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Abstract— We study the problem of maximum lifetime in
wireless sensor networks that are entitled with the task of
estimating an unknown parameter or process. Sensors take
measurements and transfer them in multi-hop fashion to a
fusion center (FC) for Maximum Likelihood (ML) estimation. To
engineer the network for lifetime maximization while adhering
to estimation error specifications, the number of measurements
by each sensor per unit of time (namely, sensor measurement
rate) and the routes to the FC are controlled. Sensor spatial
correlation, measurement accuracies, link qualities and energy
reserves affect sensor measurement rates and the routes to the
FC, and, in turn, measurement rates and sensor characteristics
impact estimation error. We show that the problem can be
decomposed into separate optimization problems where each
sensor autonomously takes its measurement rate and routing
decisions, and we propose an iterative primal-dual algorithm
with low-overhead signaling for solving it. Our work optimally
captures the fundamental tradeoff between network lifetime and
estimation quality and yields a solution based on distributed
sensor coordination.

I. INTRODUCTION

The primary tasks that are expected to be fulfilled by
wireless sensor networks with certain performance guarantees
are the estimation of an unknown parameter or parameter
process, or the detection of an event in the deployment
area. Performance guarantees can be low estimation error, or
small probabilities of false alarm and missed detection. Such
operational tasks are mapped onto objectives that are differ-
ent from conventional ones such as end-to-end throughput
maximization or delay minimization for which networks are
traditionally deployed. Network control actions should take
into account these different objectives so that the network
performs the tasks it is entitled to with best performance.

We study the interplay between network lifetime and es-
timation quality. We consider the salient characteristics of
wireless sensor networks, most prominent of which is spatial
correlation among sensor measurements. Sensor measurement
rates need to be controlled, and measurements should be
routed to a fusion center (FC) that performs the estimation.
The inherent tradeoff is that many measurements improve
estimation quality, yet they are inefficient in terms of network
lifetime since gathering them to the FC consumes energy.
Sensor measurement rate control and routing need to account
for spatial correlation of neighboring sensors so that low
redundancy data are generated and routed to the FC. Sensor

characteristics, such as energy reserves, measurement quality,
and wireless link quality with neighbors shape measurement
and routing decisions, so that the rate with which sensor energy
is ed is balanced across the network. On the other hand,
measurement rates affect estimation quality, since they create
different regimes about the joint p.d.f of measurements at the
FC and hence affect the estimation error.

A. Related Work

A seminal work in lifetime maximization in wireless sensor
networks is [1], where routing of sensor data with certain
generation rates to several FCs was addressed. In this work,
there is no consideration of estimation constraints or sensor
spatial correlation. In information theory, spatially correlated
sensors are jointly encoded or compressed to reduce redundant
information and transmit minimal necessary amount of bits.
In [2], a framework for joint compression of sensor data is
proposed for minimizing total cost of data aggregation to
sinks. In [3], a similar model is used for the min-cost joint
source coding and routing under no contention. In [4], a
distributed optimization method is proposed for joint source
coding, routing and access control such that total energy is
minimized.

Various aspects of estimation objectives are considered [5]-
[7]. In [5], the authors study energy minimization through
finding the number of quantization levels for given estimation
error. The work in [7] studies the impact of transmit power
on estimation error. Power allocation for minimum estimation
error subject to power constraint, or power minimization sub-
ject to an estimation error constraint, possess the water-filling
structure. At the optimal solution, only a subset of sensors
transmit and the rest are off. Routing and sensor placement
to maximize network lifetime was studied in [8] where the
distortion depends on sensor positions relative to some cluster-
heads. An effort to formulate the lifetime distortion tradeoff
with rate - distortion theory was reported in [9]. Finally,
[10] studies cooperative routing and defines a link metric to
optimally aggregate data for detecting a random field.

B. Our contribution

We study lifetime maximization in multi-hop wireless sen-
sor networks with given estimation error specification. The
key new idea is that we control the number of measurements



per unit of time for each sensor, in conjunction with routing to
impact estimation error and energy consumption. Our objective
can be viewed as compression, but at the measurement packet
level, rather than at bit level. By addressing the problem
at packet level, we capture the precise dependence between
estimation uncertainty due to sensor observation packets and
energy efficiency. Our contributions are as follows: (i) we
characterize the fundamental tradeoff between estimation ac-
curacy and network lifetime and bring into picture sensor
measurement rates as variables, and sensor spatial correlations,
(ii) we formulate the problem of maximum lifetime subject to
a constraint on estimation error, (iii) we devise an iterative
distributed algorithm based on a primal-dual approach, where
each sensor separately takes its measurement rate and routing
decisions with the aid of feedback from the FC and neighbor
sensors in the form of Lagrange multipliers. For the special
case of uncorrelated sensor measurements, only feedback from
neighbors is needed. En route to the solution, we intro-
duce a metric that captures estimation error for correlated
measurements. This is inspired by the total squared cross-
correlation (TSC) in code design in CDMA [11]. Our results
demonstrate that optimal network lifetime can be achieved
through autonomous control of sensor measurement rates and
routes based on spatial correlations for given estimation error
specification. The rest of the paper is organized as follows. In
section II we present the model and assumptions. In section III
we formulate the optimization problem and solve it with the
distributed algorithm. Section IV presents numerical results
and section V concludes our study.

II. SYSTEM MODEL

A. Sensor Measurement and Transmission Model

We consider a sensor network of m sensors, represented
by a directed graph G(N ,A), where N is the set of sensors
and A is the set of links. A link (i, j) between sensors i and
j exists if j ∈ Si where Si is the set of sensors than can be
reached by sensor i with a certain transmit power. Each sensor
has initial energy reserve Ei.

We consider a clock-driven system, in which every Ts time
units, sensors submit measurements to the FC about a slowly
time-varying, unknown, spatially homogeneous phenomenon
process. We call each interval of duration Ts an epoch. The
process under observation is a sequence {θt}t=1,2,..., where
θt is the unknown parameter value of the process at epoch
t, assumed to remain fixed for the epoch duration. Within a
given epoch t, sensor i takes measurements,

xi(τ) = θτ + ni(τ) (1)

where xi(τ) is the measurement at time τ and θτ = θt.
The noise process ni(t) captures uncertainty of sensor i
observation due to different perception of the process and
residual measurement errors. For each i, ni(t) is Gaussian,
zero mean, wide-sense stationary and uncorrelated in time:
for any t, t′, temporal correlation Ri(t, t′) = 0 if t 6= t′ and
Ri(t; t) = σ2

i otherwise. The σ2
i = E[n2

i (t)] is the variance

of ni(t) for any t and captures measurement inaccuracy. Each
ni(t) is independent from {θt}t=1,....

Noise processes of each pair of sensors i and j are spatially
correlated due to sensor proximity. Spatial correlation is time-
invariant, namely for any t, t′, the spatiotemporal correlation
Rij(s, s′; t, t′) between sensors i and j at locations s and
s′ is Rij(s, s′) and depends only on locations. By leaving
out temporal correlation, we focus on the impact of spatial
correlation. Define the symmetric m ×m spatial correlation
matrix C, whose [i, j]-th element, ρij = E[ni(t)nj(t′)] is the
spatial correlation between noise processes ni(t) and nj(t) of
sensors i and j at all times t, t′. Pairwise correlations ρij are
assumed non-negative, and they are non-zero only for j ∈ Si,
and C is positive definite.

Each epoch consists of a measurement / control interval and
a transmission interval. During the former, the FC broadcasts
necessary control information to all sensors as detailed in
section III. The transmit power of the FC is assumed to be
large enough so that all sensors are within its range. During the
same interval, each sensor collects measurements. Different
measurements of a sensor are uncorrelated in time. However,
any measurement of a sensor is spatially correlated to any
other measurement of another nearby sensor. Also, messaging
from neighbor sensors takes place during this phase as detailed
in section III. During the transmission interval, sensors forward
measurements toward the FC in multi-hop fashion. A sensor
forwards portions its data and data it receives from others to
its neighbors. We assume no quantization or compression at
bit level.The length of the epoch is large enough such that
all measurements of sensors reach the FC. At the end of the
epoch, the FC makes the estimation.

Let Ni(t) be the number of measurements of sensor i
at epoch t. Let the number of epochs T grow, and define
ri = limT→∞ 1

T

∑T
t=1 Ni(t) as the average measurement rate

(in measurements or bits per sec) of sensor i. As discussed
later, the vector of measurement numbers N = (N1, . . . , Nm)
per epoch or the measurement rate vector r = (r1, . . . , rm)
will be the control variable vector. We refer to both terms
interchangeably in the paper and consider them continuous.
We assume that processes {Ni(t)}, {Nj(t)} for i 6= j are
uncorrelated in time.

A sensor consumes energy only during transmission. The
energy consumed by i to transmit an information unit (e.g.
a measurement packet) to sensor j ∈ Si is eij . This captures
wireless link gain between i and j, namely path loss and fading
and well as the requirement for a sufficient signal to noise ratio
(SNR) at a receiver. Let ei denote the energy consumed per
information unit by sensor i to the FC.

B. Estimation at the FC

Within each epoch, the FC obtains sensor measurements and
computes an estimate θ̂t of θt in the Maximum Likelihood
(ML) sense. ML is a valid estimation in the absence of
prior knowledge about θτ . We drop epoch index t. First, let
each sensor send one measurement to the FC, so that an
ensemble of m measurements {xi}m

i=1 is available. The joint



p.d.f. of sensor measurements x = (x1, . . . , xm)T , pθ(x), is
Gaussian with mean θ1 and correlation matrix C, where 1
is the m × 1 vector of all ones. The ML estimate of θ, is
θ̂ML = arg maxθ log pθ(x) = (1T C−1x)/(1T C−11). The
criterion for estimation quality is mean squared error (MSE),
E[(θ − θ̂ML)2]. To make estimation quality independent of
θ, we consider unbiased estimators, i.e., E(θ̂ML) = θ. Then,
MSE equals var(θ̂ML). We seek to minimize var(θ̂ML) (where
expectation is with respect to randomness of observations),
through a minimum variance unbiased (MVU) estimator. In
our case, the ML estimate is unbiased, and var(θ̂ML) =
[1T C−11]−1. For spatially uncorrelated sensors, θ̂ML =(∑m

i=1
1

σ2
i

)−1

·
(∑m

i=1
xi

σ2
i

)
and var(θ̂ML) =

(∑m
i=1

1
σ2

i

)−1

.

III. MAX-LIFETIME ROUTING AND MEASUREMENT RATE
CONTROL SUBJECT TO ESTIMATION ERROR CONSTRAINTS

A. Estimation Error vs. Sensor Numbers of Measurements

We first obtain the joint p.d.f. of sensor measurements
and then proceed to the expression of var(θ̂ML) for different
numbers of measurements per sensor.

1) Spatially Uncorrelated Sensors: Assume that at a given
epoch, sensor i gets Ni measurements, i = 1, . . . ,m collected
in vector x(i) = (x(i)

1 , . . . , x
(i)
Ni

). Let ni, i = 1, . . . ,m be
indices with 1 ≤ ni ≤ Ni. Measurements of each sensor
are uncorrelated among themselves. Since sensors are spatially
uncorrelated, all sensor measurements are uncorrelated, and
under the Gaussian assumption, they are independent. The ML
estimate of θ, θ̂ML, is

θ̂ML =

(
m∑

i=1

Ni∑
ni=1

x
(i)
ni

σ2
i

)
·
(

m∑

i=1

Ni

σ2
i

)−1

, (2)

and var(θ̂ML) =
(∑m

i=1
Ni

σ2
i

)−1

. Thus, estimation error de-
pends on the number of measurements Ni of each sensor i.

2) Spatially Correlated Sensors: The situation here is more
complex, due to correlations among measurements of different
sensors. We start from the simple case of two sensors, 1 and
2, with N1 = 1 and N2 = 2. The joint p.d.f. of vector x =
(x(1)

1 , x
(2)
1 , x

(2)
2 ) can be found by arguing as follows:

pθ(x
(1)
1 , x

(2)
1 , x

(2)
2 ) = pθ(x

(2)
1 |x(1)

1 ) pθ(x
(2)
2 |x(1)

1 ) pθ(x
(1)
1 ),

(3)
since measurements of sensor 2, x

(2)
1 , x

(2)
2 are conditionally

independent, given the measurement x
(1)
1 of 1. Finally,

pθ(x
(1)
1 , x

(2)
1 , x

(2)
2 ) =

pθ(x
(1)
1 , x

(2)
1 ) pθ(x

(1)
1 , x

(2)
2 )

pθ(x
(1)
1 )

, (4)

and the joint p.d.f. pθ(x
(1)
1 , x

(2)
1 , x

(2)
2 ) can be expressed in

terms of distributions pθ(x
(1)
1 , x

(2)
1 ) and pθ(x

(1)
1 , x

(2)
2 ) which

are jointly Gaussian with correlation matrix equal to the 2×2
spatial correlation matrix of sensors 1 and 2, while pθ(x

(1)
1 )

is Gaussian with variance σ2
1 .

Similarly, the joint p.d.f. of measurement vectors x(1),x(2)

where sensors take N1, N2 > 1 measurements, is

pθ(x
(1),x(2)) =

N1∏
n1=1

N2∏
n2=1

pθ(x
(1)
n1 , x(2)

n2 )

(
N1∏

n1=1

pθ(x
(1)
n1 )

)N2−1( N2∏
n2=1

pθ(x
(2)
n2 )

)N1−1
.

(5)
and the variance of estimation error is

var(θ̂ML) =

(
N1N21

T C−11− (N2 − 1)N1

σ2
1

− (N1 − 1)N2

σ2
2

)−1

,

(6)
where 1 is the 2× 1 vector of 1’s.

Consider the general case of m sensors, where sensor i takes
Ni measurements. For sensor subset S ⊆ M, define as CS
the sub-matrix of C that consists only of rows and columns
corresponding to sensors in S . Let |S| be the cardinality of S .
After some tedious algebra, we obtain

var(θ̂ML) =


 ∑

S⊆M
γS


∏

i∈S
Ni

∏

j∈M\S
(Nj − 1)


1T C−1

S 1



−1

(7)
where γS = (−1)|S|, if the number of sensors m is even,

and γS = (−1)|S|+1 if m is odd, and 1 is a vector of ones of
appropriate dimension.

Let var(θ̂ML) = [h(N)]−1. Each term in the sum in h(N)
denotes mutual coupling among measurements of a subset S of
sensors. To compute var(θ̂ML), one needs to compute 2m− 1
terms, each of which involves finding C−1

S . Depending on the
deployment application, the number of sensors vary from less
than ten to some hundreds. For few sensors, var(θ̂ML) can
be precisely evaluated. For larger number of sensors, some
methods are needed to reduce computation load. We could
split the set of sensors M into subsets by clustering, compute
precisely an estimate and error variance for each sensor subset,
and fuse all estimates.

We introduce a solution inspired from CDMA code design.
Each user code is a vector, and the pairwise code cross-
correlation is their inner product. The total squared cross-
correlation (TSC) metric, defined as the sum of squares
of pairwise code cross-correlations quantifies mutual in-
terference among CDMA codes and is used in design-
ing low-interference, high capacity systems [11]. From (6),
note that for two sensors i and j, it is var(θ̂ML) =(
NiNjαij + Ni

σ2
i

+ Nj

σ2
j

)−1

, with αij = 1T C−1
ij 1 − 1

σ2
i
− 1

σ2
j

,
and Cij the 2 × 2 correlation matrix that corresponds to
sensors i and j. Thus, αij may be viewed as the coupling
between measurements of sensors i and j; if ρij = 0, then
αij = 0. We construct the following metric for estimation
error variance, which we call Total Pairwise Correlation
Approximation (TPCA) of variance of estimation error,

TPCA(θ̂ML) =




m∑

i=1

m∑

j∈Si,j>i

NiNjαij +
m∑

i=1

Ni

σ2
i



−1

= h̃(N)
−1

.

(8)



B. Problem Statement and Formulation

The fundamental tradeoff between estimation quality and
lifetime is that more measurements yield small estimation error
but require more energy to gather at the FC. Since sensors have
different observation quality, energy reserves and consumed
energy per measurement, it is necessary to provide sensors
with the possibility to submit different average number of mea-
surements per unit time, i.e different measurement rates. When
sensor spatial correlations come into play, sensor measurement
rates should be controlled, so that sensors in closer proximity
collectively transmit fewer measurements than if sensors were
uncorrelated to avoid data redundancy. Due to the coupling
among measurements of different sensors because of spatial
correlation, different measurement rate vectors give rise to
different joint probability distribution of measurements, and
different estimation errors. By controlling measurement rates,
we create sensor transmission regimes that provide the FC
with adequate measurements for the specified estimation error
while adhering to low energy consumption. Routing amounts
to selecting the portions of measurements to transmit to each
neighbor. Each sensor forwards its own data as well as received
data from other sensors. The joint problem is to determine the
measurement rate of each sensor (which essentially denotes
injected traffic rate in the network) and the routes through
which measurements are transferred from sensors to the FC
such that network lifetime is maximized.

We adopt a fluid model for information flow, so that
information forwarded between sensors i and j ∈ Si is a real-
valued flow fij ≥ 0 denoting average amount of bits per unit
of time. Let f = (fij : (i, j) ∈ A) be the vector of all link
flows. The lifetime of sensor i is Li(f) = Ei/(

∑
j∈Si

eijfij),
where the denominator denotes energy consumption rate of
sensor i. Network lifetime is defined as the time until the
battery of the first sensor empties, namely it is mini∈N Li(f).
Besides, f , the measurement rate vector r of sensors needs to
be determined.

We are given a constraint ε on average estimation error.
Expression [h̃(N(t))]

−1
in (8) gives the estimation error within

an epoch as function of numbers of measurements. To obtain
an expression for the average estimation error over all epochs,
h̄(r) = limT→∞ 1

T

∑T
t=1 h̃(N(t)), we need to express it

through r. It can be shown that,

h̄(r) = T 2
s

∑

i

∑

j∈Si,j>i

αijrirj + Ts

∑

i

ri

σ2
i

. (9)

The problem can be formulated as:

max
r,f

min
i∈N

Li(f)

subject to the the flow conservation constraint at each sensor,
and the estimation error constraint,

∑

j:i∈Sj

fji + ri =
∑

j∈Si

fij , ∀i ∈ N

T 2
s

2

∑

i∈N

∑

j∈Si

αijrirj + Ts

∑

i∈N

ri

σ2
i

=
1
ε
,

with r ≥ 0, f ≥ 0. Note that we multiply the last
constraint by 1/2 to transform it into a form that does not need
additional coordination among sensors. Define a new variable
z = mini∈N Li(f), and set r̂ = zr and f̂ = zf to get the
equivalent formulation,

max
r̂,f̂ ,z

z

subject to:
∑

j:i∈Sj

f̂ji + r̂i =
∑

j∈Si

f̂ij , ∀i ∈ N ,

T 2
s

2

∑

i∈N

∑

j∈Si

r̂ir̂jαij + Ts

∑

i∈N

r̂iz

σ2
i

=
z2

ε
(10)

∑

j∈Si

eij f̂ij ≤ Ei, ∀i,

and r̂ ≥ 0, f̂ ≥ 0, z > 0, where the last constraint is due
to the new variable z.

C. Primal-Dual Algorithm

We relax the flow conservation and estimation error con-
straints and form the Lagrangian

L(z, r̂, f̂ ,λ, µ) = −z +
m∑

i=1

λi(
∑

j:i∈Sj

f̂ji + r̂i −
∑

j∈Si

f̂ij)

+µ(
T 2

s

2

m∑

i=1

∑

j∈Si

r̂ir̂jαij + Ts

m∑

i=1

r̂iz

σ2
i

− z2

ε
)

where λ, µ are the Lagrange multipliers for flow conservation
constraints and the estimation error constraint. The primal
problem,

min
z>0,r̂≥0,f̂≥0

L(z, r̂, f̂ , λ, µ) s.t.
∑

j∈Si

eij f̂ij ≤ Ei, ∀i,
(11)

is divided into a routing problem that depends on f̂ , and a
part is a function of r̂, z, call it g(r̂, z). The routing problem
decomposes into linear programming (LP) problems that each
sensor i solves to determine next-hop forwarding variables f̂ij ,

min
f̂ij

∑

j∈Si

(λj − λi)f̂ij s.t.
∑

j∈Si

eij f̂ij ≤ Ei. (12)

Note that for (12), Lagrange multipliers from sensors j ∈
Si need to be communicated to i. The second problem is to
minimize g(r̂, z). The optimization of g(r̂, z) with respect to
z is carried by the FC by setting ∂g(r̂, z)/∂z = 0 to find z(t).
Next, each sensor adjusts r̂i by running one iteration of the
gradient algorithm towards minimizing g(r̂, z), that is,

r̂
(t)
i = r̂

(t−1)
i − st∂g(r̂(t−1), z(t))/∂r̂i, (13)

where st > 0 is the step size. For this iteration, a sensor i
needs to know instantaneous r̂j of neighbor sensors.

The dual problem is:

max
λ,µ

L(z, r̂, f̂ , λ, µ) (14)



for given f̂ , z, r̂. Sensor i knows instantaneous incoming and
outgoing flow variables f̂ji and f̂ij from and to neighboring
sensors, and updates its Lagrange multiplier λi according to:

λ
(t)
i = λ

(t−1)
i +st

( ∑

j:i∈Sj

f̂
(t−1)
ji + r̂

(t−1)
i −

∑

j∈Si

f̂
(t−1)
ij

)
(15)

Next, for given r̂, the FC updates Lagrange multiplier µ,

µ(t) = µ(t−1) + st

(T 2
s

2

m∑

i=1

∑

j∈Si

r̂
(t−1)
i r̂

(t−1)
j αij

+ Ts

m∑

i=1

r̂
(t)
i z(t−1)

σ2
i

− z(t−1)2

ε

)
. (16)

The primal-dual algorithm, is summarized below.
• STEP 0: Initialization. Before epoch t = 0, FC initializes

µ(0) and z(0) > 0. Each sensor i initializes r̂
(0)
i and λ

(0)
i .

• IF t > 0 DO
• STEP 1: Each sensor i updates λ

(t)
i according to (15).

• STEP 2: The FC updates Lagrange multiplier, µ(t) as in
(16).

• STEP 3: The FC computes the new variable, z(t) from
∂g(r̂, z)/∂z = 0 as

z(t) =
ε

2
(
Ts

m∑

i=1

r̂
(t−1)
i

σ2
i

− 1
µ(t)

)
. (17)

• STEP 4: The FC broadcasts z(t) and µ(t) to all sensors.
• STEP 5: Each sensor i updates its variable r̂i with the

gradient iteration

r̂
(t)
i = r̂

(t−1)
i −st

[
λ

(t)
i +µ(t)

(T 2
s

2

∑

j∈Si

αij r̂
(t−1)
j +

Tsz
(t)

σ2
i

)]

(18)
if r̂

(t)
i > 0, else r̂

(t)
i is set to 0.

• END IF
• STEP 6: Each sensor i sets its generation rate as r

(t)
i =

r̂
(t)
i /z(t), or equivalently it generates N

(t)
i = Tsr

(t)
i

measurements during epoch t. Then it broadcasts r
(t)
i to

its neighbors.
• STEP 7: Each sensor i solves the routing problem (12)

and computes f̂
(t)
ij , j ∈ Si. It determines its flows as

f
(t)
ij = f̂

(t)
ij /z(t).

• STEP 8: Measurements from sensors reach the FC during
epoch t.

• STEP 9 t ← t + 1. Go to Step 1. Continue until
convergence.

The algorithm is decentralized, with minimal feedback from
the FC. At each epoch, dual variables λ(t) and µ(t) are
updated: each sensor computes λ

(t)
i and the FC updates µ(t).

These are performed each with a gradient ascent step. Next,
a one-shot minimization is performed by the FC to find z(t).
Then, each sensor adjusts r̂

(t)
i related to generation rate with

a gradient descent step after obtaining r̂j from neighbors. In
Step 5, each sensor essentially calibrates local measurement
generation rates based on spatial correlation with neighbors.

FC

s1

s2

s3

s4

s5

s6

s7

s8

Fig. 1. Topology of a network with 8 sensors.The distance between two
neighboring sensors varies randomly between 1 and 8m.

Finally, each sensor independently takes routing decisions by
solving the LP problem (12). If the sequence of steps satisfies
limt→∞ st = 0 and

∑
t st = ∞, the algorithm converges to

at least a local optimum of the original problem. The problem
structure is reminiscent of the classical rate control and routing
problem for network utility maximization in wireless networks
[12], albeit with a different objective and the non-conventional
constraint of estimation error.

1) Uncorrelated sensors: For the special case of loosely
correlated or uncorrelated sensors, the constraint on estimation
error becomes

Ts

∑

i

r̂i

σ2
i

=
z

ε
. (19)

It can be shown that the problem decomposes into an LP
problem, that is further decomposed into a measurement rate
update for each sensor i through the iteration

r̂
(t)
i =

[
r̂
(t−1)
i + (λ(t)

i − 1
σ2

i

)
]+

(where x+ = x if x > 0, else it is 0), and a routing problem as
in (12). In this case, the primal-dual algorithm can be shown
to converge to the global optimum routing and measurement
generation rates.

IV. NUMERICAL RESULTS

We consider a network of m = 8 sensors (see Figure 1),
where the distance between two neighboring sensors varies
randomly between 1 and 8m. For spatial correlation, we adopt
the power exponential model [13] according to which two
sensors at distance d meters have ρ(d) = exp[−( d

K1
)
K2 ], with

K1 ∈ [2, 6] and K2 = 1. Then, the correlation of sensors at a
specific distance (d) increases as we increase the value of K1.
We adopt the transmission model from [14], where the energy
consumed to reliably transmit a packet to the FC at distance
d is 100nJ × d2. Thus, spatial correlation between neighbor
sensors varies from about 0.2 to 0.8 and eij varies from 0.1 to
6.4µJ. Non-neighboring sensors are uncorrelated. Each sensor
has initial energy reserve E = 1 Joule, σ2 = 1, and transmits
packets of 100 bits. For each sensor, we consider only the
energy consumed for transmission. For the estimation error,
we use the expression (8). Simulation results were generated
in Matlab. In Figure 2 (a) and (b), we plot system lifetime
as function of K1 for error tolerance ε equals to 10−3 and



10−5. We average results over 50 experiments for various
randomly defined distances between neighboring sensors while
the value of K1 varies from 2 to 6. Lifetime increases as K1

increases, that is as sensors become more correlated. Each pair
of sensors in the network jointly submits fewer measurements
than the total number of measurements per pair if the sensors
were uncorrelated. This implies that the flow rates between
sensors are reduced which also results in the reduction of
energy consumption in the network and therefore the network
lifetime is prolonged. We can also say that for same spatial
correlation, the lifetime for looser constraints on estimation
error (ε = 10−3) is at least one order of magnitude more
than that for ε = 10−5. Also, as the correlation of sensor
increases (i.e. K1 increases) this difference becomes more
clear. Moreover we observe that for strict constraints on error
tolerance (Figure 2 (b)), the lifetime does not significantly
vary with correlation. This makes sense since the effect of a
strict constraint, such as ε = 10−5, to the network lifetime
overcovers that of correlation. Due to low error tolerance,
the sensors need to send a large number of measurements to
the FC in order that a more accurate estimation is achieved.
The transmission of measurements to the FC consumes energy
which significantly affects the system lifetime.

V. DISCUSSION

We addressed the problem of maximizing lifetime in a
sensor network subject to a constraint on the estimation error.
Our main contribution is the joint orchestration of sensor mea-
surement rates and routes to the FC, and the design of a dis-
tributed primal-dual algorithm that relies on lightweight local
sensor coordination and feedback from the FC. Sensor spatial
correlation is used so that sensors control their measurement
rates to avoid redundant data generation. This work adhered
to the simple scenario where sensors generate and forward
their and others’ measurements with no further processing, in
order to better demonstrate the way measurement rates and
routes affect estimation quality and lifetime. In that sense, it
can be considered as a prelude to a more general approach
that will include in-network aggregation by sensors prior to
transmission in an effort to better shape the tradeoff between
estimation quality and energy efficiency. We plan to address
this issue in a future work.

ACKNOWLEDGEMENTS. The authors acknowledge support from
the European Commission through the projects: CON4COORD (FP7-
ICT-223844) and NET-REFOUND (FP6-IST-034413).

REFERENCES

[1] J.-H. Chang and L. Tassiulas, “Maximum lifetime routing in wireless
sensor networks”, IEEE/ACM Trans. Networking, vol.12, no.4, pp.609-
619, Aug. 2004.

[2] S.J. Baek, G. de Veciana and X. Su, “Minimizing energy consumption
in large-scale sensor networks through distributed data compression and
hierarchical aggregation”, IEEE J. Select. Areas Commun., vol.22, no.6,
pp.1130-1140, Aug. 2004.

[3] R. Cristescu, B. Beferull-Lozano, M. Vetterli and R. Wattenhofer,
“Network correlated data gathering with explicit communication: NP-
Completeness and algorithms”, IEEE/ACM Trans. Networking, vol.14,
no.1, pp.41-54, 2006.

2 2.5 3 3.5 4 4.5 5 5.5 6
0

20

30

40

50

60

70

80

90

100

110

120

130

140

150150

K1

Ne
tw

or
k 

Li
fe

tim
e 

(n
um

be
r o

f e
po

ch
s)

Network Lifetime vs Sensor Correlation for Error Tolerance 1e−3 

(a)

2 2.5 3 3.5 4 4.5 5 5.5 6
3.145

3.15

3.155

3.16

3.165

3.17

3.175

3.18

3.185

3.19
x 10

−3

 K1

N
et

w
or

k 
Li

fe
tim

e 
(n

um
be

r o
f e

po
ch

s)

Network Lifetime vs Spatial Correlation for Error Tolerance 1e−5 

(b)

Fig. 2. System Lifetime versus the parameter K1 used in the definition of
sensor correlation (ρ(d) = exp[−( d

K1
)
K2 ]) for error tolerance a) ε = 10−3

and b) ε = 10−5.

[4] K. Yuen, B. Liang and B. Li, “A distributed framework for correlated
data gathering in sensor networks”, IEEE Trans. Veh. Tech., vol.57, no.1,
pp.578-593, 2008.

[5] A. Krasnopeev, J.-J. Xiao and Z.-Q. Luo, “Minimum energy decentralized
estimation in a wireless sensor network with correlated sensor noise”,
EURASIP J. Wireless Com. Networking, vol.5, no.4, pp.473-482, 2005.

[6] J. Matamoros and C. Anton-Haro, “Opportunistic random access for
distributed parameter estimation in wireless sensor networks”, Europ.
Signal Proc. Conf. (EUSIPCO), Poznan, Poland 2007.

[7] S. Cui, J. Xiao, A. Goldsmith, Z. Luo and H. V. Poor, “Estimation
Diversity and Energy Efficiency in Distributed Sensing”, IEEE Trans.
Signal Proc., vol.55, no.9, pp.4683-4695, Sept. 2007.

[8] V. Sharma, E. Frazzoli and P.G. Voulgaris, “Improving lifetime data
gathering and distortion for mobile sensing networks”, Proc. IEEE
SECON, 2004.

[9] A. Kansal, A. Ramamoorthy, M.B. Srivastava and G.J. Pottie, “On sensor
network lifetime and data distortion”, Proc. IEEE Int. Symp. on ISIT,
2005.

[10] Y. Sung, S. Misra, L. Tong and A. Ephremides, “Cooperative routing
for distributed detection in large sensor networks”, IEEE J. Select. Areas
Commun., vol.25, no.2, pp.471-483, Feb. 2007.

[11] J.L. Massey and T. Mittelholzer, “Welch’s bound and sequence sets
for code-division multiple access systems”, in Sequences II, Methods in
Communication, Security and Computer Science, A. Capocelli, A. De
Santis and U. Vaccaro, Eds. New York: Springer-Verlag, 1993.

[12] X. Lin, N.B. Shroff and R. Srikant, “A tutorial on cross-layer optimiza-
tion in wireless networks”, IEEE J. Select. Areas Commun, vol.24, no.8,
pp.1452-1463, Aug. 2006.

[13] M.C. Vuran, O.B. Akan and I.F. Akyildiz, “Spatio-Temporal correlation:
Theory and applications for wireless sensor networks,” Computer Net.
Journal (Elsevier), vol.45, no.3, pp. 245-261, June 2004.

[14] W. Heinzelman, A.P. Chandrakasan, and H. Balakrishnan, “Energy-
Efficient Communication Protocols for Wireless Microsensor Networks”,
Proc. HISS, 2000.


