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Abstract

In this paper, we present a distributed resource allocation algorithm for multi-cell OFDMA systems

by adopting a game theoretic approach. We first define a utility function that represents both the reward

of the weighted sum of the data rates and the cost of power consumption in a cell by using the

concept ofpower price. Then we model the resource allocation problem as a noncooperative game.

We prove that there exists a Nash equilibrium for the game and investigate the uniqueness of the

equilibrium. Based on the game, we devise adistributed resource allocation(DRA) algorithm that

finds the Nash equilibrium point by arranging each base station to adjust its own resource allocation

strategy iteratively without coordination among the base stations. The DRA algorithm turns out to

converge fast to the equilibrium within a small number of iterations. In addition, in order to improve

the efficiency of the Nash equilibrium, we propose aload-balancing based distributed pricing(LBDP)

algorithm that induces cooperation among the base stations implicitly by controlling the power price

of each base station according to the load distribution. We demonstrate through simulation results that

the combination of the DRA and LBDP algorithms, called DRA-LBDP, exhibits a performance that is

close to a centralized algorithm.
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A Distributed Resource Allocation based on

Noncooperative Game and Distributed Pricing for

Multi-cell OFDMA Systems

I. I NTRODUCTION

As orthogonal frequency division multiple access(OFDMA) has emerged as one of the most

promising multiple access techniques for high data rate transmission over wireless channels,

resource allocation in OFDMA systems has become an important research topic in wireless

communications. In particular, resource allocation for multi-cell OFDMA systems is a very

important subject as it is directly applicable to practical use. In multi-cell environment, one of

the major issues for research is how to maximize the performance by controlling the co-channel

interference among the neighboring cells. The algorithms that have been developed to date mostly

handle this issue in a centralized manner or with limited cooperation among the neighboring

cells [1]–[3]. However, such approaches induce signaling overhead and also require efforts for

cell planning.

In multi-cell environment, therefore, distributed operation is a preferred approach for the

management of co-channel interference. For distributed operation, the base station in each cell

should be capable of operating without the information about other cells. In this situation, game

theory can render a useful and powerful tool for efficient resource management. The game theory

was previously applied for solving power control problems in communication systems [4] such

as the uplink power control incode division multiple access(CDMA) systems [5, 6] and the

power control in multi-cellorthogonal-frequency-division-multiplexing(OFDM) systems [7]. In

those applications, the power control problems were modelled as noncooperative games and their

distributed solutions were sought for.

In this paper, we present a noncooperative game for the downlink resource allocation in
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multi-cell OFDMA systems. We adopt the concept ofpower priceto define a utility function

that represents both the reward of the weighted sum of the data rates and the cost of power

consumption in a cell. Then we model the problem of maximizing the overall utility under the

maximum power constraint as a noncooperative resource allocation game. In this game, a base

station in each cell individually controls the assignment of sub-channels to the users and the

allocation of power to each sub-channel in order to maximize its own utility. The game model

we take in this paper has some unique features that are different from those in the previous

works [5]–[7]: First, aplayer, which used to be each user, is now each base station. In addition,

a strategychosen by each player, which used to deal with only power control, now involves

both the sub-channel assignment and the power allocation. As is the case in [7], the strategy

becomes multi-dimensional for the OFDMA systems since they have multiple sub-channels. For

the proposed game, we investigate the existence and uniqueness of the Nash equilibrium point.

We construct a distributed resource allocation algorithm from the game.

We also present a distributed pricing algorithm that can improve the efficiency of a Nash

equilibrium. The power price in the above utility function represents the cost imposed on each

base station for the co-channel interference generated by itself as well as its power consumption.

So, we use a pricing mechanism that can incite cooperation among base stations implicitly: We

charge a high price to the base stations in lightly loaded cells such that they do not increase

the transmission power unnecessarily and thereby suppress the co-channel interference to other

base stations in highly loaded cells. Such “social” behaviors of the base stations can lead to load

balancing effects and improved network performance. We arrange each base station to control

the power price based only on the knowledge of the measured load in its own cell. By doing so,

it becomes possible to apply the pricing algorithm without requiring additional signaling among

the base stations. We demonstrate through computer simulations that the pricing mechanism

enables the relevant distributed resource allocation algorithm to perform close to a centralized

algorithm performing near-optimal.

The rest part of the paper is organized as follows: We first describe the system model under
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consideration in Section II. Then, in Section III, we present the noncooperative resource allocation

game, investigate the existence of the Nash equilibrium for the game, propose the distributed

resource allocation algorithm that converges to the Nash equilibrium, and examine the uniqueness

of the Nash equilibrium. In Section VI, we present the distributed pricing algorithm that can

improve the overall network performance at the Nash equilibrium. Finally, in Section V, we

present simulation results.

II. SYSTEM MODEL

We consider a downlink resource allocation in an OFDMA system withN cells serving

K users. We assume all the cells in the network share the same frequency band, and the total

bandwidthB is divided intoM sub-channels. We denote bypn = (pn
1 , · · · , pn

M) the transmission

power vectorof base stationn, with pn
m denoting the transmission power at sub-channelm. In

addition, we denote byP = [p1 p2 · · · pN ] the network power vector, a concatenation of the

transmission power vectors of theN base stations in the network. We assume that the total

transmission power (i.e.,
∑M

m=1 pn
m) of each base station is constrained to be less thanPmax,

and each sub-channel can be assigned to only one user. We define byAn = [an
mk]M×K the

assignment matrix, wherean
mk is 1 if sub-channelm is assigned to userk and 0 otherwise.

Let Gn
mk denote the channel gain between userk and base stationn in sub-channelm. Then

thesignal-to-noise-and-interference-ratio(SINR) of userk in cell n for the given network power

vectorP can be expressed by

γn
mk(P) =

Gn
mkp

n
m∑N

l=1,l 6=n Gl
mkp

l
m + σ2

, (1)

whereσ2 is the noise power, and the achievable data rate of userk is given by

Rn
mk(P) =

B

M
log2(1 +

γn
mk(P)

Γ
), (2)

whereΓ = − ln(5BER)/1.5 for the bit error rate requirement BER [8].

The total data rate of userk, Rk, depends on the power allocation in other cells as well as

the sub-channel assignment and the power allocation in the corresponding cell. Specifically,Rk
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is determined byP andAn as follows:

Rk(P,An) =
M∑

m=1

an
mkR

n
mk(P). (3)

The weighted sum of the data rates of all the users in celln is given by
∑

k∈Un
µkRk, whereUn

denotes the set of users in celln andµk is the user-dependent weighting factor. This weighted

sum data rate increases if the transmission power of the base station increases but it causes an

increase of co-channel interference in the neighboring cells too. Consequently, the transmission

power increase leads to conflicting interests among multiple base stations. In the subsequent

sections, we are going to solve this conflict problem in a distributed manner by adopting a game

theoretic approach.

III. D ISTRIBUTED RESOURCEALLOCATION ALGORITHM

A. Noncooperative Resource Allocation Game

We first define theutility function(or payoff function) and construct a game in which each base

station individually controls the resource allocation to maximize its own utility. The weighted

sum of the data rates can be considered as the reward obtained by consuming the power resource

and the cost is the total transmission power,
∑M

m=1 pn
m. So the utility function is defined to be

the reward less the cost. Specifically, the utility function of base stationn is given by

un(P,An) =
∑

k∈Un

µkRk(P,An)− c

M∑
m=1

pn
m, (4)

wherec is the price per unit power, orpower price, having the unit bps/W.1 The power price

represents the price that each base station should pay not only for its power consumption but

also for the co-channel interference generated by itself. Therefore, the utility function based

on the power price renders a measure to implicitly induce cooperation among base stations,

that is, to encourage each base station to maximize the weighted sum of the data rates while

1In the next section, we will use different power price for each base station and introduce a pricing algorithm.
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minimizing the co-channel interference to other cells.2 For the utility function, we may use an

alternative form of notationun(pn,P−n,An) in which pn is separated out ofP. Note thatP−n

denotes the reduced network power vector that remains after separating outpn, which indicates

the interference power.

Let G = [N , {Pn × An}, {un}] denote anoncooperative resource allocation game(NRAG)

whereN = {1, 2, · · · , N} is the index set of the base stations andPn×An is the strategy space

of each base station, defined byPn = {pn | 0 ≤ ∑M
m=1 pn

m ≤ Pmax} andAn = {An | an
mk =

0 or 1 for all m, k, and
∑

k∈Un
an

mk = 1}, respectively. Each base station tries to determine the

transmission power vectorpn and the assignment matrixAn such thatpn ∈ Pn andAn ∈ An.

In the game, each base station maximizes its own utility, regardless of other base stations in

a distributed fashion. Formally, the game can be expressed as

NRAG: max
pn∈Pn,An∈An

un(pn,P−n,An), for all n ∈ N . (5)

This indicates that the base stationn optimizes its own transmission power vectorpn and the

assignment matrixAn for the given interference from all the other cells.

We first consider the problem of optimizing the sub-channel assignment for a given network

power vectorPo, which is given by

max
An∈An

∑

k∈Un

µkRk(Po,A
n). (6)

Note that the cost term is suppressed as it depends only on the transmission power vector. By

Eq. (3), we get
∑

k∈Un

µkRk(Po,A
n) =

∑

k∈Un

M∑
m=1

an
mkµkR

n
mk(Po). (7)

Since eachan
m has only two values, 0 or 1, we can obtain the optimal solution by using a

greedy approach. Specifically, the assignment matrix that assigns each sub-channel to the user

2Note that in previous game models for the uplink power control in CDMA systems, the transmission power is involved in

the utility function in order to capture the trade-off between throughput and energy consumption [5, 6].
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who yields the maximum weighted data rate is the optimal solution of the problem in (6). That

is, for eachm,

a∗nmk(Po) =





1, if k = arg maxk µkR
n
mk(Po),

0, otherwise.
(8)

According to Eq. (8), we can determine the optimal sub-channel assignment matrixA∗n(P)

once the network power vectorP is determined. Therefore, the resource allocation problem turns

into a power allocation problem and, consequently, the NRAG reduces to anoncooperative power

allocation game(NPAG) G′ = [N , {Pn}, {un}] as follows:

NPAG: max
pn∈Pn

un(pn,P−n,A∗n(P))

=
M∑

m=1

max
k

[µkR
n
mk(P)]− cpn

m, for all n ∈ N . (9)

We call a network power vectorP a Nash equilibriumof the NPAG if for everyn ∈ N ,

un(pn,P−n,A∗n(P)) ≥ un(qn,P−n,A∗n(Q)) for all qn ∈ Pn andQ ≡ [p1 · · · pn−1 qn pn+1 · · · pN ].

In other words, at a Nash equilibrium, once the power vectors of other base stations are given,

no base station can improve its utility level by changing its own transmission power vector

unilaterally. Such a Nash equilibrium exists in the NPAG, as is proved in Appendix A. More

formally,

Theorem 1:A Nash equilibrium exists in the NPAG.

B. Design of Distributed Resource Allocation Algorithm

The transmission power vector of a base station that maximizes the utility function in the

strategy space is called thebest responseto the transmission power vectors chosen by the other

base stations. Letrn(P−n) denote the best response of base stationn to a given interference

power vectorP−n. In formal expression, the best response is the correspondencern : P−n →
pn. Unfortunately, the max function in the utility function is not differentiable, so it is hard

to determine the best response by solving the problem in (9) analytically. To get around the

difficulty, we consider an iterative algorithm as follows:
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Proposition 1: For a given sub-channel assignment matrixAo
n, let k∗nm denote the index of

the user withao
n
mk = 1. Then, in the NPAG, the best response of base stationn is given by

[rn(P−n)]m =

[
Bµk∗n

m

(c + λ∗n)M ln 2
− Γ(

∑N
l=1,l 6=n Gl

mk∗n
m
pl

m + σ2)

Gn
mk∗n

m

]+

, (10)

λ∗n(
M∑

m=1

[rn(P−n)]m − Pmax) = 0, λ∗n ≥ 0, (11)

where[rn(P−n)]m denotes them-th power of the best response (i.e., the power of sub-channel

m) andλ is the Lagrangian multiplier for the maximum power constraint.3

Proof: See Appendix B.

The proposition indicates that the best response of base stationn is the water-filling power

allocation with the water level determined either by the power price or by the maximum

transmission power. This means that each base station avoids using the sub-channel having

high interference and allocates more power to the sub-channel having low interference instead.

This contrasts to the power control in CDMA systems in which the transmission power of each

user increases as the interference from other users increases [5, 6]. The reason is that an OFDMA

system has multiple sub-channels, while a CDMA system has a single channel.

From Proposition 1, we can obtain the optimal transmission power vector for a given sub-

channel assignment matrix. This enables us to devise adistributed resource allocation(DRA)

algorithm that determines the sub-channel assignment and power allocation iteratively as follows:

i) Initially, each base station distributes the total power equally to each sub-channel.

ii) Each user measures the SINR of all the sub-channels for the given transmission power

vectors of the other base stations in the previous iteration.

iii) Each user feeds back the measured values to the base station associated with it.

iv) Each base station performs sub-channel assignment according to (8).

v) Each base station performs power allocation according to (10) and (11).

3Note that[x]+ = x if x ≥ 0 and 0 otherwise.
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vi) We iterate the steps ii)∼ v) until the resource allocation converges to an equilibrium.

In the above DRA algorithm, we update both the interference from other cells and the sub-

channel assignment and perform the water-filling power allocation process through iterations.4

Note that at each iteration each base station can maximize its own utility function using only

local information received from the users, that is, the SINR in each sub-channel. So a base

station does not need the information about the transmission power levels that the other base

stations use. In such a way, the DRA algorithm can operate in a distributed manner without

requiring any signaling among the base stations.

It is obvious that if the DRA algorithm converges, it will converge to a Nash equilibrium

point. As will become clear in Section V, the algorithm converges indeed and the number of

steps required for the convergence of the algorithm is small.

C. Numbers of Nash Equilibrium Points

Now we consider whether the Nash equilibrium is unique or not. In order to gain some insight

into the uniqueness issue, we consider the simple case of two cells with one user located in

each cell. From Proposition 1, a network power vectorP is a Nash equilibrium if and only if

the water-filling condition (10) and (11) is satisfied for all the cells simultaneously. We assume

that the noise powerσ2 is much smaller than the co-channel interference.5 For the case of the

two cells, the necessary and sufficient condition can be written as follows: For any sub-channel

m,

p1
m =

[
w1 − ΓG2

m1p
2
m

G1
m1

]+

, (12)

p2
m =

[
w2 − ΓG1

m2p
1
m

G2
m2

]+

, (13)

4The proposed iterative water-filling power allocation among multiple base stations is similar to the iterative water-filling

approach that was proposed for the power control indigital subscriber line(DSL) systems [9].

5This assumption is reasonable in the interference-limited systems.
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wherewi = Bµi

(c+λ∗i)M ln 2
, i = 1, 2 and the users are labled by the same index as the corresponding

cell. Depending on the set of the channel gainsGi
mj for i, j = 1, 2, the NPAG may have one

or more equilibrium points as follows: As one can easily prove, there exists a unique Nash

equilibrium if there is at least one user for whichGi
mi

Gj
mi

>
wj

Γwi
for i, j = 1, 2, i 6= j. At the Nash

equilibrium, each base station may allocate a positive transmission power to that particular user.

On the other hand, it can also be easily proved that ifG1
m1

G2
m1

< w2

Γw1
and G2

m2

G1
m2

< w1

Γw2
, there exist

three Nash equilibria.6 Fig. 1 illustrates the regions of unique and three Nash equilibria for the

casew1 = 2, w2 = 1, and Γ = 1, with the notation(x1, x2) indicating that the transmission

power of base stationi (i = 1, 2) is lager than zero ifxi = 1 and zero otherwise.

In the multi-user case with multiple users existing in a single cell, the second case with three

equilibria occurs with a low probability. In this multi-user case, a sub-channel is supposed to be

assigned to the user who yields the highest weighted data rate. If all the users have the same

weighting factorµk, i.e, µk = µ for all k, for a given network power vector, then we get

arg max
k

µk log2

(
1 +

Gi
mkp

n
m

ΓGj
mkp

j
m

)
= arg max

k

Gi
mk

Gj
mk

. (14)

So the optimal solution of the problem in (6) leads to assigning each sub-channel to the user

having the maximum ratioG
i
mk

Gj
mk

, denoted byk∗im. If we assume thatG
i
mk

Gj
mk

is an independent

random variable for allk, then we get

Pr

[
Gi

mk∗i
m

Gj

mk∗i
m

< w

]
=

∏

k∈Ui

Fk(w), (15)

whereFk(x) is the CDF ofGi
mk

Gj
mk

, i.e., the probability ofG
i
mk

Gj
mk

< w. Therefore, the probability of

6Note that we except the case ofGi
mi

G
j
mi

=
wj

Γwi
for i, j = 1, 2, i 6= j. If the conditional cdf ofGi

mi, FGi
mi

(x|Gj
mi = g), is

a continuous function, we have Pr

�
Gi

mi

G
j
mi

= w

�
= 0 for a constantw. As an exceptional case, let us consider the case that

Gi
mi and Gj

mi are fully correlated, i.e.,Gi
mi = rGj

mi for a constantr. In this case,FGi
mi

(x|Gj
mi = g) = δ(x − rg), so

we get Pr

�
Gi

mi

G
j
mi

= r

�
= 1. However, such an exceptional case does not exist because the channel gain is a random variable,

determined by the path loss, the multi-path fading and the shadowing, and the multi-path fadings from different base station are

mutually independent in general.
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Gi
mk∗i

m

Gj

mk∗i
m

< w for i 6= j and a constantw > 0 becomes smaller as the number of users increases.

Even for the case where each user has a different weighting factor, it is likely that there is a

user who has a high SINR as well as a high weighting factor at any time when the number of

users is large. Therefore, we may conclude that the Nash equilibrium is likely to be unique with

a high probability in multi-user systems. This argument may be applied to the case with more

than two cells in a similar way.

IV. L OAD-BALANCING BASED DISTRIBUTED PRICING ALGORITHM

In the above, we defined the utility function by adopting the concept of power price and

designed the DRA algorithm based on it. However, the Nash equilibrium achieved by the

distributed algorithm could yet be less efficient than the resource allocation obtained through

centralized optimization. We can expect that the DRA algorithm would become more efficient

if the power price of each base station could be controlled adequately. So, in this section, we

investigate how to achieve this by introducing a distributed pricing algorithm.

In general, users are distributed non-uniformly over the network and each user requires

different data rate for different service applications. Even when the same data rate is to be

provided to different users, the required transmission powers are different depending on their

channel conditions and interference levels. As such, the load is not uniform over the network

and the amount of power resource needed to support the load vary among cells. In such non-

uniform load distribution environment, it is desirable to employ load balancing approach [3] to

improve the overall network performance. So we take an approach that adapts the price of each

base station according to load distribution, thereby yielding aload-balancing based distributed

pricing (LBDP) algorithm.

The basic idea of the LBDP algorithm is as follows: In the DRA algorithm, the price is de-

signed to control the degree of willingness of a base station to reduce the co-channel interference

to the neighboring cells while sacrificing the data rate of the users within its own cell. So it is

desirable to impose a higher price on the base station having lighter load. Then, in a lightly-

loaded cell, the corresponding base station will try to use a low price, setting the transmission
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power to a low level which is just good enough to support the given light load. This mechanism

prevents base stations from increasing transmission power unnecessarily, consequently decreasing

the co-channel interference to other cells as well. On the other hand, in a heavily-loaded cell,

the corresponding base station will try to use a high price, increasing the transmission power

to a high level adequate to support the given heavy load. Apparently it will cause an increase

of co-channel interference, but it can be mitigated if the neighboring cells having light load

use some extra power. It is possible to implement this pricing scheme in a distributed way by

arranging each base station to control the price only based on its own load information. Similar

to the DRA algorithm, we can achieve desirable price values through iterative adjustment of

price by each base station.7

Specifically, letcn(i) denote the price of base stationn in thei-th iteration,Ln the load of base

stationn, andfu(x) and fl(x) non-decreasing and non-increasing functions ofx, respectively.

Then the LBDP algorithm operates in such a way that each base station updates the price

iteratively in the form

cn(i + 1) =





cn(i)(1− fu(L
n)) , if Ln is high,

cn(t)(1 + fl(L
n)) , if Ln is low,

cn(t) , otherwise.

(16)

In the following, we discuss how to define the load and the price update functions depending

on the traffic model, for the two special models: dynamic arrival model and infinite backlog

model.

A. Distributed Pricing under Dynamic Arrival Traffic

We first consider a dynamic arrival model in which data packets for the users arrive randomly

at each time instant. We consider a frame and super-frame structure in the time domain, with the

7When the load of all the neighboring cells is high all the cells will continue increasing the transmission power up to the

maximum level. In this case, it is necessary to force some cells to decrease the transmission power such that the other cells can

support the given high load. However this requires a cental controller that enforces cooperation among the cells. In this paper,

we assume that such a case hardly happens, so we choose to adopt the distributed operation.
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time divided into periodic frames and with each super-frame composed ofNf frames. Assuming

that the channel condition of each user is fixed during each frame and varies between frames,

we perform the DRA algorithm on frame basis. On the other hand, taking into account that the

traffic characteristics vary slowly, we perform the LBDP algorithm on super-frame basis.

Each base station has multiple queues, with each queue associated with a different user. In

the beginning of each frame, data packets arrive according to a random process and are stored

in one of the queues according to their destinations. We denote byAk(t) the number of bits that

arrive for userk at the beginning of framet and denote byRk(t) the data rate allocated to user

k during framet. Then the number of bits transmitted from the queue is given byTfRk(t) for

the frame durationTf . We denote byWk(t) the size of the queue of userk at the beginning of

the framet. Then the evolution of the queue size takes the expression

Wk(t + 1) = min{max{Wk(t)− TfRk(t), 0}+ Ak(t + 1), W k}, (17)

whereW k is the maximum size of queuek. Incoming packets are to be dropped when the queue

is fully occupied but the allocated data rate will not be fully utilized if the number of packets

to transmit is not large enough.

In order to maximize the throughput, it is necessary to minimize the amount of data dropped

from the queue. It was well known that a resource allocation algorithm that maximizes the

queue-size-weighted sum of rates is throughput optimal, that is, the queue is kept stable if the

arrival rate lies within the capacity region [10]–[13]. The optimality of such resource allocation

algorithm has been proved in various contexts. So we adopt the algorithm in our system as

follows: In the utility function, we set the weighting factor of userk in cell n to its queue size

normalized by the average value, i.e.,

µk(t) =
Wk(t)∑

k∈Un
Wk(t)/|Un| , (18)

where |Un| denotes the number of elements in setUn. Then each base station determines the

sub-channel assignment and the power allocation to maximize the queue-size-weighted sum of

rate by using the DRA algorithm.
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When employing the above policy, the load of a cell can be represented by the queue sizes

of the users associated with the corresponding base station. So we define the load of a cell as

the average queue size of all the users within the cell. We measure the load by comparing the

average queue sizeWavg (≡ 1
|Un|

∑
k∈Un

Wk) with the lower and upper thresholds,Ql and Qu:

The load is light if0 ≤ Wavg < Ql and heavy ifWavg > Qu. Based on the measure load, we

define the price update function as follows:

cn(i + 1) =





cn(i)
(
1− δu

W n
avg−Qu

Qu

)
, if Wavg > Qu,

cn(i)
(
1 + δl

Ql−W n
avg

Ql

)
, if Wavg < Ql,

cn(i) , otherwise,

(19)

for two predetermined step sizesδu andδl. Each base station updates the price in the end of each

super-frame. Note that each base station uses only the load information of its own cell for the

price adaptation. Therefore, the resulting DRA algorithm, combined with the LBDP algorithm,

still operates in distributed manner.

B. Distributed Pricing under Infinite Backlog Traffic

There are a large number of resource allocation algorithms available to date for the case

with infinite-backlog of packets in queue. Among them, we adopt the most popularproportional

fairness(PF) algorithm [14]. The PF algorithm achieves proportional fair resource allocation by

selecting the user who have the highest ratio of the current data rate to the average throughput.

So we can implement the proportional fair criterion by setting the weighting factors of the users

to the reciprocals of the average throughputs. Specifically, the average throughput of userk,

Tk(t), is updated such that

Tk(t + 1) = (1− 1

tc
)Tk(t) +

1

tc
Rk(t), (20)

wheretc is a constant for exponentially weighted low-pass filter. We set the weighting factor of

userk in cell n to

µk(t) =

∑
k∈Un

Tk(t)/|Un|
Tk(t)

. (21)
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In the infinite backlog model, the load is not well defined due to the absence of any quality of

service requirement. So we adopt the concept of token as follows: We generate a token virtually

to each user at each frame. The arrival rate of the token is the same for all users. The generated

tokens are stored in a token queue and are removed by the amount of the data rate allocated to

the corresponding user. Then the dynamics of the token queue is given by an expression similar

to Eq. (17). So we can determine the price of each base station using the same equation as

in (19) with the queue size replaced with the token queue size.

V. SIMULATION RESULTS

We conducted computer simulations over the network composing of 19 cells. We set the

values of the involved parameters as follows: the number of sub-channels,M , 21; bandwidth of

each sub-channel, 0.1 MHz; cell radius, 1km; the number of users per cell, 15; the maximum

transmission power,Pmax, 43dBm; and the path loss exponent, 3.76.

We considered a hexagonal 3-sectorized cell structure. For performance comparisons, we

considered a simple algorithm that fixes thefrequency reuse factor(FRF). The fixed FRF

algorithm with FRF = 1 is designed to distribute the total power equally among all the sub-

channels and that with FRF 3 is designed to distribute the total power equally among one third

of the sub-channels. In the FRF = 3 case, we arranged the three sectors in a single cell to use

different groups of sub-channels. In addition, we considered a centralized algorithm that can

achieve near-optimal performance. Since the problem of finding the optimal solution is NP-

complete, we designed acentralized resource allocation(CRA) algorithm that has a tractable

complexity as it adopts thepseudo-cell structure, which is defined in [3] and repeated in Fig. 2.8

Fig. 3 shows the pseudo-code of the CRA algorithm. Note that we use the sector indexs instead

of the cell indexn.

8The CRA algorithm determines both the FRF values of the sub-channels and the sub-channel assignment for each pseudo-cell

by utilizing the channel information of all users in the corresponding pseudo-cell. The CRA algorithm takes a greedy approach to

maximize the weighted sum of the data rates. Since pseudo-cells are coupled with each other due to the co-channel interference,

we iteratively determined the resource allocation of each pseudo-cell after updating the power allocation of other pseudo-cells.
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A. Distributed Resource Allocation Algorithm

We first investigated the convergence of the DRA algorithm to the Nash equilibrium point.

We considered the two cases: (i) whenµk = 1 for all k, and (ii) whenµk’s are uniformly

distributed from 1 to 4. We set the power price to 0.3 and 1.5 Mbps/W for the two cases,

respectively. Initially, we made the maximum transmission power equally distributed to each

sub-channel. Fig 4. depicts the resulting utility per cell for the two cases with respect to the

number of iterations. The utility in the figure is normalized by the value at the equilibrium point.

We observe that for the both cases, the DRA algorithm converges to the equilibrium within about

3 iterations. This indicates that the required number of iterations for the convergence is small.

We also observe that the DRA algorithm can improve the utility significantly when compared

with the equal-power allocation algorithm.

Then we examined the performance of the DRA algorithm in comparison with the algorithms

using fixed-FRF. We considered simply one pseudo-cell where we located one user in each sector

on the line connecting the corresponding base station to the center of the three base stations.

Fig. 5 depicts the resulting total data rate with respect to the distance between the base station

and the user. As expected, the FRF = 1 case outperforms the FRF = 3 case when the users are

located near the base station and the FRF = 3 case outperforms the FRF = 1 case when they

approach the cell boundary. We observe that the DRA algorithm can adapt the power allocation

efficiently to the user distribution. In addition, the DRA algorithm outperforms the both fixed

power allocation cases by adopting water-filling power allocation across the sub-channels.

B. Load-Balancing based Distributed Pricing Algorithm

We examined the performance of the combination of the DRA algorithm and the LBDP

algorithm (namely, DRA-LBDP). We set the sizes of the frame and the super-frame to 5 msec

and 100 frames, respectively. For the dynamic arrival model, we considered CBR traffic that

generates a packet with the size of 125 bytes at each frame. We set the queue size of each user

to 50 packets, and the two thresholds,Ql and Qh, to 5 and 15 packets, respectively. For the
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infinite backlog model, we set the generation rate of token to be the same as the packet arrival

rate of the dynamic arrival model. We setδu andδl to 1.6 and 0.8, respectively.9

We first investigated the convergence of the LBDP algorithm under the dynamic arrival traffic

model. We considered a non-uniform load distribution scenario where for each pseudo-cell, 22,

10 and 10 users were located in sector 1, 2 and 3, respectively. Figs. 6 and 7 depict the average

drop probability and the average total transmission power over each super-frame with respect

the number of price update. We observe that without the LBDP algorithm, some packets are

dropped from the queue in the the heavily-loaded sector (i.e., sector 1) while no drop occurs in

the lightly-loaded sectors (i.e., sectors 2 and 3). However, as the power update proceeds in each

sector, sector 1 increases the total transmission power up to the maximum power and sectors 2

and 3 decrease the total transmission power. Accordingly, the drop probabilities in three sectors

get balanced at zero. This shows that the power price in the LBDP algorithm converges to a

point where the resources utilized by the three sectors are balanced according to their respective

loads.

We then compared the DRA-LBDP algorithm with the CRA and the fixed-FRF algorithms.

We randomly located 700 users over the network. Fig. 8 depicts the resulting drop probability

of the various algorithms with respect to the arrival rate. We observe that the DRA-LBDP

and the CRA algorithms outperforms the fixed-FRF algorithm, with the DRA-LBDP algorithm

performing close to the CRA algorithm. The DRA-LBDP algorithm performs even better when

the traffic load is low. This happens because the DRA-LBDP algorithm controls the transmission

power in continuous level while the CRA algorithm controls only the frequency reuse factor,

that is, controls the transmission power in discrete level.

We also evaluated the performance of the DRA-LBDP algorithm in different load conditions.

9We set the initial power cost of each cell as follows: Assuming that the total transmission power is inversely proportional to

the power price, during the initial three super-frames before performing the LBDP algorithm, we updated the power price by

pn(i + 1) = pn(i)Pavg(i)/P0, wherePavg(i) is the average total transmission power over super-framei, such that the total

transmission power becomes as large asP0 = 30dBm.
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We divided all the sectors into two groups — heavily-loaded sector having 22 users and lightly-

loaded sector having 10 users. Fig. 9 depicts the drop probability of the various algorithms with

respect to the percentage of the heavily-loaded sectors. We observe that the difference between

the DRA-LBDP algorithm and the CRA algorithm is small regardless of the load distribution.

This indicates that the LBDP algorithm can control the power price effectively according to load

environment.

Lastly, we examined the performance of the DRA-LBDP algorithm under infinite backlog

model. We randomly located 700 users over the network. In order to compare the various

algorithms in terms of fairness among the users, we examine the throughput of the lowest

5% of users, who usually are located at the cell edge and are affected severely by the co-

channel interference. As shown in Table. I, the DRA-LBDP improves the cell-edge performance

2.15 times over the FRF 1 case. At the same time, the DRA-LBDP algorithm even increases

the average throughput by 6% over the FRF =1 case.10 We also observe that the DRA-LBDP

algorithm exhibits a performance comparable to the CRA algorithm. It shows slightly higher

fairness and slightly less cell throughput when compared with the CRA algorithm.

VI. CONCLUSIONS

In this paper, we have presented a new distributed resource allocation algorithm for multi-cell

OFDMA systems relying on a game theoretic approach. We have presented a noncooperative

game in which each base station tries to maximize the system performance while minimizing the

co-channel interference. Based on the game, we have devised a practical algorithm called DRA

that requires no coordination among the base stations. As the cost of this distributed operation,

the DRA algorithm requires some iterative calculations of the sub-channel assignment matrix

and the transmission power vector. However, the required number of iterations turned out to be

very small. Due to the iterative processing, it may not be applicable in the environment where

the channel condition varies very fast. In addition, we have proved that there exists a Nash

10The average throughput gain results from the water-filling power allocation.
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equilibrium point for the noncooperative game and it is highly probable that the equilibrium is

unique. This confirms that the DRA algorithm will exhibit good performance without falling

into undesirable resource allocation.

For an improved performance of the DRA algorithm, we have introduced the concept of power

price that helps to avoid the co-channel interference among the cells and the distributed pricing

algorithm called LBDP that can improve the efficiency of the Nash equilibrium achieved by

the DRA algorithm. We considered two traffic models — dynamic arrival model and infinite

backlog model — and designed the LBDP algorithm suitable for each model by applying the

same principle. It is possible to adapt the LBDP algorithm to other traffic models in a similar way.

Simulation results revealed that the combination of the DRA and DLBP algorithms, or DRA-

LBDP algorithm, performs close to the centralized resource allocation algorithm performing

near-optimal in various load conditions.

To the best of our knowledge, the DRA-LBDP algorithm is the first fully distributed algorithm

for the resource allocation in multi-cell OFDMA systems. The DRA-DLBP algorithm requires no

exchange of information among the cells. Each base station utilizes only the SINR information

measured by and fed back from the constituent users, and also determines the power price based

on its own load autonomously.

The DRA-LBDP algorithm may be particularly useful in the environment with irregular cell

structure. When the shapes and the locations of the cells are irregular, cell planning may not

be easy, so a distributed algorithm that does not require inter-cell resource allocation controllers

is very much demanding. We also expect that the algorithm may be very useful in the fourth

generation (4G) communication systems. The 4G systems are expected to be established based

on all-IP network architecture which can make the systems more scalable and cost-effective.

In this case, the 4G systems need to employ a distributed management architecture instead

of the hierarchical management architecture of the past and the current systems. Therefore, the

distributed resource allocation algorithm may possibly render one of the most essential techniques

for the 4G systems.
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APPENDIX

A. Proof of Theorem 1

In [15], it is established that a Nash equilibrium exists in gameG = [N , {Pn}, {un}] if, for

all n ∈ N ,

i) Pn is a nonempty, convex, and compact subset of some Euclidean space<NM , and

ii) un(P) is continuous inP and quasi-concave inpn.

The strategy spacePn of each base station is defined by a set of power vectors in which

all the power values are between zero and the maximum power. Thus it is clear that the first

condition is satisfied.

The utility function un(P) is obviously a continuous function ofP. Let R̄n
m(pn

m,P−n) ≡
maxk µkR

n
mk(P). Then eachR̄n

m is a monotonically increasing function ofpn
m. So, for any

α > 0, the sub-level setSn
m ≡ {x|R̄n

m(x) ≥ α} is given by{x|x ≥ xα} for xα ≡ (R̄n
m)−1(α).

SinceSn
m is a convex set,̄Rn

m is a quasi-concave function ofpn
m. Then the utility function can

be written as a sum of the functions that are quasi-concave in the correspondingpn
m. Therefore

we can prove that the utility function is also quasi-concave inpn.

B. Proof of Proposition 1

As mentioned in the proof of Theorem 1, the strategy set is convex. For the given sub-channel

assignment matrix, the utility is a concave function ofpn and hence the problem is a convex

optimization problem. Therefore we can apply the Karush-Kuhn-Tucker (KKT) condition [16]

to get the solution in (10) and (11). We omit the details.

REFERENCES

[1] G. Li and H. Liu, “Downlink dynamic resource allocation for multi-cell OFDMA system,” inProc. IEEE VTC 2003,

Orlando, Oct. 2003.

[2] J. Li, H. Kim, Y. Lee and Y. Kim, “A novel broadband wireless OFDMA scheme for downlink in cellular communications,”

in Proc. IEEE WCNC 2003, New Orleans, Mar. 2003.

Page 20 of 27IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

20

[3] H. Kwon, W.-I. Lee, and B. G. Lee, “Low-overhead resource allocation with load balancing in multi-cell OFDMA systems,”

in Proc. IEEE VTC 2005-Spring, Stockholm, Sweden, May. 2005.

[4] A. B. MacKenzie and S. B. Wicker, “Game theory in communications: motivation, explanation, and application to power

control,” Proc. IEEE Globecom 2001, San Antonio, Texas, Nov. 2001

[5] D. J. Goodman and N. B. Mandayam, “Power control for wireless data,”IEEE Personal Commun. Mag., vol. 7, pp. 48–54,

Apr. 2000.

[6] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Efficient power control via pricing in wireless data networks,”

IEEE Trans. Commun., vol. 50, pp. 291–303, Feb. 2002.

[7] Z. Han, Z. Ji, and K. J. Ray Liu, “Power minimization for multi-cell OFDM networks using distributed non-cooperative

game approach,” inProc. IEEE Globecom 2004, Dallas, TX, Dec. 2004.

[8] A. J. Goldsmith and S.-G. Chua, “Variable-rate variable-power MQAM for fading channels,”IEEE Trans. Commun., vol.

45, pp. 1218–1230, Oct. 1997.

[9] W. Yu, G. Ginis, and J. M. Cioffi, “Distributed multiuser power control for digital subscriber lines,”IEEE J. Select. Areas

Commun., vol. 20, no. 5, pp.1105–1115, June 2002.

[10] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing systems and scheduling for maximum

throughput in multihop radio networks,”IEEE Trans. Automat. Control, vol. 37, pp. 1936–1949, Dec, 1992.

[11] M. Andrews, K. Kumaran, K. Ramanan, A. Stoylar, and P. Whiting, “Providing quality of service over a shared wireless

link,” IEEE Commun. Mag., vol. 39, pp. 150–153, Feb. 2001.

[12] M. J. Neely, E. Modiano, and C. E. Rohrs, “Power allocation and routing in multibeam satellites with time-varying

channels,”IEEE /ACM Trans. Netw., vol. 11, pp. 138–152, Feb. 2003.

[13] T. Ren, R. J. La, and L. Tassiulas, “Optimal transmission scheduling with base station antenna array in cellular networks,”

in Proc. IEEE INFOCOM 2004, Hong Kong, Mar. 2004.

[14] A. Jalali, R. Padovani, R. Pankaj, “Data throughput of CDMA-HDR a high efficiency-high data personal communication

wireless system,” inProc. IEEE VTC 2000-Spring, Tokyo, Japan, May 2000.

[15] D. Fugenberg and J. Tirole,Game Theory, MIT Press, Cambridge, MA, 1991.

[16] S. Boyd and L. Vandenberghe,Convex Optimization, Cambridge University Press, 2003.

Page 21 of 27 IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

21

(0,1) (1,1)

(1,0)

Unique equilibrium

Three equilibria
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

G
1
m1 G

2
m1/

G
2

 m
2

G

1
 m
2


/

0
0

Fig. 1. Illustration of the regions of unique and three equilibria for the casew1 = 2, w2 = 1, andΓ = 1 (Note that(x1, x2)

indicates that the transmission power of base stationi (i = 1, 2) is lager than zero ifxi = 1 and zero otherwise.).
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1. Each cell assumes that the transmission powers of BSs in all the other pseudo-cells are zero;

2. WHILE (Resource Allocation is not converged)

3. FOR all cells

3. FOR all sub-channelm = 1, 2, · · · ,M

4. FOR all sectors = 1, 2, 3

5. // FRF 1

6. SetP in a way that all sectors in the pseudo-cell are active;

7. ψs
m(1) = maxAs

∑
k∈Us

µkRs
mk(P,As);

8. // FRF 3

9. SetP in a way that only sectors in the pseudo-cell is active;

10. ψs
m(3) = maxAs

∑
k∈Us

µkRs
mk(P,As);

11. IF (
∑

s ψs
m(1) > maxs ψs

m(3)) THEN

12. Set FRF = 1;

13. ELSE

14. Set FRF = 3;

15. Each cell updates the transmission powers of BSs in all the other pseudo-cells;

Fig. 3. Pseudo-code of the CRA algorithm.

Page 23 of 27 IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

23

0 1 2 3 4 5 6 7 8 9 10
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Iteration

N
or

m
al

iz
ed

 u
til

ity
 p

er
 c

el
l

µ
k
 = 1 for all k

µ
k
 uniformly distributed

Fig. 4. Normalized utility per cell with respect to the number of iterations. (Note that the DRA algorithm converges to Nash

equilibrium in 3 iterations for the both cases ofµk.)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

(near to base station)                                          Distance                                  (near to cell boundary)

T
ot

al
 d

at
a 

ra
te

 (
M

bp
s)

FRF 1
FRF 3
DRA

Fig. 5. Total data rate with respect to the distance between the base station and the user.
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Fig. 6. Average drop probability of each sector with respect to the number of price update. (Note that the LBDP algorithm

adjusts drop probabilities to zero.)
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Fig. 7. Average total transmission power of each sector with respect to the number of price update.
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Fig. 8. Drop probability of the various algorithms with respect to the arrival rate.
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Fig. 9. Drop probability of the various algorithms with respect to the percentage of heavily-loaded cells.
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TABLE I

NORMALIZED AVERAGE CELL THROUGHPUT AND THE LOWEST5 % USER THROUGHPUT

CRA DRA-LBDP FRF 1 FRF 3

η/ηFRF 1 1.08 1.06 1.00 0.64

T (5%)/TFRF 1(5%) 1.92 2.15 1.00 1.33
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