used to align the waveform

precisely the same. In such situations the processor with thearriving from the look direction, as discussed. The array
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signals after the steering delays are passed through twothe maximum attainable SNR and depends upon the FBW
sections. The top section consists of a broad-band conven-of the signal. This range includes a quarter-wavelength
tional beam with required frequency response obtained by spacing at the center frequengy. The quarter-wavelength

selecting the coefficients of the FIR filter. Signals from all

spacing produces a 9(hase shift atf, and is equal to

of the channels are equally weighted and summed. For this1/4f,. By measuring the tap spacing as a multiple of this

realization to be equivalent to the direct form of realization,
all the weights need to be equal fig/L, and the filter
coefficients F;, j = 1,2,---,J need to be specified as
before. Furthermore, the output of the upper section is given

by

J—1
ve(t) = > Frpay(t — Tk) (77)
k=0
with
ot = 0L (78)

The matrix prefilter shown in the lower section is de-
signed to block the signal arriving from the look direction.

Since these signal waveforms after the steering delays are

alike, it can be achieved by selecting the mafii% such
that the sum of each of its rows is equal to zero. For the
partitioned processor to have the same degree of freedo
as that of the direct form, theé — 1 rows of the matrixi,
need to be linearly independent. The outpUt) after the
matrix prefilter is anL — 1-dimensional vector given by

2(t) = Wiz (t) (79)

and can be thought of as the outputslof 1 beams, which
are then shaped by the coefficients of the FIR filter of each
TDL section. Let anL — 1-dimensional vector, denote
these coefficients before thgh delay. The output of the
lower filter is then given by

1
aj2'(t — kT).
0

~
|

(80)

Ya(t)

=~
Il

These coefficients are selected by minimizing the mean
output of the processor, that is

minimize E[(ye(t) — ya(t)?)]. (81)

The performance of the broad-band arrays as a function
of the number of various parameters, such as the number

delay, it is indicated that the intertap spacing with multiple
aroundl/FBW vyields close to the highest attainable SNR.
With the multiple betweeri /FBW to 4/FBW, one needs
a larger number of taps for an equivalent performance.

A study of the jamming rejection capability [104] and
the tracking performance of the array in a nonstationary
environment [105] also indicates that when tap spacing is
measured in terms of the center frequency of the signal, the
best performance is achieved when the spacing/isf,.

For this tap spacingR has less eigenvalue spread, which
is the reason for this performance. The eigenvalue spread
of a matrix indicates the range of values its eigenvalues
take. A larger ratio of the largest eigenvalue to the smallest
eigenvalue indicates a larger spread.

The TDL filter tends to increase the degrees of freedom
of the array, which may be traded against the number of
elements such that an array with elements is able to
suppress more thah—1 directional interferences, provided

rT}heir center frequencies are not the same and fall within the

FBW of the signal [107].

Though the TDL structure with constrained optimization
is the commonly used structure for broad-band array signal
processing, alternative methods have been proposed. These
include:

1) adaptive nonlinear schemes, which maximize SNR
subject to additional constraints [127];

a variation of a Davis beam former [88], which adapts
one filter at a time to speed up convergence [128];

a composite system, which also utilizes a derivative
of beam pattern in the feedback loop to control the
weights [129] to reject wideband interference;

optimum filters, which specify rejection response
[87];

a master and slave processor with broad-beam capa-
bilities without derivative constraints [130];

2)

3)

4)

a hybrid method that uses an orthogonal transforma-
tion on data available from the TDL structure before

applying weights [131] to improve its performance in
multipath environment;

7) weighted Chebyshev method [134];

8) two-sided correlation transformation method [135].

of taps, tap spacing, array geometry, array aperture, and
signal bandwidth, has been considered in the literature
[101]-[108] to understand their influence on the behavior
of the arrays. An analysis [101] of broad-band arrays using
eigenvalues ofR indicates that the product of the array
aperture and the FBW of the signal is an important param- ) )
eter of the broad-band array in determining its performance. |- Frequency-Domain Beam Forming

The FBW is defined as the ratio of the bandwidth to A general structure of the element-space frequency-
the center frequency of the signal. It is shown that the domain processor is shown in Fig. 8, where broad-band
number of taps required on each element depends upon thisignals from each element are transformed into frequency
parameter as well as on the shape of the array, with moredomain using the FFT and each frequency bin is processed
taps needed for a complex shape. A study [102], [103] of by a narrow-band processor structure. The weighted signals
the SNR as a function of intertap spacing indicates that from all elements are summed to produce an output at each
there is a range of intertap spacing that yields close to bin. The weights are selected by independently minimizing
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the mean output power at each frequency bin subject to structure, beam forming in the frequency domain is well
steering-direction constraints. Thus, the weights required suited for VLSI implementation and is less sensitive to
for each frequency bin are selected independently, and thisthe coefficient quantization. The computational advantage
selection may be performed in parallel, leading to a faster of the frequency-domain method for bearing estimation is
weight update. When adaptive algorithms such as the LMS discussed in [144], [146], and [150], and the advantage for
algorithm (discussed in Section 1II-B) is used for weight correlated data is considered in [145] and [148]. A general
update, a different step size may be used for each bin,treatment of time- and frequency-domain realization with
leading to faster convergence. a view to comparing the structure of various algorithms of
Various aspects of frequency-domain beam forming are weight estimation in a unified manner is provided in [139].
reported in the literature [136]-[150]. The performance of
the time- and frequency-domain processors are the samel. Digital Beam Forming
only when the signals in different frequency bins are  consider the analog beam-former structure shown in
independent. This independence assumption is mostly madq:ig_ 9, where the signals from each element are weighted,

in the study of frequency-domain beam forming. When delayed, and summed to form the beam output
this assumption does not hold, the frequency-domain beam

former may be suboptimal. Some of the tradeoffs and =
comparisons of the two processors may be found in [136] y(t) = Zwixi(t = 7i(0))- (82)
and [149]. =1

A study of the frequency-domain algorithm [140] for co- The delays are adjusted such that the signals induced
herent signals indicates that the frequency-domain methodfrom a given direction, where the beam needs to be pointed,
is insensitive to the sampling rate and may be able to reduceare aligned after the delays. This aspect of beam steering
the effects of element malfunctioning on the beam pattern. was discussed in detail earlier. The weights are adjusted to
A study in [141] shows that due to its modular parallel shape the beam.
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Fig. 10. Digital beam-forming process. . . - .
Fig. 11. Effect of sampling on digital beam forming.

In digital beam forming [151]-{164], the weighted signals The practical requirement of an adequate set of directions
from each element are sampled and stored, and beams are

. . Where simultaneous beams need to be pointed implies that
formed by summing the appropriate samples such that the . .
. R . . _the array signals be sampled at much higher rates than
required delay is incorporated by this process. It requires

each delay as an integer multiple of the sampling interval required by Nyquist criterion to reconstruct the waveform

A. The process is shown in Fig. 10 for a linear array of back from the samples [165]. The high sampling rate means

equispaced elements, where it is desired that a beam j? large number of storage requirements along with high-

formed in directiond. Let the direction be such that speed input-output devices, analog-to-digital converters,
and large bandwidth cables [152].

7i(62) = (i — DA. (83) The requirement of high sampling rates may be overcome
by digital interpolation [152], [157], [163]. This process
Thus, the signal from théth element needs to be delayed pasically simulates the samples generated by high sampling
by (i—1)A seconds. This may be accomplished by selecting rates and thus increases the effective sampling rate. It works
the samples for summing (as shown in Fig. 10 by the line by sampling the array signal at the Nyquist rate or higher
marked with symbol4). Similarly, a beam may be steered and by padding between each sample with zeros to form a
in direction 3 by summing the samples connected by the new sequence. The number of zeros padded decides the
line marked with symbolB in Fig. 10, where the signals  effective sampling rate. For a sampling rate to increase
from the ith element need to be delayed By — :)A L-fold, L — 1 zeros are padded to create a sequence as
seconds. The beam formed in directiép by summing large as if it were created by sampling at high speed. The
the samples connected by the line marked with synfBol  padded sequences then are used for digital beam forming
does not require any delay. _ _ by selecting appropriate samples as required, and the beam
It follows from the above discussion that using this oyiput is passed through an FIR filter to remove unwanted
process, one can only form beams in those directions gpecira, This filter is normally referred to as an interpolation
that require delays equal to some integer multiple of the ger The beams formed by interpolation beam formers
sampling interval, that is have slightly higher side-lobe levels.

7:(0) = kA (84) A tutorial introduction to digital-interpolation beam form-
‘ ’ ersis given in [152], whereas some additional fundamentals
wherek;, i = 1,2,---, L are integers. of digital-array processing may be found in [155]. A

The number of discrete directions where a beam can comparison of many approaches to digital beam-forming
be pointed exactly increases with increased sampling, asimplementations is discussed in [156] and [159], showing
shown in Fig. 11, where the sampling intervalAg2. The how a real-time implementation is a tradeoff between
figure shows that additional beams in directighsand 8; various conflicting requirements of hardware complexities,
may be formed. These exact beams are normally referredmemory, and system performance.
to as synchronous or natural beams [152], and it is possible The shape of a beam, particularly its beamwidth, is con-
to form a number of these beams simultaneously using atrolled by the size of the array. Generally, a narrow beam
separate summing network for each beam. results from a larger array. In practice, the array size is fixed
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and its extent is limited. A process known as extrapolation 1ll. A DAPTIVE BEAM FORMING

may be used [158] during digital beam forming to simulate |, practice, neithet® nor Ry is available to calculate
a large array extent resulting in improved beam pattern. {he optimal weights of the array, and the weights are
As the interpolation increases the effective sampling rate, adjusted by some means using the available information
the extrapolation extends the effective array length. More derived from the array output, array signals, and so on to
information on signal extrapolation schemes may be found make an estimate of the optimal weights. There are many
in [165]-[170]. such schemes, which are normally referred to adaptive
Digital beam-forming techniques for mobile satellite gigorithms. Some of these algorithms are described here,
communications are examined in [95] by studying a ang their characteristics, such as the speed of adaption
configuration of a digital beam-forming system capable gnq the mean and variance of the estimated weights, and

of working in transmit and receive mode. Digital beam the parameters affecting these characteristics are briefly
forming for mobile satellite communications has also been {iscyssed.

reported in [59], [95], [171], and [172]. An introduction
to digital beam forming for mobile communications may

A. SMI Algorith
be found in [173]. SMI Algorithm

This algorithm estimates the array weights by replacing
K. Eigenstructure Method R with its estimate. An unbiased estimate &fusing N
samplesz(n), n = 0,1,2,---, N — 1 of the array signals

As discussed previously, the eigenvaluesfofcan be . . . ;
may be obtained using a simple averaging scheme

divided into two sets when the environment consists of

uncorrelated directional sources and uncorrelated white 1 V=t
noise. R(n) =+ >~ a(ma'(n) (85)
The largestM eigenvalues correspond @ directional n=0

sources, and the eigenvectors associated with these eiger\ivhere R
values are norma_lly referred to as signal eigenvectors. Theandx(n) denotes the array signal sample, also known as the
L-M smallest eigenvalues are equal to the background arra;/ snapshot, at theth instant of time, witht replaced

noise power, and the eigenvectors associated with these)Oy nT and the sampling tim& omitted for the ease of
eigenvalues are known as noise eigenvectors.

(n) denotes the estimate at théh instant of time

: notation.
The eigenvectors oR are orthogonal to each other and The estimate o may be updated when the new samples
thus may be thought of as spanning/alimensional space. arrive using

This space may be divided into two orthogonal subspaces.
The subspace spanned by signal eigenvectors is referred to
as the signal subspace, whereas the subspace spanned by

the noise eigenvectors is referred to as the noise subspace. d timate of th . 1) at time instant
The signal subspace is also spanned My steering and a new estimate of the weighign + 1) at time instan

vectors associated with/ directional sources. This fact T 1 may be made. The expression of the optimal weights

is exploited by eigenstructure methods of beam forming in requires the Inverse ak, and this process of esnmatuj@
a number of ways [174]-[178]. and then its inverse may be combined to update the inverse

An array using a weight vector contained in the signal of R from array signal samples using the Matrix Inversion
space such that it is orthogonal to the interference-direction Lemma as follows:

steering vector is able to cancel the interference. In situa- R—l(n) _ R—l(n —1)
tions where the directions of interferences are not known,

nR(n) + z(n + Dzt (n+ 1)
n+1

R(n+1) = (86)

-1 H -1
the weight is estimated by minimizing a suitably selected _ET _;)i(n)i n R (n - 1) (87)
cost function. A weight estimation method that minimizes 1+2%(n)B~H(n — z(n)

a cost function applicable to a digital communications wjith

system using a BPSK modulating scheme discussed in [176] 1

demonstrates the utility of this beam-forming concept. R7Y0) = %I, g0 > 0. (88)

An application of the eigenstructure method for estimat-
ing weights of beam-space processors using eigenvectors This scheme of estimating weights using the inverse
of the Ry, that is, the matrix with the signal component update is referred to as the RLS algorithm, which is further
removed, as is done for secondary beams, suggests theescribed in Section 1lI-C.
effectiveness of this method for interference canceling It should be noted that as the number of samples grows,
[178], [179] in beam space and for achieving the desired the matrix update approaches its true value, and thus the
performance in a short observation time. An application of estimated weights approach the optimal weights, that is,
the eigenstructure method for correcting errors in steeringasn — oo, R(n) — R and w(n) — @ Or Wygp, as

vectors is reported in [174]. the case may be. More discussion on the SMI algorithm

Forming beams using eigenvectors associated with themay be found in [40] and [181]. Procedures for estimating
largest eigenvalues df for mobile communications appli- array weights with efficient computation using SMI are
cations has been reported in [180]. considered in [182], and an analysis to show how it
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performs as a function of the number of snapshots is iteration. The array signal vector, howevergig + 1), the

provided in [89]. reference signal sample ign + 1), and the array output
Application of SMI to estimate the weights of an array I

to operate in mobile communications systems has been y(n) = w™ (n)z(n +1). (92)

considered in many studies [56], [59], [60], [183]-[186]. |, ts standard form, the LMS algorithm uses an estimate

signals using a variable reference signal as available duringestimates available at thie + 1)th iteration, leading to
the symbol interval of the TDMA system. An application

discussed in [184] is for vehicular mobile communications, g(w(n)) = 2z(n + 1)z (n + Duw(n)
whereas that presented in [186] is for inducing delay spread —2z(n+ )r(n+1)
in indoor radio channels. A presentation in [59] is for = 22(n + 1)e* (w(n)) (93)

mobile satellite communications systems.
wheree(w(n)) is the error between the array output and
B. LMS Algorithm the reference signal, that is

The application of the LMS algorithm to estimate the e(w(n)) = w(n)z(n+1) — r(n+1). (94)
optimal weights of an array is widespread, and its study
has been of considerable interest for some time now. The Thus, the estimated gradient is a product of the error
algorithm is referred to as the constrained LMS algorithm between the array output and the reference signal as well
when the weights are subjected to constraints at each iter-as the array signals after thth iteration. For: < 1/Amax,
ation. It is referred to as an unconstrained LMS algorithm With Aw. denoting the maximum eigenvalue @i, the
when the weights are not constrained at each iteration. Thealgorithm is stable and the mean value of the estimated
latter is mostly applicable when weights are updated using Weights converges to the optimal weights. As the sum
a reference signal and no knowledge of the direction of the Of all eigenvalues ofR equals its trace, the sum of its
signal is utilized, as is the case for the constrained case. diagonal elements, one may select the gradient step size

The algorithm updates the weights at each iteration by # in terms of measurable quantities usipg< 1/Tr(R),
estimating the gradient of the quadratic surface and thenWith Tr () denoting the trace aR. It should be noted that
moving the weights in the negative direction of the gradient €ach diagonal element @t is equal to the average power
by a small amount. The constant that determines this measured on the corresponding element of the array. Thus,
amount is normally referred to as the step size. When for an array of identical elements, the tracefoequals the
this step size is small enough, the process leads thesd®ower measured on any one element times the number of
estimated weights to the optimal weights. The convergenceelements in the array.
and the transient behavior of these weights, along with their The convergence speed of the algorithm refers to the
covariance, characterize the LMS algorithm, and the way speed by which the mean of the estimated weights (en-
that the step size and the process of gradient estimationsemble average of many trials) approaches the optimal
affect these parameters is of great practical importance.Weights. It normally is characterized lytrajectories along

These and other issues are now discussed in detail. L eigenvectors ofR with the time constant of théth
1) Unconstrained LMS AlgorithmA real-time uncon-  trajectory given by

strained LMS algorithm for determining optimal weight 1

wysk Of the system using the reference signal is [27], T = m (95)

[187]-[199] . . : .
with A, denoting thefth eigenvalue ofk. Thus, these time

w(n + 1) = w(n) — pg(w(n)) (89) constants are functions of the eigenvalue®pthe smallest
a one dependent upof,,,,, which normally corresponds
wherew(n + 1) denotes the new weights computed at the tg the strongest source, and the largest one controlled by
(n + D)th iteration; »u is a positive scalar (gradient step the smallest eigenvalue, which corresponds to the weakest
size) that controls the convergence characteristic of the ggyrce or the background noise. Therefore, the larger the
algorithm, that is, how fast and how close the estimated gjgenvalue spread, the longer it takes for the algorithm to
weights approach the optimal weights; apdu(n)) is an  converge. In terms of interference rejection capability, this
unbiased estimate of the gradient of the MSE means canceling the strongest source first and the weakest

—Ellr 2 source last.
MSE(w(n)) _EW(;JF DI = The convergence speed of an algorithm is an important
+w" (n)Rw(n) — 2w" (n)z  (90) property, and its importance for mobile communications is

highlighted in [200] by discussing how the LMS algorithm
does not perform as well as some other algorithms due to its
VuMSE(W)|ymw(n) = 2Rw(n) — 2z. (91) slow convergence speed in situations of fast-changing sig-

- - nal characteristics. The availability of time for an algorithm
It should be noted that at tHe +1)th iteration, the array ~ to converge in mobile communications systems depends not
is operating with weightsu(n) computed at the previous only on the system design, which dictates the duration of

at thenth iteration with respect tau(n), given by
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the user signal present (such as the user slot duration in aand

TDMA system) but also on the speed of mobiles, which I

changes the rate at which a signal fads. For example, a 2 2pAi 1 100
) j LIED - < (100)

mobile on foot would cause the signal to fade at a rate 1—2pA

of about 5 Hz, whereas the rate would be on the order =
of about 50 Hz for a vehicle mobile, implying that an then the misadjustment/ is given by
algorithm needs to converge faster in a system being used (1)
by vehicle mobiles compared to one used by a hand-held = o) (101)
portable device [47]. Some of these issues for an 1S-54 H
system are discussed in [56], where the convergence offor a sufficiently small, this results inM ~ 24 Tr(R).
the LMS and SMI algorithms in mobile communications |t follows from this expression that increasipgncreases
situations is compared. the misadjustment noise. On the other hand, an increase
Even when the mean of the estimated weights convergesin ,, causes the algorithm to converge faster, as discussed
to the optimal weights, they have finite covariance, that is, earlier. Thus, the selection of the gradient step size requires
their covariance matrix is not identical to a matrix with all satisfying Conﬂicting demands of l) reaching Vicinity of
its elements equal to zero. The covariance matrix of the the solution point more quickly but wandering around over

weights is defined as a larger region and causing a bigger misadjustment and
~ ~ 2) arriving near the solution point slowly with the smaller
kww(n) = El(w(n) — @)(w(n) - @)] (96) movement in the weights at the end. The latter causes an

additional problem, particularly in a nonstationary environ-

Wh_ere@ - E[y(@)] dgnotes_the mean of the estimated ment, say, when the interference and optimal solution move
weights at thenth iteration. This causes the average of the slowly, causing adapting estimated weights to lag behind

MSE not to converge to the MMSE and leads to the excessihe gptimal weights. This phenomenon is referred to as the
MSE. From the expressions of the MSE and MMSE, it weight vector lag.

follows that for a giverw(n), the MSE is given by Many schemes, including variable step size, have been
suggested to overcome this problem [201]-[208]. Some of
these schemes are now discussed.

The adaptive algorithm estimates the weights by mini-
mizing the MSE. Thus, in schemes where a variable step
V(n) = w(n) — i (98) size is used, it reflects the value of the MSE at that iteration

(going up and down as the MSE goes up and down)

is the difference between the estimated weights and theSuch that it stays between the maximum permissible value

optimal weights at theth iteration. Note thaf [V (n)] — 0 for convergence and the minimum value pased upon the
asn — oo. As all elements of,,.,(n) do not approach allowed misadjustment. It may be truly variable or it may
zero asn — oo, it follows that the average value of the be allowed to switch between a few preselected values for

excess MSE does not approach zeronas- oo, that is the ease of implementation, as well as to shift by one bit left
lixnnﬁooE[VH(n)RV(n)] £ 0. or right where digital implementation is used. The step size

The transient and steady-state behavior of the weight co-MaY also be adjusted to reflect the change in the direction

variance matrix and the average excess MSE are importan®f the gradient of error surface at each iteration [207].
parameters of the LMS algorithm and are discussed in detail "€ optimal value of the step size at each step is
in [188] and [198]. A study of the convergence of the LMS Sudgested in [203] such that it minimizes the MSE at each
algorithm applicable to the PIC processor and a discussion'terat'on-_ ThIS. is a function of the value of the true gradient
on the gradient step size selection can be found in [75]. & eac_h iteration ang&. In practice, _these may be _replaced

The difference between the weights estimated by the DY their instantaneous values, leading to a suboptimal value.
adaptive algorithm and the optimal weights is further char-  Instéad of having a single step size for an entire weight
acterized by the ratio of the average excess steady-stat&/€Ctor, one may select a variable step size for each weight
MSE and the MMSE. It is referred as the misadjustment, |t Separately, leading to an increased convergence of the
is a dimensionless parameter that measures the performanc@gorithm [204]. The convergence speed of an algorithm
of the algorithm. The misadjustment is a kind of noise and May also be increased by adjusting the weights such that
is caused by the use of the noisy estimate of the gradient.interferences are canceled one at a time [209], [210] and
This noise is referred to as the misadjustment noise. For theDY Using a scheme known as block processing [211]. For
present case when the gradient is estimated by multiplying Proad-band signals, an implementation in the frequency
the array signals with the error between the array output anddomain may help increase the speed of convergence.

the reference signal and the gradient step size is selected The application of frequency-domain beam forming to
such that estimate the weights using the LMS algorithm for the

case when a reference signal is available [138], [139],
(99) [142], [143] shows how the frequency-domain approach
4 max yields improved convergence and reduced computational

MSE(w(n)) = MMSE + VZ (n)RV(n)  (97)

where

0O<p<
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Fig. 12. Constrained LMS algorithm: pictorial view of the projection process.

complexities over the time-domain approach. Improved signal sensitivity compared to the normal LMS algorithm.
convergence normally arises from the use of different A discussion of its application to mobile communications
gradient step sizes in different bins. For the constrained can be found in [225].
LMS case, this is likely to cause deterioration in the  3) Constrained LMS AlgorithmA real-time constrained
steady-state performance of the algorithm. This deterio- algorithm [7], [25], [226]-[233] for determining the optimal
ration, however, does not affect the performance of the weight vectorw is
unconstrained algorithm [212]. S0
An algorithm known as a sign algorithm [208], [213], w(n+1) = P{lw(n) — pg(w(n))} + sl sy (103)
where the error between the array output and the reference o
signal is replaced by its sign, is computationally less Where
complex than the LMS algorithm, as discussed. pag so5d! 104
The algorithm is usually analyzed assuming that succes- T L (104)
sive _sa_mples are uncorrglated. This assumption .helps Nis a projection operatorg(w(n)) is an unbiased estimate
simplifying the mathematics by allowing expectations of . = .
: of the gradient of the power surfage” (n)Rw(n) with
data products to be replaced by the products of their expec- . . . :
. ; : o respect tow(n) after thenth iteration, . is the gradient
tations. A discussion of situations of correlated samples and ; . . ; o
: . ; step size, and, is the steering vector in the look direction.
a nonstationary environment may be found in [214]-[216]. . . L2 )
- : . The algorithm is “constrained” because the weight vector
Applications of an unconstrained LMS algorithm to mo- e ; . ) .
. oo ; . satisfies the constraint at every iteration, thati¥,(n)s, =
bile communications systems using an array include base-

. - . . 1, ¥n. The process of imposing constraints may be under-
mobile communications systems [46], indoor-radio systems : . :
. 4 L stood from Fig. 12, which shows how weights are undated
[47], and satellite-to-satellite communications systems [97]. and how a proiection svstem uses a vector diagram for a
2) Normalized LMS Algorithm:This algorithm is a vari- brol y 9

ation of the constant-step-size LMS algorithm and uses two-weight system [25]. The figure shows constant power

. . . ntours, th nstraint surf li = 1 for a two-
a data-dependent step size at each iteration. Atyite co tou .S’t e constraint surface (a lin€ s, = 1 for a two .

: . S dimensional system), a surface parallel to the constraint
iteration, the step size is given by

surface passing through the origims, = 0), weight
p(n) = HL (102) vectorsw(n), w(n + 1), and@, and the gradient at theth
2t (n)a(n) iteration.

where is a constant. The algorithm and its convergence The point A on the diagram indicates the position of
using various types of data have been studied widely the weight after completion of theth iteration. It is
[217]-[224]. It avoids the need for estimating the eigen- the cross section of the constraint equatioffs, = 1
values of the correlation matrix or its trace for selection and the power surface/’’ (n)Rw(n) (not shown in the
of the maximum permissible step size. The algorithm figure). The weights are perturbed by adding a small amount
normally has better convergence performance and less—ug(w(n)) and then are projected om*s, = 0 using
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projection operato. This point is indicated byB on the
diagram. Note thaP’s, = 0. Thus, the projection operator
projects the weights orthogonal tg. The constraint now
is restored by adding,/si s, and the updated weights
w(n+1) move to poiniC'. The process continues by moving

speed of the algorithm depends upon the eigenvalue spread
of PRyP.

The discussion so far has concentrated on the conver-
gence of the mean value of the weights to the optimal
weights. The variance of these weights is an important
the estimated weights toward poib, the optimal solution. parameter, and the transient and steady-state behavior of

The effect of the gradient step sigeon the convergence  the weight covariance matri, ,(n) are indicators of
speed and the misadjustment noise may also be understoothe performance of the algorithm, as discussed previously
using this figure. A larger step size means that the weight for the unconstrained LMS algorithm. An expression for
vector moves faster toward poift, the solution point, but  k,.,(n) indicates [228] that it is a function of the variance
wanders around it over a larger region, not reaching close of the gradient estimate. For the standard algorithm, an
to it and causing more misadjustment. expression for the variance of the gradient is given by

The gradient ofw® (n)Rw(n) with respect tow(n) is
given oy ert ot ftutn) with respect tow(n) Vyw(n) = 4w” (WRu@R. (110)

The steady-state value of the weight covariance matrix
governs the misadjustment. For the standard algorithm, it
and its computation using this expression requires knowl- is given by
edge ofR, which normally is not available in practice. For
a standard LMS algorithm, an estimate of the gradient at
each iteration is made by replacidg by its noisy sample
z(n+1)zf (n+1) available at time instar{t +1), leading _ o
t0 g(w(n)) = 2z(n + 1) y*(w(n)). ' a) Signal sen5|t|v.|ty:The convergence of .the mean

Thus, the gradient estimate is the product of the array Weights to the optimal weights is a function of the
signals and the array output available aftertitieiteration. eigenvalues of PRy P and thus is independent of the
The mean value of the weights estimated by the algo- look d|rect|(_)n S|gnal._Th|s is n(_)t the_ case, however,
rithm using this gradient converges to the optimal weights, for the weight covariance matrix, which depends on
provided that the gradient step size is small enough to the projected covariance of the gradient used for the

g(w(n)) £ Vy(w" Rw)|y=wm) = 2Rw(n)  (105)

L1 1
M 12 sy T (PRP)

- L—1 1
L= pd2l) 1o (PEP)

(111)

satisfy

0<p<s (106)

1
)\max(PRP)'
The convergence of the mean weightsit@long thelth
eigenvector ofPRP has the time constant
. ~1 B 1
"7 W[l — 200 (PRP) ~ 2u0(PRP)

(107)

where #n[-] denotes the natural logarithm &f and X,
(PRP) and A\, (PRP), respectively, denote théth
eigenvalue and the maximum eigenvaluefaRP.

It follows from

R =p,s0s + Ry (108)
and

Psy =0 (109)

weight update algorithm, that isPV,(w(n))P. For the
standard algorithm, this variance is a product ®fand

the mean output powew” (n) Rw(n) at the nth instant

of time. Thus, PV,(w(n))P, which is proportional to
wH (n)Rw(n)PRP, contains a signal from the look
direction indicating that the performance of the standard
LMS algorithm is not independent of the signal and that the
transient behavior of weight covariance depends on it. The
following, a rather heuristic argument, explains how the
signal level causes the weights to fluctuate using an explicit
expression of weights rather than their weight covariance
matrix. Rewrite the constrained LMS algorithm as follows:

w(n+1) = Pw(n) + §§0§0 — pPg(w(n))

(112)
and examine the projected gradient vector téfgiw(n)).
Expressing

g(w(n)) = z(n+ Dz (n + Dw(n)  (113)

that PRP = PRy P, and hence the convergence speed and noting that

of the mean value of the weights characterized by the
time constants and the upper limit on the gradient step

size depends only on the eigenvalued"® v P, indicating

that the signal arriving from the look direction does not

affect these quantities. The eigenvaluesRR P are a

function of the directions and powers of the directional
sources as well as the array geometry, with the maximum
eigenvalue controlled by the strongest source governing the

z(n) = ms(n)sy +zy(n) (114)

with m,(n) denoting the sample of the complex modulating
function of the signal and: ,,(n) being the array receiver
vector not containing the signal, one obtains
Pg(w(n)) = Pay(n + Ly (n+ w(n)
+mi(n+ 1) Pry(n +1)sf w(n). (115)

initial convergence speed. The latter part of the convergence
is controlled by the smaller eigenvalues associated with the m?*(n+1) is a random quantity with variance equal to the
weak sources or the background noise, and thus the overallook-direction signal power. This maké;(w(n)) a noisy

1216

PROCEEDINGS OF THE IEEE, VOL. 85, NO. 8, AUGUST 1997



quantity that fluctuates with the signal power and causeswhere IV; denotes the number of possible combinations
the w(n + 1) to fluctuate. The fluctuations im(n + 1) of elements with lagi and summation is over all these
increase as the signal power increases. Thus, the weight£ombinations. For a linear array of equispaced elements,
estimated by the standard algorithm are sensitive to the N; = L —i. It should be noted that for a nonuniform linear
signal power, requiring a lower step size in the presence of array, the amount of improvement realized by the structured
a strong signal for the algorithm to converge, which in turn method would depend upon the number of element& in
reduces its convergence speed. with the same correlation lag.

This fact has been demonstrated in [234] for a high-speed An algorithm that uses the structured method to estimate
GMSK mobile communications system. The system has the matrix using all available samples is discussed in [233].
been implemented by mounting an array on a vehicle to It has a better convergence performance than that of the
measure its BER performance. RLS algorithm in the presence of a strong look-direction

The signal sensitivity of the standard LMS algorithm signal. The algorithm is referred to as the improved LMS
is caused by the use of a sample correlation matrix in algorithm.
estimating the gradient and could be reduced by using The discussion of the LMS algorithm implies that one has
an estimate of the correlation matrix from all available access to all array signals. In situations where this access
samples. A recursive LMS algorithm uses all previous is not available or not economical, one could estimate the
samples and updates the correlation matrix as a new sampleequired gradient using perturbation schemes [226]-[228],

arrives, using [235]. Algorithms using these schemes perturb the array
H weights using some orthogonal sequences and use the
R(n+1) = nfi(n) +zy(n+ Dey(n+ 1). (116) measured array output power over the perturbation cycle

n+l to estimate the gradient. For a perturbation cycle of length

The algorithm then uses this matrix to estimate the .J, for example, the algorithm requires samples at each
required gradient iteration to estimate the gradient. Thus, the iteration number
and the sample numbers are different and the algorithm

g(w(n)) = 2R(n + Lw(n). (117) is slower by a factor of/ when measured in time rather
The estimated gradient is unbiased and has variance  than iteration number. The gradient estimation also adds
4 additional noise to the system, known as the perturbation

- . H noise.

V() (”+1)2w (n) Fan(n) B (118) A method similar to that used in [236] for adjusting
Comparing this with the variance of the standard LMS €dualizer taps can also pe used for adjusting array vv_eights.
algorithm, it follows that the variance of the gradient was The method uses a running average of the past gradients to

reduced by a factor offn +1)2 using the recursive method, ~estimate the required gradient at #té iteration rather than

thus making the recursive algorithm less signal sensitive. USing the past correlation matrixes to estiméig:), as is
As n — oo, the signal sensitivity of the recursive LMS done in the recursive LMS case to reduce the weight noise.

algorithm approaches zero. It should be noted that all of these gradient estimating
The signal sensitivity of the LMS also can be reduced by schemes—uwhich reduce the variance of the gradient, lead-
spatial averaging instead of sample averaging, as is dongnd to less fluctuations in array weights, inherently increase
when the weights are estimated using a structured gradienthe convergence speed of the algorithm as one is able to
algorithm. increase the step size without compromising the stability
b) Structured gradient algorithmFor a linear array of ~ Of the algorithm.

equispaced elements, the array correlation matrix has the 3) Implementation IssuesThe convergence speed, fluc-
Toeplitz structure, that is tuations in array weights during adaption, and misadjust-

ment noise are the measures of the transient and steady-state

o oo "'L—1 behavior of the LMS algorithm. The theoretical perfor-

H ) mance of the algorithm and the effect of the look-direction
R= ) ) (119) signal and gradient step size discussed in the previous
’ section assume the existence of infinite precision, that is, the

L1 "o variable is allowed to take any value. Now, the implications

with ;, i = 0,1,---, L — 1 being theL correlation lags. of finite-precision implementations are briefly discussed.
The noisy sample oR used in estimating the gradient for a) Finite-precision arithmetic:In real life, when the
the standard LMS algorithm does not have this structure. algorithm is implemented using digital hardware, where

The structured gradient algorithm [231], [232] exploits this @ variable can take only discrete values, there are other
structure of R such that the estimated matrix has this parameters that affect its performance and other issues that

structure. Theith lagr;(n) is estimated as need consideration, including quantization noise as well
1 as roundoff and truncation noise caused by finite-precision
ri(n) = oA Za:g(n)a:zi_i(n), i=0,1,---,L—1 arithmetic [204], [237]-[244].
L First, when ab-bit quantizer is used to convert an analog

(120) signal of range—r,.« 10 ruax iNto a digital signal, it adds
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a quantization noise of zero mean and variance [245] component using the Hilbert transformer or quadrature filter
[247], which has the transfer functions

1 3 f>0

an={;7 123 (122)
to the system. Second, the effect of the finite word length '
of the devices where the numbers are stored causes the For a similar misadjustment, the complex algorithm con-
roundoff or truncation noise to be added to the system. verges faster than the real algorithm. For more details on
This arises from the fact that when arithmetic operations are this aspect, see, for example, [198] and [228].
performed using these numbers, the answers are normally
longer than the available word length and thus need to beC. RLS Algorithm
rounded off or truncated to fit into finite word memory. The convergence of the LMS algorithm depends upon
Last, all the variables, such as the estimated gradient,the eigenvalues aR. In an environment yielding? with a
gradient step size, and estimated weights, are allowed tojarge eigenvalue spread, the algorithm converges with slow
take only finite values and can be increased or decreasedspeed. This problem is solved in an RLS algorithm [64],
by a factor of two. The combined effect of all these on the [248]-[258] by replacing the gradient step sjzwith a gain

algorithm is a larger fluctuation in the weights and a larger matrix R~1(n) at thenth iteration, producing the weight
misadjustment than otherwise. update equation

The misadjustment appears to be the most sensitive to
the finite word length effect on weights, suggesting that ~ w(n) = w(n —1) = R~ (n)z(n)e* (w(n — 1))  (123)
the weights should be implemented using a longer word where R
length [237]. A reduction in the step size below certain

—2b,.2
0_2 — 2 T"max (121)

(n) is given by

levels may even cause the misadjustment to increase [242], R(n) = 8oR(n — 1) + z(n)z (n)

which is contrary to the infinite-precision case, where a n

decrease in the step causes the misadjustment to decrease. = Z &0 *a(k)z (k) (124)
It appears [244] that the finite word length effects are k=0

amplified in an environment that yields smaller eigenvalues \heres,, a real scalar smaller than but close to one, is used

for the correlation matrix. for exponential weighting of the past data and is referred
An important effect of the finite word length on the +to a5 the forgetting factor, as the update equation tends

weight update is that when a small input does not causetq deemphasize the old samples. The quantjty — &, is

the weights to move more than the least significant bit normally referred to as the memory of the algorithm. Thus,

(the smallest possible increment, which depends upon thefor 5, = .99, the memory of the algorithm is close to 100

number of bits used to store weights), then the algorithm samples. The RLS algorithm updates the required inverse of

stalls and the weights do not change anymore [242], requir- p(p) using the previous inverse and the present sample as
ing a bigger step size, which in turn increases the weight

fluctuations. R~ '(n) = 1 R~ Yn-1)
A postalgorithm smoothing scheme suggested in [238] bo
appears to reduce the weight fluctuations, leading to a better R™Y(n = Dz(n)z (n)R™(n - 1)
convergence performance. It suggests a running average T So+zH(n)R1(n - 1)z(n)
of past weights. Thus, the weights are recursively updated (125)

using past weights with or without finite memory. S
A discussion of system design applicable to mobile satel- The matrix is initialized as

lite communications that takes into account quantization R10) = 1 I 0 126

noise and other issues discussed above may be found in 0) = e co > 0. (126)

[59]. . . . .

b) Real versus complex implementatiohhere are situ- A discussion on the selection ef and its effects on

ations where the input data to the weight adaption schemeEPr? p;lifgm;anc_;i of thg allgorltr;]m can tl)e.found in [253].
are real, and situations where these are complex (with c algorithm minimizes the cumulative square error
real and imaginary parts denoting in-phase and quadrature[25l]’ [252]
components). In both of these cases, the weights could be ks 5
updated using the real LMS algorithm or the complex LMS J(n) = Z 8o " le(k)] (127)
algorithm. The former utilizes real arithmetic and uses real k=0

variables and updates real weights (the in-phase and quadraand its convergence is independent of the eigenvalue dis-
ture components are updated separately when complex dat#ribution of the correlation matrix.

are available), whereas the complex algorithm [246] utilizes  The algorithm presented here is the exact RLS algorithm.
complex arithmetic, uses complex variables, and updates ag~or other forms of the RLS algorithm with improved
well as implements weights as complex variables similar to computation efficiency, see, for example, [249] and [253].
the treatment presented in this paper. For real data usingA comparison of the convergence speed of the LMS,
a complex algorithm, one needs to generate the quadraturghe RLS, and some other gradient-based algorithms using

n
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guantized or clipped data indicates that RLS is the most in mobile communications has been investigated in [267].

efficient and LMS is the slowest [259]. A variation of CMA referred to as differential CMA and
A computer-simulation study of the RLS, LMS, and SMI reported in [180] has inferior convergence characteristics

algorithms in a mobile communications situation suggests compared to CMA but may be improved using DOA

that the former outperforms the latter two in flat-fading information to make it operative in beam space.

channels [260]. An application of the RLS algorithm for the

reverse link of a cellular communication using the CDMA E. Conjugate Gradient Method

system is considered in [261] to show an increase in channel

' i An application of the conjugate gradient method
capacity by an adaptive array.

[268]-[270] to adjust the weights of an antenna array

is discussed in [57] and [271]. The method in general is

D. CMA useful for solving a set of equations of the foutw = b
CMA is a gradient-based algorithm that works on the to obtainw.

premise that the existence of an interference causes fluctu- For an array processing problem [57], [274],denotes

ation in the amplitude of the array output, which otherwise the array weights4 is a matrix with each of its columns de-

has a constant modulus. It updates the weights by minimiz- noting consecutive samples obtained from array elements,

ing the cost function [96], [262]-[264] and b is a vector containing consecutive samples of the
1 ) 2 desired signal. Thus, a residual vector
Jn)=FE|(lyn)|" —vy (128)
() = 5E[(wm)l? ~ 43)°] e be Aw (130

using the following equation: . .
g g ed denotes an error between the desired signal and the array

wn+ 1) =wn) — pglwn)) (129) output at each sample, with the sum of the squared error
a given by rHy.

The method starts with an initial guess(0) of the
weights, obtains a residual

wherey(n) = w (n)z(n + 1) is the array output after the
nth iteration, yo is the desired amplitude in the absence
of interference, and;(w(n)) denotes an estimate of the
gradient of the cost function. Similar to the LMS algorithm 7(0) = b — Aw(0) (135)
discussed previously, it uses an estimate of the gradient by
replacing the true gradient with an instant value given by

— AH,.
g(w(n)) = 25(n)z(n +1) (130) 9(0) = A7r(0) (136)
and moves the weights in this direction to yield a weight

and an initial direction vector

where :
R , , update equation
e(n) = n)|* — n). 131

) 2 (W -wojule). @3y win 1) =u() - u(mg(n) @3

The weight update equation for this case becomes )

where the step size

w(n + 1) = w(n) — 2pe(n)z(n + 1). (132) s LAt .
In appearance, this is similar to the LMS algorithm with wn) = AT g(n)2" (138)

a reference signal where ] o
The residualr(n) and the direction vectogy(n) are

e(n) 2 d(n) — y(n). (133) updated using

Its application to a digital land-mobile radio communica- r(n+1) = r(n) + p(n)Ag(n) (139)
tions system using TDMA is studied in [265] to compensate h
for selective fading. Discussions of hardware implementa- and
tion of a CMA adaptive array and its BER performance
for high-speed transmission in mobile communications may
be found in [234] and [266]. Development of CMA for with
beam-space array signal processing, including its hardware a |AH (0 + 12
realization, has been reported in [99]. The results presented o(n) =
in [96] indicate that the beam-space CMA is able to cancel | Afr(n)]
interferences arriving from directions other than the look  The algorithm is stopped when the residual falls below
direction. a certain predetermined level. It should be noted that the

CMA is useful for eliminating correlated arrivals and is direction vector points in the direction of the gradient of
effective for constant modulated envelope signals such asthe error surface’ (n)r(n) at thenth iteration, which the
GMSK and QPSK, which are used in digital communi- algorithm is trying to minimize. The method converges to
cations. The algorithm, however, is not appropriate for the the minimum of the error surface within at mdstterations
CDMA system because of the required power control [261]. for an L-rank matrix equation and thus provides the fastest
Use of CMA to separate cochannel FM signals blindly convergence of all the iterative methods [57], [270], [272].

gn+1)= A"r(n+1) —aln)gln)  (140)

(141)
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Use of the conjugate gradient method to eliminate multi- could be measured to estimate the instant gradient. The
path fading in mobile communications situations has been weight update equation then becomes
studied in [57] and [271] to show that the BER performance A&(n)
of the system using the conjugate gradient method is better  w(n + 1) = w(n) — 2ué(n) z(n+1). (149)
than that using RLS algorithm. Y

The MSE surface of the error sign&n) may have local
F. Neural Network Approach minimas, and thus the global convergence of the MRIII

In this section, an algorithm referred to as Madaline Rule algorithm is not guaranteed, which is not the case when
Il (MRIIl) is described. A discussion of various aspects of MSE between the reference signal and the array output is
this algorithm as well as other related issues can be foundminimized [273]. The algorithm, however, is very robust,
in [273]. For a general theory of neural networks and their suitable for analog implementation and resulting in fast
applications, see, for example, [274] and [275]. weight updates.

The MRIII algorithm described here is applicable when ~ The MRIII algorithm described here is suitable when
the reference signal is available and minimizes the MSE the reference signal is available. A scheme to solve a
between the reference signal and the modified array outputconstrained beam-forming problem using neural networks
rather than the MSE between the reference signal and thels analyzed in [276], and its implementation using switched
array output, as is the case for other algorithms discussedcapacitor circuits is described in [277]. Computer simula-
previously. The array output is modified using a nonlinear tions and experimental results indicate the suitability of the

mapping such as hyperbolic tangent scheme.
1— —2z
tanh(z) = H% (142) IV. DOA ESTIMATION METHODS

In this section, a review of DOA estimation methods, in-
cluding their performance, sensitivity, and limitations [278],
wln +1) = w(n) — pg(w(n)) (143) is presented. The direction of a source is parameterized by

- the variabled.

and the weights are updated using

wherey is the gradient step size agghw(n)) is the instant
gradient of the MSE surface with respect to the array A. Spectral Estimation Methods
weights w(n).

When the array is operating with weighign), produc-
ing the array output

These methods estimate the DOA by computing the
spatial spectrum and then determining the local maximas
[43], [279]-[284]. Most of these techniques have their roots

y(n) = w (n)z(n +1) (144) in time-series analysis. A brief overview and comparison of
- some of these methods can be found in [279] and [281].
the modified outputj(n) becomes One of the earliest methods of spectral analysis is the
i(n) = tanh(y(n)) (145) Bartlett method [279], [284], where a rectangular window
of uniform weighting is applied to the time-series data to be
and the resulting error signal is given by analyzed. For bearing estimation problems using an array,
. . this is equivalent to equal weighting on each element. Thus,
&(n) =g(n) = r(n+1). (146) by steering the array it direction, this method estimates
The instant gradient of the MSE surface with respect to the the mean power, an expression for which is given by
array weightsw(n) thus becomes oo sl Rs, 150
sty = X ME@) 0 =71 (59)
- dw(n) where s, denotes the steering vector associated with the
= 2&(n) 9(n) direction . A set of steering vector§s,} associated with
dw(n) differentd is often referred to as the array manifold in DOA
., 0&(n) dy(n) estimation literature. In practice, it may be measured at the
= 2¢(n) ay(n) ow(n) time of array calibration.
9&(n) o The process is similar to that of mechanically steering
= 2é(n) 3 z(n+1). (147) the array in this direction and measuring the output power.
y(n) Due to the resulting side lobes, the output power is not
Replacingdé(n)/dy(n) with Aé(n)/Ay for small Ay only contributed from the direction in which the array is
in (147) results in steered but from the directions where the side lobes are
AZ(n) pointing. The processor is also known as the conventional
g(w(n)) = 2¢(n) Ay z(n+1) (148) beam former, and the resolving power of the processor

depends upon the aperture of the array or the beamwidth
where Aé(n) denotes the change in the error output when of the main lobe. Its use for mobile communications has
the array output is perturbed by a small amoun; and been studied in [285].
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B. MVDR Estimator D. MEM

This is the ML method of spectrum estimation [43], This method finds a power spectrum such that its Fourier
which finds the ML estimate of the power arriving from transform equals the measured correlation subjected to the
a point source in directiofl assuming all other sources as constraint that its entropy is maximized [289]. The entropy
interferences. In beam-forming literature, it is known as the of a Gaussian band-limited time series with power spectrum
MVDR beam former as well as the optimal beam former S(f) is defined as
since in the absence of errors, it maximizes the output ;

SNR and passes the look-direction signal undistorted. For a TN

DOA estimation problem, the term “maximum likelihood” H(5) = /_f In S(f) df (154)

is used for the method that finds the ML estimate of the N

direction rather than of the power, as is done by this method where f» is the Nyquist frequency. For estimating DOA
[286]. Following this convention, the current estimator in from the measurements using an array of sensors, the
this paper is referred to as the MVDR estimator. method finds a continuous functidfr(8) > 0 such that

This method uses the array weights, which are obtainedit maximizes the entropy function
by minimizing the mean output power subject to unity

constraint in the look direction. An expression for the power _ I
spectrum is given by H(P) _/0 In Pue(6) 49 (155)
Poo(f) — 1 151 subject to the constraint that the measured correlation
My () = _S_ng_1§0' (151) between theth and thejth elementR;; satisfies
27
This method has better resolution properties than _the Ry :/ Pur(8) cos(2r7;;(6)) do (156)
Bartlett method [42] but does not have the best resolution 0

properties of any method [281]. _ .
where 7;;(#) denotes the differential delay between ele-

ments; andj due to a source il direction. The solution to
C. Linear Prediction Method this problem requires an infinite dimensional search, which
This method estimates the output of one sensor usingMay be transformed to a finite dimensional search using the
linear combinations of the remaining sensor outputs and du@lity principle [290], leading to
minimizes the mean square prediction error, that is, the

error between the estimate and the actual output [281], Pyg(8) = ATl (157)
[287]. Thus, it obtains the array weights by minimizing the " q(f)
mean output power of the array subject to the constraint that . i .
the weight on the selected sensor is unity. An expression‘VNere is obtained by minimizing
for the array weights and the power spectrum is given, on
respectively, by [281] H(w) = / In(w” ¢(#)) df (158)
0
Ry, .
. S 152 subject to
b= Ry, (152) |
wlr =2r (159)
and
et and
u Ty
Pp(f) = —5 153
e (9) luf RLs, [ (153) whq(8) >0 o (160)

. with ¢(6) and r defined as
wherey; is a column vector of all zeros except one element, =

which is equal to one. The position of one in the column
corresponds to the position of the selected element in the 9(0) = [1,V2cos(2r fr12(6)), .. ¥ (161)
array for predicting its output. There is no criterion for r= [Rll,\/§R12,...]T. (162)
proper choice of this element. The choice of this element,

however, affects the resolution capability and the bias in It should be noted that the dimension of this vector depends
the estimate, and these effects are dependent upon the SNRpon the array geometry and is equal to the number of
and separation of the directional sources [281]. The linear known correlations?;; for every possible and j.

prediction methods perform well in a moderately low SNR ~ The minimization problem defined above may be solved
environment and are a good compromise in situations whereiteratively using a standard gradient descent algorithm.
sources are of approximately equal strength and are nearlyMore information on various issues of the MEM may be
coherent [288]. found in [200] and [291]-[295]. The suitability of MEM
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for mobile communications in fast-fading signal conditions
has been studied in [200].

E. MLM

This method estimates the DOA’s from a given set of
array samples by maximizing the log-likelihood function
[286], [296]-[303]. The likelihood function is the joint
probability density function of the sampled data given
the DOA’s and viewed as a function of the desired vari-
ables—the DOA's, for this case. The method searches for
those directions that maximize the log of this function,
the log-likelihood function. The ML criterion signifies that
plane waves from these directions are most likely to cause
the given samples to occur [304].

The maximization of the log-likelihood function is a
nonlinear optimization problem. In the absence of a closed-
form solution, it requires iterative schemes for solutions.

There are many such schemes available in the literature.

The well-known gradient decent algorithm using the es-
timated gradient of the function at each iteration as well

as the standard Newton—Raphson method are well suited

for the job [305]. Other schemes, such as the alternating
projection method [298], [300] and the expectation maxi-

mization algorithm [286], [306], [307], have been proposed
for solving this problem in general as well as for special-

ized cases, such as unknown polarization [301], unknown
noise environments [302], and contaminated Gaussian nois
[296]. A fast algorithm [308] based upon Newton’s method
developed for estimating frequencies of sinusoids may be
modified to suit the DOA estimation based upon ML

criterion.

The ML method gives a superior performance compared
to other methods, particularly when the SNR is small, the
number of samples are small, or the sources are correlate
[298], and thus is of practical interest. For a single source,
the estimates obtained by this method are asymptotically
unbiased [301], that is, the expected values of the estimate

are equal to their true values. In that sense, it may be used

as a standard to compare the performance of other method
The method normally assumes that the number of source
M are known [298].

When a large number of samples are available, other,
computationally more efficient schemes may be used with
performance almost equal to this method [299]. Analysis

of the method to estimate the direction of sources when the
array and the source are in motion relative to each other

indicates its potential for mobile communications [309],
[310].

F. Eigenstructure Methods
These methods rely on the following propertiestaf1)

e

S

S.

It should be noted that the noise subspace is spanned by
the eigenvectors associated with the smaller eigenvalues of
the correlation matrix, and the signal subspace is spanned
by the eigenvectors associated with its larger eigenvalues.

In principle, the eigenstructure-based methods search for
directions such that the steering vectors associated with
these directions are orthogonal to the noise subspace and
are contained in the signal subspace. In practice, the search
may be divided into two parts. First, find a weight vector
that is contained in the noise subspace or is orthogonal to
the signal subspace. Then search for directions such that
the steering vectors associated with these directions are
orthogonal to this vector. The source directions correspond
to the local minimas of the functionws,|. In this
function, s, denotes a steering vector.

When these steering vectors are not guaranteed to be in
the signal subspace, there may be more minimas than the
number of sources, and the distinction between the actual
source direction and a spurious minimagirt’ s, | is made
by measuring the power in these directions.

Many methods have been proposed that utilize the eigen-
structure of the array correlation matrix. These methods
differ in the way the available array signals have been
utilized, required array geometry, applicable signal model,
and so on. Some of these methods do not require explicit
computation of the eigenvalues and eigenvectors of the
array correlation matrix, whereas in others, it is essential.
An effective computation of these quantities may be made
by methods similar to those described in [311]. When this
matrix is not available, a suitable estimate of the matrix is
made from the available samples.

One of the earliest methods of DOA estimation based on
the eigenstructure of a covariance matrix is due to Pisarenko

4312] and has a better resolution property than those of the

minimum variance, maximum entropy, and linear prediction
methods [313]. A critical comparison of this method with
two other schemes [314], [315] applicable for a correlated
noise field that exists in situations of multipaths has been
presented in [316] to show that Pisarenko’s method is an
economized version of these schemes restricted to equis-

S

paced linear arrays. The scheme presented in [314] is useful
for off-line implementation similar to those presented in
[16], [317], and [318], whereas the method described in
[315] is useful for real-time implementations and uses a
normalized gradient algorithm to estimate a vector in the
noise subspace from available array signals. Some other
schemes suitable for real-time implementation are discussed
in [319]-[321]. A scheme known as the matrix pencil
method, shown [322] to be similar to Pisarenko’s method,
has been described in [323].

Eigenstructure methods may also be used for finding
DOA when the background noise is not white but has either

The space spanned by its eigenvectors may be partitioneda known covariance [324] or an unknown covariance [325],

into two subspaces, namely, the signal subspace and theor when the sources are in the near field and/or the sensors
noise subspace, and 2) the steering vectors corresponding thhave unknown gain patterns [326]. For the latter case, the
the directional sources are orthogonal to the noise subspacesignals induced on all elements of the array are not of equal
As the noise subspace is orthogonal to the signal subspaceintensity, as is the case when the array is in the far field
these steering vectors are contained in the signal subspaceof the directional sources. The effect of spatial coherence
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on the resolution capability of these methods is discussedis applicable when a ULA is used. It solves a polyno-
in [327] and [328], whereas the issue of the optimality of mial rooting problem in contrast to the identification and
these methods is considered in [329]. Now, some of the localization of spectral peaks using spectral MUSIC. Root-

popular schemes are described in detail. MUSIC has a better performance than spectral MUSIC
[336].
G. MUSIC Algorithm 3) Constrained MUSIC:This incorporates the knowledge

of the known source to improve the estimates of the
unknown source direction [331]. The situation arises when
some of the source directions are already known. This
method removes the components of the signal induced by
these known sources from the data matrix and then uses the
modified data matrix for DOA estimation. It is achieved

y projecting the data matrix onto a space-orthogonal
complement to a space spanned by the steering vectors
associated with known source directions. It is a matrix
operation. The process reduces the dimension of the signal
subspace by a number equal to the known sources and
. iﬂwproves the quality of the estimate, particularly when the

Once the noise subspace has been estimated, a sea .
o : . : hown sources are strong or correlated with the unknown
for M directions is made by looking for steering vectors Sources

that are as orthogonal to the noise subspace as possible. 4) Beam-Space MUSICThe MUSIC  algorithms  de-

;ersh;lzg?gligct?ﬁﬁrgsghig by searching for peaks in scribed above process the snapshots received from sensor
elements without any preprocessing, such as to form beams,

1 and thus may be thought of as element-space algorithms.

Puu(f) = W (163) This is contrary to a beam-space MUSIC algorithm, where
=6 TN the array data are passed through a beam-forming processor

whereUy denotes arl by L—M dimensional matrix with ~ before applying MUSIC or any other DOA estimation
its L—M columns being the eigenvectors corresponding algorithm. The output of the beam-forming processor may
to the L-M smallest eigenvalues of the array correlation be thought of as a set of beams, and thus the processing
matrix, ands, denotes the steering vector corresponding to Using these data is normally referred to as beam-space
direction 6. processing. A number of DOA estimation schemes are
It should be noted that instead of using the noise subspacediscussed in [337] and [338], where data are obtained by
and searching for directions with steering vectors orthog- forming multiple beams using an array.
onal to this subspace, one may use the signal subspace DOA estimation in beam space has a number of advan-
and search for directions with steering vectors contained tages, such as reduced computation, improved resolution,
in this space [332] This amounts to Searching for peaks in reduced sensitivity to system errors, reduced resolution
|U¥ 54| whereUs denotes ad., by M-dimensional matrix, threshold, reduced bias in the estimate, and so on [333],
with its A columns being the eigenvectors corresponding to [339]-[342]. These advantages arise from the fact that a
the M largest eigenvalues of the array correlation matrix. It beam former is used to form a number of beams that are
is advantageous to use the one with the smaller dimensions!ess than the number of elements in the array, and thus one
For the case of a single source, the DOA estimate Needs to process less data for DOA estimation.
made by the MUSIC method asymptotically approaches the One may think of this process in terms of the degrees
CRLB, that is, when the number of snapshots increasesof freedom of the array. The element-space methods have
infinitely, the best possible estimate is made. For the degrees of freedom equal to the number of elements in
multiple sources, the same holds for the large SNR casesthe array, whereas the degrees of freedom of beam-space
that is, when the SNR approaches infinity [333], [334]. The methods equal the number of beams formed by the beam-
CRLB gives the theoretically lowest value of the covariance forming filter. Thus, the process reduces the degrees of
of an unbiased estimator. freedom of the array. Normally, one needs odly + 1
An application of the MUSIC algorithm to cellular mo- degrees of freedom to resold sources.
bile communications is investigated to locate land mobiles The root-MUSIC algorithm discussed for the element-
and shows that when multipath arrivals are grouped in Space case may also be applied to this case, giving rise to
clusters, the algorithm is able to locate the mean of eachbeam-space root-MUSIC [341], [342]. It enjoys the compu-
cluster arriving at a mobile [335]. This information then tational savings offered by beam-space methods compared
may be used to locate the line of sight. Its use for mobile to element-space methods in general.
satellite communications has been suggested in [59]. )
2) Root-MUSIC: For a ULA, the search for DOA can be H. Min-Norm Method
made by finding the roots of a polynomial. In this case, the  The min-norm method [314], [343] is applicable for ULA
method is known as root-MUSIC [332]. Thus, root-MUSIC and finds the DOA estimate by searching for the location

1) Spectral MUSIC: The MUSIC method [330] is a rel-
atively simple and efficient eigenstructure method of DOA
estimation. It has many variations and is perhaps the most
studied method in its class. In its standard form, also
known as spectral MUSIC, the method estimates the noise
subspace from the available samples. This can be don
by either eigenvalue decomposition of the estimated array
correlation matrix or singular value decomposition of the
data matrix, with itsiV columns being theéV snapshots or
the array signal vectors. The latter is preferred for numerical
reasons [331].
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of peaks in the spectrum [344] arrays, one may be able to resolve more thiafl —

1 1)/2 sources usind. elements. The other direction-finding
Pun(f) = s, (164) methods applicable to an unknown noise field are described
- in [325] and [353]-[356]. The MAP method presented
by calculating an array weight, which is of minimum i [354] and [355] is based on Bayesian analysis, and

norm, has its first element equal to unity, and is contained in estimated results are not asystematically consistent, that
the noise subspace. The solution of the above problem leadss, the results may be biased [352]. The method in [356],
to the following expression for the spectrum [344]-[346]  referred to as CANAL, may be implemented using analog
1 hardware, thus eliminating the need for sampling, data
Pun(0) = W (165) storage, and so on. A DOA estimation method in the
|§9 N NQ1| presence of correlated arrivals using an array of unrestricted
with the vectore, denoting all zeros except the first geometry is discussed in [357].
element, which is equal to unity. As the method is appli-
cable for ULA, the optimization problem to solve for the J. ESPRIT
array weight may be transformed to a polynomial rooting

problem, leading to a.root-mln-norm method similar to method of DOA estimation. It uses two identical arrays
root-MUSIC. A comparison of the performance of the tWO i, the sense that array elements need to form matched
[347] indicates that the variance in the estimate obtained bypairs with an identical displacement vector, that is, the

root-MUSIC is smaller than or equal to that of the root-min-

norm method. Schemes to speed up the DOA estimation
algorithm of min-norm and to reduce computations are
discussed in [344] and [348].

ESPRIT [358] is a computationally efficient and robust

second element of each pair ought to be displaced by the
same distance and in the same direction relative to the first
element.

This, however, does not mean that one has to have
two separate arrays. The array geometry should be such
l. CLOSEST Method that the elements could be selected to have this property.

This method is useful for locating sources in a selected For example, a ULA of four identical elements with an
sector. Contrary to beam-space methods, which work by interelement spacing may be thought of as two arrays
first forming beams in selected directions, it operates in of three matched pairs, one with the first three elements
the element space and in that sense is an alternative taand one with the last three elements such that the first
beam-space MUSIC. In a way, it is a generalization of the and second elements form one pair, the second and third
min-norm method. It searches for array weights in the noise elements form another pair, and so on. The two arrays are
subspace that are close to the steering vectors correspondingisplaced by the distancg The way that ESPRIT [358]
to the DOA’s in the sector under consideration; thus the exploits this subarray structure for DOA estimation is now
name “CLOSEST” method. Depending upon the definition briefly described.
of the closeness, it leads to various schemes. A method et the signals induced on thigh pair due to a narrow-
referred to as FINE selects an array weight vector by band source in directiofl be denoted byz,(¢) and y,(t).
minimizing the angle between the selected vector and the The phase difference between these two signals depends
subspace spanned by the steering vectors correspondingipon the time taken by the plane wave arriving from
to the DOA’s in the selected sector. In short, the method the source under consideration to travel from one element
replaces the vectat; used in the min-norm method with  to the other. As the two elements are separated by the
a suitable vector depending upon the definition of the displacement\, it follows that
closeness used. More details about the selection of these B 2w Ay cos6
vectors and the relative merits of the CLOSEST method Ye(t) = w(t)e (166)

are provided in [349]. where A, is measured in wavelengths. Note thag is

A number of eigenstructure methods reported in the the magnitude of the displacement vector. This vector sets
literature exploit specialized array structures or noise sce-the reference direction, and all angles are measured with
narios. Two methods using uniform circular arrays are reference to this vector. Let the array signals received by the

presented in [350] that extend beam-space MUSIC andyg arrays be denoted hy(t) andy(t). These are given by
ESPRIT algorithms (to be discussed in Section 1V-J) for -

two-dimensional angle estimation, including an analysis of z(t) = As(t) + n, (1) (167)
MUSIC to resolve two sources in the presence of gain, and
phase, and location errors. Properties of the array have also
been exploited in [351] to find the azimuth and the elevation y(t) = Ads(t) +n,(t) (168)
of a dlrect|onal_sou_rce. Two DOA estimation schemes in whereA is aK by M matrix, with its columns denoting the
an unknown noise field using two separate arrays proposed : . o
X . M steering vectors correspondingié directional sources
in [352] appear to offer a superior performance compared . . ; b .

. . associated with the first subarraljs ani{ by M diagonal
to their conventional counterparts. : o . .

- . matrix, with its mth diagonal element given by
Advantages of minimum redundancy linear arrays are '

discussed in [341]. It has been shown that by using such Dy = 1270 oSO (169)
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s(t) denotesM source signals induced on a reference
element; and,(¢) andn, (%), respectively, denote the noise
induced on the elements of the two subarrays. Comparing
the equations fog:(t) andy(t), it follows that the steering
vectors corresponding td/ directional sources associated
with the second subarray are given Hgp.

Let U, and U, denote twoK by M matrixes with
their columns denoting thé/ eigenvectors corresponding
to the largest eigenvalues of the two array correlation
matrixes R, and R,,, respectively. As these two sets of
eigenvectors span the samé-dimensional signal space, it
follows that these two matrixes, andU, are related by a
unique nonsingular transformation mateix that is

Uptp = U, (170)

Similarly, these matrixes are related to steering vector
matrixes A and A® by another unique nonsingular trans-
formation matrixI’, as the same signal subspace is spanned
by these steering vectors. Thus

U, = AT (171)

and

U, = AQT. (172)

Substituting forl/,, and U, and the fact thatd is of full
rank, one obtains

TYT—t = (173)

which states that the eigenvalues #fare equal to the
diagonal elements o and that the columns of are
eigenvectors ofy. This is the main relationship in the devel-
opment of ESPRIT [358]. It requires an estimate/ofrom
the measurement(t) andy(t). An eigendecomposition of
7 gives its eigenvalues, and by equating thembtdeads
to the DOA estimates

6, = cos™t {Arg()\m)

27TAO
How one obtains an estimate gf from the array signal
measurements efficiently has led to many versions of ES-
PRIT [358]-[363]. One version, refered to as TLS ESPRIT
[358], [359], is summarized below.

m=1,--,M. (174)

1) Make measurements from two identical subarrays,
which are displaced by\,. Estimate the two array
correlation matrixes from the measurements and find
their eigenvalues and eigenvectors.

Find the number of directional sourced using
available methods (some are described later in this
section).

Form the two matrixes with their columns being the
M eigenvectors associated with the largest eigenval-
ues of each correlation matrix. Let these be denoted
by U, and U,. For a ULA, this could be done by
first forming anL by M matrix U by selecting its
columns as theld eigenvectors associated with the
largest eigenvalues of the estimated array correlation

2)

3)

GODARA: ANTENNA ARRAYS AND MOBILE COMMUNICATIONS—PART I

matrix of the full array of L elements. Then select
the first K < L rows of U to form U, and the last
of its K rows to formU,.

4) Form a2M by 2A4 matrix
UH
| v ars)
Yy
and find its eigenvectors. Let these eigenvectors be
the columns of a matri¥/.
5) PartitionV into 40 by M matrixes as
Vin Vio
V= . 176
<V21 V22> (176)
6) Calculate the eigenvalues,,, m = 1,.-., M of the

matrix
—1
Vi1 Vo .

7) Estimate the angle of arrival,, using
6,, = cos™t {Arg()\m) },

27TAO

Other ESPRIT variations include beam-space ESPRIT
[359], beam-space ESPRIT for uniform rectangular array
[364], resolution-enhanced ESPRIT [360], virtual interpo-
lated array ESPRIT [362], multiple invariance ESPRIT
[365], higher order ESPRIT [366], and procrustes rotation-
based ESPRIT [367].

Use of ESPRIT for DOA estimation using an array at a
base station in the reverse link of a mobile communications
system has been studied in [368].

m=1,---,M. (177)

K. WSF Method

The WSF method [369], [370] is a unified approach to
schemes like MLM, MUSIC, and ESPRIT. It requires
knowledge of the number of directional sources. The
method finds the DOA such that the weighted version of a
matrix whose columns are the steering vectors associated
with these directions is close to a data-dependent matrix.
The data-dependent matrix could be a Hermitian square
root of the array correlation matrix or a matrix whose
columns are the eigenvectors associated with the largest
eigenvalues of the array correlation matrix. The framework
proposed in the method can be used for deriving common
numerical algorithms for various eigenstructure methods
as well as for their performance studies. Its application for
mobile communications employing an array at the base
station has been investigated in [58] and [371].

L. Other Methods

A number of methods that do not require eigenvalue
decomposition are discussed in [372]-[379].

The method proposed in [372] is applicable for a linear
array of L elements. It forms & by K correlation matrix
from one snapshot witlkl > A/, and is based on th@ R
orthonormal decomposition [380] on this correlation matrix,
with @ being aK by K unitary matrix andR being an
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upper triangle. The lasi(—M column of ) defines a set  due to multipath propagation. It tends to reduce the rank
of orthonormal basis for the noise space. Denoting theseof the array correlation matrix. A correlation matrix may
columns byUy, the directions of sources are obtained from be tested for source coherency by applying the rank profile

the peaks of the spectra test described in [403]. Most preprocessing techniques try to
either restore this rank deficiency in the correlation matrix
P(6) = 1 . (178) or modify it to be useful for the DOA estimation methods.

|§£IUN One scheme, referred to as the spatial smoothing method,

has been widely studied in the literature [404]-[416] and is
This method is computationally efficient, and its perfor- applicable for a linear array. In its basic form, it decorrelates
mance is comparable to that of MUSIC [372]. A multiple- the correlated arrival by subdividing the array into a number
source location method based on a matrix decompositionof smaller overlapping subarrays and then averaging the
approach is presented in [373]. The method requires knowl- array correlation matrix obtained from each subarray. The
edge of the noise power estimate and is applicable for number of subarrays obtained from an array depends upon
coherent as well as noncoherent arrivals. It does not requirethe number of elements used in each subarray. For example,
knowledge of the number of sources. using K elements in each subarray, one may fdrmK +1
The method discussed in [374] exploits the cyclostation- subarrays from an array df elements by forming the first
arity [381] of data that may exist in certain situations. subarray using elements 1 f6, the second subarray using
This method has significant implementation advantages, elements 2 tak + 1, and so on. The number and size of
and its performance is comparable with the other methods.the subarrays are determined from the number of directional
Another method [375] that combines accuracy with a sources under consideration. F&f sources, one needs a
low computation requirement using polynomial rooting subarray size of 4+ 1 and a number of subarrays greater
exploits diversity polarization of the arrays. These arrays than or equal taM [404].
have the capability of separating signals based on the Thus, to estimate the directions @f sources, one re-
polarization characteristics and thus have an advantagequires an array size df = 2/, which could be reduced to
over uniformly polarized arrays [382], [383]. An adaptive 3 M /2 by using improved spatial smoothing methods [405],
scheme based on Kalman filtering to estimate the noise[407], also known as forward-backward spatial smoothing.
subspace is presented in [377], which then is combined This process uses the average of correlation matrix obtained
with root-MUSIC to estimate DOA. The method has good from the forward subarray scheme described above, which
convergence characteristics. The method presented in [376kubdivides the array starting from one side of the array,
uses a deconvolution approach to the output of a con-and the complex conjugate of the matrix obtained from the
ventional processor to a localized source, whereas thosebackward subarray method, which is starting to subdivide
discussed in [378] and [379] use a neural-network approachfrom the other side of the array. Theth subarray matrix
to direction finding. R, of the backward method is related to the forward
The discussion on DOA estimation thus far has method matrixR,, by
concentrated on estimating the directions of stationary
narrow-band sources. Though an extension of a narrow- R, = Jo R Jo (179)
band direction-finding scheme to the broad-band case is
not trivial, some of the methods discussed here have beenyhere J, is a reflection matrix, with all its elements along
extended to estimate the directions of broad-band sourcesthe secondary diagonal equal to unity and elsewhere equal
A discussion of these and other schemes is containedig zero. The process is similar to that used by forward-
in [313] and [384]-[394]. The methods described in packward prediction for bearing estimation [408].
[384]-[386], [389], and [393] are based upon a signal An improved spatial smoothing method [410] uses cor-
subspace approach, whereas those discussed in [388selation between all elements of the array rather than
[394] and [390], [395] are related to the ESPRIT method correlation between elements of subarrays, as is normally
and the ML method, respectively. The application of done to improve the performance of the spatial smoothing
high-resolution direction-finding methods to estimate the method. The method described in [409] and [411] removes
directions of moving sources and to track these sourcesthe effects of sensor noise to make spatial smoothing
may be found in [396]-[400]. The problem of estimating more effective in low-SNR situations. This spatial filtering
the mean DOA of spatially distributed sources such as method is further refined in [417] to offer DOA estimates
exist in base-mobile communications systems has beengf coherent sources with reduced RMS errors.
examined in [401] and [402]. A decorrelation analysis of spatial smoothing [412]
shows that there exists an upper bound on the number
of subarrays and that the maximum distance between the
M. Preprocessing Techniques subarrays depends upon the fractional bandwidth of the
A number of techniques are used to process data beforesignals. A comprehensive analysis [413] of the use of
using direction-finding methods for DOA estimation, partic- spatial smoothing as a preprocessing technique to weighted
ularly in situations where directional sources are correlated ESPRIT and MUSIC methods of DOA estimation shows
or coherent. Correlation of directional sources may exist how their performance could be improved by the proper
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choice of the number of subarrays and weighting matrixes. where

An application of ESPRIT to estimate source directions 1 L
and polarization shows the improvement in its performance fu(M) = Z by (181)
in the presence of coherent arrivals when it is combined L-M i=Mal
with the spatial smoothing method [418]. I =

The spatial smoothlng_methods using subarray arrange- F2(M) 2 H A (182)
ments reduce the effective aperture of the array as well vt
as the degree of freedom, and thus one needs a higher )
number of elements to process correlated arrivals than and the penalty function
otherwise required. The schemes that do not reduce the M2L - M) for AIC
effective size of the array include those that restore the Js(M,K) = {;M(QL — M)log N, for MDL
structure of the array correlation matrix for a linear array ? (183)
to that when there is no correlation. These are referred to with L denoting the number of elements in the array.

as structured methods [419], [420]. For a linear equispaced
array, the correlation matrix in the absence of correlated A modification of the method based on the MDL prin-
arrivals has a Toeplitz structure, that is, the elements of Ciple applicable to coherent sources is discussed in [435]
the matrix along its diagonals are equal. The correlation and is further refined in [325] and [436] to improve the
between sources destroys this structure. In [419], this is performance. A parametric method that does not require
restored by averaging the matrix obtained in the presence ofknowledge of the eigenvalues of the array correlation matrix
correlated arrivals by simple averaging along the diagonals, is discussed in [437]. It has a better performance than some
while in [420], a weighted average is used. A method using Of the other methods discussed and is computationally more
the array correlation matrix structured by averaging along complex.
its diagonals of DOA estimation discussed in [421] appears All methods that partition the eigenvalues of the array
to offer computational advantages over similar methods. ~correlation matrix rely on the fact that the eigenvalues
Some other preprocessing schemes to decorrelate thecorresponding tal/ directional sources are larger than the
correlated sources include random permutation [414], me-rest of the L-M eigenvalues corresponding to the back-
chanical movement using a circular disk [422], construction ground noise and select the threshold differently. One of the
of a preprocessing matrix using approximate knowledge €arliest methods [438] used a hypothesis-testing procedure
of a DOA estimate [423], signal subspace transformation based upon the confidence interval of noise eigenvalues,
in the spatial domain [424], unitary transformation method and the assignment of the threshold was subjective. A
[425], and methods based on aperture interpolations [415], method referred to as an eigenthreshold method [439] uses
[426], [427]. a one-step prediction of the threshold for differentiating the
smallest eigenvalues from the others. The method has a
) ) better performance than AIC and MDL. It has a threshold
N. Estimating the Number of Sources at a lower value of SNR than that of MDL and has a lower
Many of the high-resolution direction-finding methods error rate than that of AIC at high SNR [439].
require the number of directional sources, and their per- An alternate scheme for estimating the number of sources
formance is dependent on the perfect knowledge of thesepresent uses the eigenvectors of the array correlation matrix,
numbers. Some methods for estimating the number of theseunlike other methods, which use the eigenvalues, and
sources are discussed here. is discussed in [440]. The method is referred to as the
The method most commonly referred to for detecting eigenvector detection technique. It is applicable to a cluster
the number of sources was first introduced in [428] based of sources whose approximate directions are known and
on AIC [429] and Rissanen’s MDL [430] principle. The is able to estimate the number of sources at a lower SNR
method was further analyzed in [431] and [432] and mod- than that of AIC and MDL.
ified in [433] and [434]. A variation of the method that is In practice, the number of sources an array may be able
applicable to coherent sources is discussed in [325], [435], to resolve depends not only on the number of elements in
and [436]. Briefly, the method works as follows [428], the array but also on the array geometry, available number

[432]. of snapshots, and spatial distribution of sources. Discussion
) ) ) ) on these and other issues related to the capabilities of an
1) Estimate the array correlation matrix froM inde-  4yray uniquely to resolve a number of sources may be found
pendent and identically distributed samples. in [441]-[443] and the references therein.
2) Find theL eigenvalues\;, ¢« = 1, L of the correlation
matrix such that\; > X2 > --- > AL. O. Performance Comparison
3) Estimate the number of sourcés by solving Performance analysis of direction-finding schemes has
been carried out by many researchers [317], [336], [339],
N J1(M) [340], [444]-[462]. The performance measures considered
minimize N(L — M) log M, N ’ : .
M ( ) 1o <f2(M) + (M, N) for analysis include bias, variance, resolution, CRLB, and

(180) probability of resolution. Among the most studied [339],
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[340], [444]-[454] direction-finding schemes is MUSIC. sources [339]. Though the variance of this estimate is not
Most of these studies concentrate on performance andmuch different from the element-space case, it has less bias
performance comparison with other methods when a finite [340]. The resolution threshold of beam-space MUSIC is
number of samples are used for direction finding rather lower than that of the conventional min-norm method. For
than their ensemble average. two closely spaced sources, however, beam-space MUSIC
An asymptotic analysis of MUSIC with for- and beam-space min-norm provide identical performances
ward/backward spatial smoothing in the presence of when suitable beam-forming matrixes are selected [339].
correlated arrival shows [444] that to estimate two angles It is shown in [453] that when beam-forming weights
of arrival of equal power under identical conditions have conjugate symmetry (useful only for arrays with par-
requires more snapshots for correlated sources than forticular symmetry), beam-space MUSIC has a decorrelation
uncorrelated sources [454]. A rigorous bias analysis of property similar to backward/forward smoothing. Thus, it
MUSIC shows [447] that estimates are biased. For a linear is useful for correlated arrival-source estimation and offers
array in the presence of a single source, the bias increaseperformance advantages in terms of lower variance for the
as the source moves away from broadside. Interestingly, estimated angle.
the bias also increases as the number of elements in the The resolution property of MUSIC is further analyzed
array are increased, keeping the aperture fixed. in [449]-[452] and [454], which show how it depends
Bias and STD are complicated functions of the array upon the SNR, number of snapshots, array geometry, and
geometry, SNR, and number and directions of sources,separation angle of the two sources. Analytical expressions
and vary in a way inversely proportional to the number of probability of resolution and its variation as a function
of snapshots. A poorer estimate generally results, using aof various parameters [452] could enable one to predict the
lesser number of snapshots and sources with lower SNR.behavior of the MUSIC estimate for a given scenario. The
It is shown in [340] and [447] that the performance of two closely spaced sources are said to be resolved when
conventional MUSIC is poor in the presence of correlated two peaks appear in the spectrum in the vicinity of the
arrivals and fails to resolve coherent sources. Even thoughsource directions.
bias and STD both play important roles in direction estima- A comparison of the performances of MUSIC and other
tion, the effect of bias near the threshold region is critical. eigenvector methods, which use the noise eigenvectors
A comparison of the performance of MUSIC with those of divided by the corresponding eigenvalues for DOA esti-
min-norm and FINE for a finite sample case [448] shows mation, indicates [317] that the performance of the former
that in the low-SNR range, the min-norm estimates have theis more sensitive to the choice of an assumed number of
largest STD, and the MUSIC estimates have the largest bias.sources compared to the actual number of sources.
As these results are dependent on the SNR of the source, A performance analysis of many versions of ESPRIT is
the performance of all three approaches the same limit asconsidered in [336] and [456]-[458] and compared with
the SNR is increased. The overall performance of FINE other methods. Estimates obtained by subspace rotation
is better than the other two in the absence of correlated methods, which include TAM and ESPRIT, have larger
arrivals. variance than those obtained by MUSIC using a large
The estimates obtained by the MUSIC and ML methods number of samples [456]. Estimates by ESPRIT using a
are compared with CRLB in [445] and [446] for a large uniform circular array are asymptotically unbiased [458].
sample case. The CRLB gives the theoretically lowest value LS-ESPRIT and TAM estimates are statistically equivalent.
of the covariance of an unbiased estimator. It decreases withLS-ESPRIT and TLS-ESPRIT have the same MSE [336].
the number of samples, number of sensors in the array, Their performance depends upon how the subarrays are
and SNR’s of the sources [445]. The study concludes that selected [457]. The min-norm method is equivalent to
the MUSIC estimates are the large sample realization of TLS-ESPRIT [463], and root-MUSIC outperforms ESPRIT
the ML estimates in the presence of uncorrelated arrivals. [464]. TAM is based on the state-space model and finds a
Furthermore, it shows that the variance of the MUSIC DOA estimate from signal subspace. In spirit, its approach
estimate is more than that of the ML estimate, and the is similar to ESPRIT [336]. For Gaussian signals, the WSF
two approach each other as the number of elements and thenethod and ML method are efficient, as both attain CRLB
number of snapshots increases. Thus, using an array with aasymptotically [455], [459]. A method is said to be efficient
large number of elements and a large number of samples,when it achieves CRLB.
one is able to make excellent estimates of directions of The correlation between the sources affects the capabili-
uncorrelated sources with large SNR using the MUSIC ties of various DOA estimation algorithms differently [465].
method [445]. It should be noted that the estimates of the A study [461] of the effect of the correlation between two
ML method are unbiased [460]. An unbiased estimate is sources on the accuracy of DOA-finding schemes shows
referred to as a consistent estimate. that the phase of the correlation is more significant than the
An improvement in the MUSIC DOA estimation is possi- correlation magnitude. Most of the performance analysis
ble by using beam-space MUSIC [339], [340]. By properly discussed so far assumes that the background noise is white.
selecting a beam-forming matrix and then using the MUSIC When this is not the case, the DOA schemes perform
scheme to estimate DOA, one is able to reduce the thresholddifferently. In the presence of colored background noise,
level of the required SNR to resolve the closely spaced the performance of MUSIC is better than that of ESPRIT
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and the min-norm method over a wide range of SNR. The TaPle 1 Performance Summary of Bartlett Method

performance of the min-norm method is worse than those Name of methed | Property Comments, Comparison and References
of the other two [466].

* Bias e Biased [465]
P. Sensitivity Analysis e Bartlett>LP>MLM
A sensitivity analysis of MUSIC to various perturbations « Bartlett ¢ Resolution | » Depends upon array aperture
is presented in [467]-[472]. A compact expression for the
P 67114721 P P Method e Sensitivity |  Robust to element position errors [280]

error covariance of the MUSIC estimates given in [467]
may be used to evaluate the effect of various perturba- e Amay e General Array
tion parameters, including gain and phase errors, effect of
mutual coupling channel errors, and random perturbation
in sensor locations. It should be noted that the MUSIC
estimate of DOA requires knowledge of the number of taple 2 Performance Summary of MVDR Method

sources similar to some other methods, and underestimationyzme srmeod | Propery Comments, Comparison and References
of source number may lead to an inaccurate estimate of
DOA's [468]. A variance expression for a DOA estimate e Bias e Unbiased
for this case has been provided in [468].
An analysis of the effect of model errors on the MUSIC e Varance | Minimum
resolution threshold [333], [470] and on the waveforms
estimated using MUSIC [469] indicates that the probability * MVPR o Resolution [* MVDR > Bartlett [42,279]

of resolution decreases [470] with the error variance and  Method
that the sensitivity to phase errors depends more upon array
aperture than on the number of elements [469] in a linear
array. The effect of gain and phase error on the MSE of the
MUSIC estimate of a general array is analyzed in [473].
The problem of estimating gain and phase errors of sensors
whose locations are known is considered in [471].

An analysis [472] of ESPRIT under random Sensor Table 3 Performance Summary of MEM

® Does not have best resolution of any method

[280]

e Array e General Array

uncertainties suggests that the MUSIC estimates generally Name ormemod | Propery Comments, Comparison and References
give lower MSE than ESPRIT. The former is more sensitive
to both sensor gain and phase errors, whereas the latter * Bias e Biased [465]
depends only on phase errors. The study further suggests, umum
that for a linear array with a large number of elements, the e Resolution | ME>MVDR > Bartlett [279]
. . . . Entropy
MSE of the ESPRIT estimate with maximum overlapping
) . ) Method e Can resolve at lower SNR than Bartlett [42]

subarrays is lower than that with nonoverlapping subarrays.

The effect of gain and phase errors on weighted

eigenspace methods, including MUSIC, min-norm, FINE,
and CLOSEST, is studied in [474] by deriving bias and
variance ex.pressions. It indica}tes that the effect is gr".’ldualfound in [480] and [481].
o s et g e A summay of i peromance and sy compar

. pt de i ison of various DOA estimation schemes is provided in
the estimate. The weighted methods differ from the standard ), .= 115
ones such that a weighting matrix is used in the estimate, '
and that matrix could be optimized to improve the quality

. . - . V. EFFECT OF ERRORS

of the estimate under particular perturbation conditions.

The effect of nonlinearity in the system, such as the The communications system using an array of antenna
hard C||pp|ng common in d|g|ta| beam formerS, on Spectra| elements considered so far is assumed to be free from
estimation methods in general is analyzed in [475], which €rors and perturbations, and the results on various beam-
shows that such distortion may be eliminated by additional forming schemes, adaptive algorithms, and DOA methods
preprocessing. are based upon ideal error-free conditions. In real systems,

The effect of various perturbation methods on spectral these idealistic situations are hardly met, and the system
estimation methods emphasizes the importance of a precisd€rformance is affected by the amount that the various
knowledge of various array parameters. There are variousSystem parameters deviate from the assumed conditions.
techniques to calibrate arrays, some of which are discussedSome of these deviations are discussed in this section.
in [476] and [477] and the references therein. There are
schemes such as that discussed in [478] to estimate the®- Correlated Arrivals
steering vector and, in turn, the DOA from uncalibrated The interference-canceling capabilities of the optimal
arrays and in [479] to estimate DOA. Discussions on beam formers discussed earlier assume that the signal and

robustness issues of direction-finding algorithms may be
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Table 4 Performance Summary of Linear Prediction Method Table 6 Performance Summary of
Element-Space MUSIC Method

Name of method | Property Comments, Comparison and References
Name of method | Property Comments, Comparison and References
e Bias o Biased {465]
s Bias * Biased [447, 358]
e LP>MVDR [280] .
L e Resolution e Variance ® Less than ESPRIT and TAM for large samples
© Linear . > Bartlett [456, 457], min norm [349, 448]
Prediction » Close to MLM [446], CLOSEST (349], FINE
. > ME [465]
Method [448)
s Variance of weighted MUSIC is more than
e Performance 3 . unweighted MUSIC [446]
e  Good in low SNR conditions
s Asympt. efficient for large array (445, 446]
o Applicable for correlated arrivals [288] Resoluti
* Resolution 1 . 1 imited by bias [446]

* Amay e Applicable for general array,

e Increasing aperture makes it robust [333]
Table 5 Performance Summary of MLM

Name of method | Property Comments, Comparison and References
¢ Element Space | ¢ performance | ®  Fails to resolve correlated sources

* Bias e Unbiased [460] MUSIC s Computation |* Intensive

e Less than LP, Bartlett [465], MUSIC [299] R .
o Sensitivity ®  Array calibration is critical [467], sensitivity to

phase error depends more on array aperture
o Less than MUSIC for small samples [298] than number of elements [469], preprocessing
can improve resolution [470]

* Asymptotically efficient for random signals e Correct estimate of source number is

[455, 459] important [468]
» MSE depends upon gain and phase errors and
is lower than that for ESPRIT [472]

* Variance o not efficient for finite samples [299]

e Less efficient for deterministic signals than e Increase in gain and phase crrors beyond

s MM .
random signals [455] certain value causes an abrupt deterioration in
Method . L ) bias and variance [474]
o Asymp. efficient for deterministic signal using
very large array [460]
e Computation | * Intensive with large samples [299] Table 7 Performance Summary of Beam-Space MUSIC Method
e Same for deterministic and random signals for Name of method | Property Comments, Comparison and References
large arrays {460]
s Bias s Less than ES MUSIC [340]
e Performance |e Applicable for correlated arrivals [298] e Variance * larger than ES MUSIC [482]
* Works with one sample [298] e RMS Error s Less than ESPRIT, min norm [466]

e Beam Space

e Resolution Similar to BS min norm, CLOSEST [349],

MUSIC
« Better than ES MUSIC, ES min norm [339,
interference are uncorrelated. The correlation between the 340]
desired signal and an unwanted interference exists in situa- *  Threshold SNR decreases as the separation
. . . . . . between the sources increases [454]
tions of multipath arrivals and deliberate jamming. It affects
the performance of the beam former, as discussed in [52], e Computation | s Less than ES MUSIC

[419], [420], and [483]-[495], and limits the applicability
of various weight estimation schemes. For example, when
the weights are estimated by minimizing the mean output
power subject to look-direction constraint, the beam former
cancels the desired signal while maintaining the constraint. design of the optimal weights is based upon the assumption
The reason this happens is that while minimizing the mean that the signal is not correlated with the interferences.
output power, the beam former adjusts the phase of the The correlations,,(f) between two broad-band signals
correlated interference induced on each antenna such that:(¢) andy(t) is defined in terms of their power spectrum
the power of the sum of the signal and the interference, [496]

which is correlated with the signal, is minimized, causing

the signal cancellation. This is consistent with the design boy(f) = ——2—
that the beam former minimizes the output power. The Goa(f)Gyy(f)

® Sensitivity » Robust compared to ES MUSIC

(184)
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Table 8 Performance Summary of Root-MUSIC Method

Table 11 Performance Summary of ESPRIT Method

Name of method

Property

Comments, Comparison and References

» Root MUSIC

e  Varance

* Resolution

RMS Error

e Array

e Performance

Less than Root min norm [347], ESPRIT
[457]

BS Root MUSIC has better probability of
resolution than BS MUSIC {341, 342]

Less than LS ESPRIT [464}]

Equispaced linear array

Better than spectral MUSIC [341, 464]
Similar to TLS ESPRIT at SNR lower than
MUSIC threshold [457]

BS Root MUSIC is similar to ES Root
MUSIC [341, 342]

Table 9 Performance Summary of Min-Norm Method

Name of method

Property

Comments, Comparison and References

s  Minimum

Method

¢ Bias

e Resolution

e Method

Less than MUSIC [448, 454]

Better than CLOSEST [349], ES MUSIC
[349, 454}

Equivalent to TLS [463]

Table 10 Performance Summary of CLOSEST Method

Name of method

Property

Comments, Comparison and References

e CLOSEST

e Variance

e Resolution

Similar to ES MUSIC [349]

Similar to BS MUSIC,

Name of method | Property Comments, Comparison and References
s Bias TLS ESPRIT unbiased [358,458]
LS ESPRIT biased [358]
e RMS Error Less than min norm [466]
TLS similar to LS [336]
e ESPRIT ® Variance Less than MUSIC for large samples and
difference increases with number of elements
Method

e Computation

e Methed

* Ay

e Performance

e Sensitivity

in array [456]

Less than MUSIC [362]

BS ESPRIT needs less computation than BS
Root MUSIC and ES ESPRIT [359]

LS ESPRIT is similar to TAM {336}

Needs doublets, No calibration needed

Optimal weighted ESPRIT is better than
uniformed weighted ESPRIT [456]

TLS ESPRIT is better than LS ESPRIT [457]

Robust than MUSIC and can not handle

correlated sources [457]
MSE robust to sensor gain errors [472]

MSE is lowest for maximum overlapping

subarrays under sensor perturbation[472]

Table 12 Performance Summary of FINE Method

Name of method

Property

Comments, Comparison and References

» Bias

* Resolution

» Less than MUSIC [448]

* Better than MUSIC and min norm [448}

e FINE

Method e Better than min norm [349] Method

*» Vartance ¢ Less than min norm [448]

e Performance |® Goodin clustered situation [349]
e Performance | Good at low SNR

* Anincr in sensor gain and ph
*  Sensitivity ease in sensor gain and phase errors

beyond certain value causes an abrupt

deterioration in bias and variance [474]

Rewriting the correlation matrix for the case of two corre-
lated directional sources as

with G, (f) denoting the cross-power spectrum. It is R= ASAH + 521 (187)
related to the cross-correlation function "
with the source correlation matrix given b
pay(T) = Elz()y(t +7)] (185) gien by
. Ds \/Pspib
he F f S = . 188

by the Fourier transform N b (188)

Gay(f) = / Py (T)?FIT dt. (186) shows how the correlation between the two sources affects

R. It follows from these expressions that when two sources
Thus, the correlation between the signal and an inter- are uncorrelated—that i$$| = 0—S is a diagonal matrix

ference, hereafter denoted &sis a complex scalar with  guaranteeingR to be positive definite (assuming is of

magnitude0 < |6] < 1 and lies within the unit circuit.  full rank, which requires that steering vectors corresponding

When the magnitude is equal to one, the two sources areto all directional sources are linearly independent [35]).

said to be coherent. The presence of correlation affects the rank ©fand
The correlation between two sources affects the rank thus of R. In the presence of correlation, the matdk

of the correlation matrix, causing it to become singular. becomes ill conditioned and may not be invertible, making
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it difficult to estimate the weights of the optimal beam A scheme that does not reduce the degree of freedom of
former, which relies on the existence of the inverse of the array is described in [419]. It decorrelates the sources
R. Thus, a beam-forming scheme that is optimal in the by structuring the correlation matrix to be Toeplitz by
absence of a correlated arrival is not able to cancel aaveraging along each diagonal and uses the resulting matrix
correlated interference. Many beam-forming schemes haveto estimate the weights of the full array. An adaptive
been devised to cancel an interference source, which isalgorithm to estimate the weights of an array based upon
correlated with the signal. In principle, these work by this principle is presented in [498], and the concept is
restoring the rank ofR. extended to broad-band beam forming in [499].

In some earlier work [52], [497], a mechanical move- A beam-forming scheme [52] based upon master and
ment of the array perpendicular to the look direction was slave concepts cancels the correlated arrival by the use
suggested to reduce the signal-cancellation effect by theof two channels. In one channel, the look-direction signal
correlated interference. The scheme generally known asis blocked, and then weights are estimated by solving the
a spatial dither algorithm works on the principle that as constrained beam-forming problem. These weights are then
the movement is perpendicular to the look direction, the used on the second channel. As the signal is not present at
signal induced in the array is not affected, whereas the the time of weight estimation, the beam former does not
interference that arrives from a direction different than that cancel the signal. However, the process only works for
of the signal becomes modulated with this motion. This one correlated interference. It is extended for a multiple
causes a reduction in the interference as noted in [492], correlated interference case in [486] where an array of
where the dither algorithm is further developed such that a 2M — 1 elements is required to canck — 1 interferences.
mechanical movement is not required. The other schemes that require some knowledge of the

The spatial smoothing scheme [416], as discussed earlier,nterference, such as direction or the correlation matrix due
uses the same idea of spatial averaging by subdividingto interference only, can be found in [485], [489], [491],
the array into smaller subarrays and estimates the array[494], and [495].
correlation by averaging the correlation matrixes estimated Many of these schemes improve the array performance in
from each such subarray. The use of spatial smoothing forthe presence of correlated arrivals by treating the correlated
beam forming is discussed in [484] and [487] and shows components as interferences and canceling them by forming
that the use of this method reduces effective correlation nulls in their directions using beam-forming techniques.
between the interference and the desired signal, resultingThese methods do not utilize the correlated components,
in a reduction in signal cancellation caused by the optimal as is done in diversity combining (discussed previously),
beam forming. where different components are added in some way to

The spatial smoothing method uses uniform averaging improve the signal level. A receiver known as the RAKE
of all the matrixes obtained from different subarrays, that receiver [184], [500]-[502] achieves this increase in signal
is, each matrix is weighted equally. This results in an level for a CDMA satellite system by using a number of
estimate of the matrix that is not as good as one could demodulators operating in parallel to track each component
have obtained from given subarray matrixes. Ideally, in using the user code for that signal. The delay in the signal is
the absence of correlation, the array correlation matrix for identified by sliding the code sequence as required to obtain
a uniformly spaced linear array has a Toeplitz structure, the maximum correlation with the received component. The
that is, elements of the matrix along each diagonal are signals are added at the baseband after appropriate delay
equal, and the estimated matrix by the spatial smoothingand amplitude scaling. The receiver, however, does not
scheme is not the closest to the Toeplitz matrix. This is cancel unwanted interferences by shaping the beam pattern.
done by a spatial averaging technique [420], [422], which
weighs each subarray matrix differently and then optimizes
the weights such that it minimizes the MSE between the B. Look Direction and Steering Vector Error
weighted matrix and a Toeplitz matrix. The system that Knowledge of the look direction is used to constrain the
results from using this matrix to estimate the weights of array response in the direction of the signal such that the
the beam former reduces more interference than that givensignal arriving from the look direction is passed through
by the use of a uniform weighted matrix estimate. the array processor undistorted. The array weights of the

It should be noted that the number of rows and columns optimal beam former are estimated by minimizing the
in the estimated matrix is equal to the number of elements in mean out power subject to the look-direction constraint.
the subarray and not equal to the number of elements in theThe processor maximizes the output SNR by canceling
full array. Thus, the weights estimated by this matrix could all the interferences. A direction source is treated as an
only be applied to one of the subarrays. Consequently, notinterference if it is not in the look direction. This shows the
all elements of the array are used for beam forming. This importance of the accuracy of the knowledge of the look
reduces the array aperture and its degree of freedom. Fordirection. An error occurs when the look direction is not
an environment consisting @/ direction interferences, the the same as the desired signal direction. For this case, the
desired signal the size of the subarray should be at leastprocessor treats the desired signal source as an interference
M + 2 and the number of subarrays should be at least and attenuates it. The amount of attenuation depends upon
M(M + 1)+ 1 [420]. the power of the signal and the amount of error [16], [42],
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[90], [503]. A stronger signal is canceled more and a larger general discussion of the effect of various errors on the
error causes more cancellation of the signal. array pattern is provided in [516].

The solution to beam-pointing error is to make the The position of the antenna elements of an array is
beam broader so that when the signal is not precisely in normally determined by a calibration process requiring
the direction where it should be (the look direction), its auxiliary sources in known locations [517], [518]. A pro-
cancellation does not take place. The normal methods ofcedure that does not require the location of these sources
broadening the beams include multiple linear constraints is described in [508] and [519].

[16], [504] and norm constraints [121]. The latter con-  The element failure tends to cause an increase in side-
straints prohibit the main beam from blowing out, as is lobe level, and the weights estimated for the full array do
the case in the presence of pointing error. In the process ofnot remain optimal [513]. This requires recalculation of the
canceling a source close to the point constraint in the look optimal weight with the knowledge of the failed elements
direction, the array response is increased in the directiontaken into account [513], [514].

opposite to the pointing error. A scheme that does not

require broadening of the main beam to reduce the effect

of pointing error has been reported in [505]. It makes use D. Weight Errors

of direction-finding techniques combined with a reduced Array weights are calculated using ideal conditions,

dimensipnal ML formulation to estimate the direction of giored in memory, and implemented using amplifiers and
the desired signal accurately. Effectiveness of the schemephase shifters. A theoretical study of the performance of

in mobile communications situations has been demonstratedy,o system assumes the ideal error-free weights, whereas
by computer simulations. the actual performance of the system is dependent upon the

The study presented in [90] indicates that the beam-Spacemplemented weights. The amplitude as well as the phase
processors in general are more robust to pointing errors ¢ these weights are different from the ideal ones, and

than element-space errors. Some other schemes to remedy,qe differences arise from many types of errors caused at
pointing errors may be found in [S06]-[508]. various points in the system, including:

The knowledge of the look direction appears in the e . .
. . : .  deviation in assumption that a plane wave arrives at
weight calculation through the steering vector. The optimal the array:

weight calculation for constrained beam forming requires A . o
knowledge of the array correlation matrix and the steering * Uncertainty in the positions and characteristics of the

vector in the look direction. Thus, the pointing error causes elements of the array;
an error to occur in the steering vector, which is used for e« error in the knowledge of the array correlation matrix
weight calculation. caused by its estimation from a finite sample and

The steering vector may also be erroneous due to other arithmetic;

factors such as imperfection in the knowledge of the . error in the steering vector or the reference signal used
position of array elements, errors caused by finite word to calculate weights;

length arithmetic, and so on. The study of the effect of
steering vectors has been reported in [29], [507], and [509].
An analytical study performed by modeling the error as an - . . . )
additive random error [29] indicates that the effect of error ~ * quantization error in converting the analog weights into
is severe in the SPNMI processor, that is, when the array ~ digital form for storage;

correlation matrix, which is used to estimate the weights, ¢ implementation error caused by component variation.

contains the signal. Studies of weight errors have been conducted by mod-

As the signal power increases, the performance of the eling these errors as random fluctuations in weights [29],
processor deteriorates further due to errors. The sensitivity[520]-[524] or by modeling them as errors in the amplitude
of the processor to the steering vector may be decreasedand phase [514], [525]-[529]. Performance indexes to mea-
by using a combination of the reference signal and steeringsure the effect of errors include the array gain [29], [525],
vector to estimate the weights [510]. reduction in null depth [520], reduction in interference

rejection capability [523], change in side-lobe level [514],
[526], [527], and bias in the angle of arrival estimation
C. Element Failure and Element Position Error [528].

Uncertainty in the position of an element of an array  The array gain is the ratio of the output SNR to the input
causes degradation in the array performance in generalSNR. The effect of random weight fluctuation is to cause
[511]-[515], and more so when the array beam pattern a reduction in the array gain. The effect is sensitive to the
is determined by constrained beam forming. As discussednumber of elements in the array and the array gain of the
previously, the element position uncertainty causes steeringerror free system [29]. For an array with a large number
vector error, leading to a lower array gain. The effect of of elements and with a large error-free gain, a large weight
the position uncertainty on the beam pattern is to create afluctuation could reduce its array gain to unity, implying
background beam pattern similar to that of a single elementthat output SNR becomes equal to input SNR and no array
in addition to the normal pattern of the array [515]. A gain is obtainable.

» computational error caused by finite-precision arith-
metic;
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The phase of the array weight is an important parameter, with their convergence characteristics and computational
and an error in the phase may cause an estimate of therequirements.
source to appear in a wrong direction when an array is A detailed treatment of various methods of estimating
used for finding DOA (see, for example, [528]). The phase the DOA’s has been provided by including the description,
control of signals is used to steer the main beam of the limitation, and capability of each method and their perfor-
array in desired positions, as in electronic steering. A device mance comparison as well as their sensitivity to parameter
normally used for this purpose is a phase shifter. Those perturbations.
commonly available are ferrite phase shifters and diode This paper provides references to studies where array
phase shifters [20], [530]. One of the specifications with beam-forming and DOA schemes are considered for mo-
which an array designer is concerned is the RMS phasebile communications systems. This aspect of array signal
error. processing was dealt with in Part | of this paper in much
Analysis of the RMS phase error shows that it causes the more detail by describing how an array could be used for
output SNR of the constrained optimal process to suppressmobile communications and how its use could improve the
the desired signal, and the suppression is proportional to theperformance of such systems as well as by discussing the
product of the signal power and the variance of the random feasibility of an array system in a mobile communications
error [531]. Furthermore, the suppression is maximum in environment.
the absence of directional interferences. An error that occurs

in digital phase shifters is quantization error. Inpabit
digital phase shifter, the minimum value of the phase that
can be changed equaks /2P. Assuming that the error is
distributed uniformly betweem /27 to = /27, the variance

of this error equalsr?/(3 x 227) [531].

The effect of perturbation in the media, which causes
the wavefront to deviate from the plane wave propagation
assumption, and other related issues may be found in
[532]-[534]. The effect of a finite number of samples
used in weight estimation is considered in [535]-[537],
and how bandwidth affects the performance of a narrow-
band beam former is discussed in [74] and [538]. The
effect of amplitude and phase errors on a mobile satellite
communications system using a spherical array employing
digital beam forming is studied in [171].

E. Robust Beam Forming

The perturbation of many array parameters from their
ideal conditions under which the theoretical performance

of the system is predicted causes degradation in the sys-

i

to overcome these problems and to enhance the array

tem performance by reducing the array gain and altering
the beam pattern. Various schemes have been propose

system performance under nonideal conditions [90], [121],
[539]-[546]. Many of these schemes impose various kinds
of constraints on the beam pattern to alleviate the problem
caused by parameter perturbation. A survey of robust signal
processing techniques in general is conducted in [547]. It
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