
Advanced Topics in Networking - Fall 2006

Instructor Iordanis Koutsopoulos

Lecture 1 : Introduction - 3/10/06

Notes by : George Noutsis and George Xatziparaskevas

1 Outline of lecture:

• Introduction: Communication systems

• What is an optimization problem

– Least Squares

– Linear Programming

– Convex optimization problems

2 Basics

Two ways we may view a telecommunication system are:

• Network Layer view

• Link Layer view

2.1 Network layer view

Session packets need to be transferred from sources to destinations. Each session has a source and

a destination

• if the number of destinations is one, uni-cast session

1

• if destinations are several, multi-cast session

The problem is how we can transfer data under some optimization criteria.

Example: Given a source and a destination for each session, how can I route session packets

in order to maximize network lifetime?

Network lifetime can be defined in many ways, for example it can be the time until the first

node dies, i.e. its buttery finishes.

Dual Problem: Give the network lifetime l, what is the maximum number of sessions and the

maximum rate that can be supported?

2.2 The mechanisms of OSI layers

The OSI layers are:

Application

Transport

Network

MAC

Physical

Mechanisms:

• Application layer: HTTP. Security is an important parameter.

• Transport layer: Flow control.

• Network layer: Routing.

• MAC link layer: Random access - protocol, channel allocation (TDMA, FDMA).

• Physical layer: Transmission power control, transmission rate control (modulation, coding).

2.3 Physical layer view (one link)

We examine a link between a source and a destination and not the entire network.

Procedures that take place before transmission:

• Source coding (e.g Quantization)

2

modulator

channel

source
encoder

channel
decodersource

demodulator
decoder
channel

decoder
source

Figure 1: Transmission and reception.

• Channel coding. Some redundant bits are added to data bits. These bits can be a linear

combination of the data bits (if the code is linear). Thus, if some data bits are lost due to

channel errors, we can retrieve them by using the redundant bits.

• Modulator: The signal is transformed into a continuous waveform.

3 Optimization

An optimization problem has the general form:

minimize f0(x) (1)

subject to:

fi(x) ≤ bi, for i = 1, 2, . . . , m (2)

Call the problem above (P). Vector x = (x1, x2, . . . , xn) is the vector of optimization variables

of the problem. Function f0 : Rn −→ R is the objective function. Functions fi : Rn −→ R, i =

1, 2, . . . , m, are called constraint functions, and constants b1, . . . , bm are the limits, or bounds for the

constraints.

A vector x0 is feasible or a feasible solution for problem (P) if its satisfies all constraints, i.e. if

fi(x0) ≤ bi, i = 1, . . . , m.

3

A vector x∗ is called optimal, or an optimal solution of the problem above, if it is feasible

and it has the smallest objective function value among all feasible vectors. That is, for any z with

f1(z) ≤ b1, f2(z) ≤ b2, . . . , fm(z) ≤ bm, it is f0(z) ≥ f0(x∗).

4 Special cases of optimization problems

4.1 Least-squares problem (LS)

A least-squares problem is an optimization problem with no constraints (i.e. m = 0) and an objective

function which is the sum of squares of terms of the form aT
i x− bi:

minimize f0(x) = ‖Ax− b‖2
2 =

k∑

i=1

(aT
i x− bi)

2
(3)

where A ∈ Rk×n with (k ≥ n) is a real matrix, b ∈ Rk is a real vector, aT
i for i = 1, . . . , k are the

rows of A, and the vector x ∈ Rn are the optimization variables.

LS problem is one of the few optimization problems that can be solved analytically. The solution

of a least-squares problem can be reduced to solving a set of linear equations,

(AT A)x = ATb, (4)

so we have the analytical solution x∗ = (AT A)−1ATb.

4.2 Linear Programming (LP)

Another important class of optimization problems is linear programming, in which the objective and

all constraint functions are linear:

minimize cTx (5)

subject to

aT
i x ≤ bi, i = 1, . . . , m. (6)

Vectors c,a1, . . . ,am ∈ R\ and scalars b1, . . . , bm ∈ R are parameters that specify the objective

function and constraints.

• LP problems do not have solution in analytical form.

• There exist algorithms that solve LP problems efficiently. We will see later the Simplex algo-

rithm.

4

4.3 Convex optimization problems

minimize f0(x) (7)

s.t

fi(x) ≤ bi, for i = 1, . . . , m. (8)

where f0(·), f1(·), . . . , fm(·) are convex functions i.e they satisfy:

fi(αx + βy) ≤ αfi(x) + βfi(y) (9)

for all x,y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0.

Note: for a maximization problem, function f0(·) needs to be concave.

Non-linear programming problems: all problems that are not linear programming (NP).

5

Linear Programming Notes

Instructor Iordanis Koutsopoulos

Lecture 2 : 09/10/06

Notes by : Eleni Galanou and Despina Koutsagia

1 Introduction

Apart from linear programming (LP), there is also Non-linear programming (NLP). Convex Opti-

mization Problems is a special class of NLP problems. There are two methods that are used to solve

a non- linear problem: local and global optimization.

1. Local Optimization: The optimum is found over a limited region (a neighborhood around the

optimal point). Then, it is called local optimum.

Advantages:

• In order to locate a local minimum, all we need are some conditions for the first derivative

of the objective function.

• Efficient for heuristic purposes (e.g. to find a fast approximate solution).

Disadvantages:

• No information about the quality of the solution (how far away our solution is from the

optimal one).

• Need iterative search algorithms, that rely on starting point x0.

2. Global Optimization: Difficult to find the solution in general. We will focus on problems of

special form whose optimal solution can be easily found (Convex Optimization).

1

In case the optimal solution cannot be easily found, it is worthwhile to search for bounds

(upper or lower) on the value of the objective function at the optimal solution. For example, for a

minimization problem, we can give bounds of the type f(x∗) ≤ a, a ∈ R.

2 Convex Sets

Line Segment: Line segment between two points x1,and x2 is the set of points x which can be written

as: x = θx1 + (1− θ)x2 with 0 ≤ θ ≤ 1. Due to this special constraint on θ, x is not a linear but a

convex combination of x1, x2.

Convex Set: A set of points C is called convex if all points on the line segment between any two

points of the set C also belong in C. That is to say, C is convex set if

∀x1,x2 ∈ C and 0 ≤ θ ≤ 1, it is θx1 + (1− θ)x2 ∈ C (1)

A set of discrete points is non-convex.

x1

x2

x1
x2

(a) (b)

Figure 1: Examples: (a)a convex set, (b)a non-convex set

For example, the set of points on the real line defined by:

C = {x : |x− a| ≥ 1} (2)

and shown in Figure ?? is not a convex set.

-1-a 1+a

Note: A set of points that is not convex is called non-convex.

2

Convex Combination: Convex combination of points x1,x2, . . . ,xK is every point x of the form:

x =
K∑

i=1

θixi, with
K∑

i=1

θi = 1. (3)

For a set of points C = {x1,x2, . . . ,xK}, the Convex hull of C, Conv(C), is the set of all convex

combination of points of C. That is,

C =

{
x : x =

K∑

i=1

θixi, for xi ∈ C, with 0 ≤ θ ≤ 1, for i = 1, . . . , K and
K∑

i=1

θi = 1

}
(4)

Special Cases: If C = {x1,x2}, then Conv(C) is the line segment connecting x1 and x2. If

C = {x1,x2,x3}, then Conv(C) is the triangle with these points as vertices.

(b)(a)

x1

x3

x2

x1

x2

Figure 2: Convex hull for (a) C = {x1,x2} (b) C = {x1,x2,x3}

Note: Convex hull of a set of points C is the smallest convex set that encloses all points of C.

(a) (b)

Figure 3: Convex hull of (a) a discrete set of points, (b) a continuous set of points.

Note: Conv(C) is always a continuous and convex set.

If C is convex and continuous, then Conv(C) = C.
If C is non-convex and continuous, then Conv(C ⊃ C.
If C is discrete set, then Conv(C ⊃ C.

3

3 Properties of Convex Sets

1. If C is convex set and b ∈ R is real number, then the set

D = bC = {x : x = bu : u ∈ C}. (5)

is also convex. This is the scaling property, namely: when a convex set is multiplied by a real

number, the resulting set remains convex.

2. If C1, C2 are convex sets then C1 + C2 is also convex, where:

C1 + C2 = {x : x = u1 + u2, where u1 ∈ C1 and u2 ∈ C2} (6)

This is the addition property. Example for set addition: If C1 = {1, 2} and C2 = {10, 15, 18},
then mathcalC1 + C2 = {11, 16, 19, 12, 17, 20}.

3. If C1, C2 are convex sets, then C1 ∩ C2 is convex. This is the intersection property.

Note: Generalization of convex combinations. The convex combination of a distinct set of

points are all points x, such that:

x =
K∑

i=1

θixi with
K∑

i=1

θi = 1 (7)

Generalize for continuous set of points C and continuous coefficients θ.

Consider functions P : R → Rn that satisfy P (x) ≥ 0 for all x ∈ C and

P (x) =
∫

x∈C
P (x) = 1 (8)

Then the convex combination is that case is given by:
∫
x∈C xP (x)dx = E[X]. If x is a random

vector, then the above becomes the mean E[X].

4 Cones, Hyperplanes, Polyhedra

Cones: A set of points C is called cone if

∀x ∈ C and θ ≥ 0 it is θx ∈ C (9)

For C = {x1}, the cone is the line that begins from 0 and passes through x1, and is shown in the

figure below.

4

´
´

´
´

´
´

´
´

´
´

´
´

´
´́

0

x1

For C = {x1,x2}, the cone consists of the two straight lines beginning from 0 and passing

through x1 and from 0 and passing through x2. (but not from points in between these two lines).

´
´

´
´

´
´

´
´

´
´

´
´

´
´́

0

x1

³³³³³³³³³³³³³³³

x2

Generally the cone is not a convex set. However we are interested in the cones that are convex.

A set C is called convex cone if

∀x1,x2 ∈ C and θ1, θ2 ≥ 0 it is θ1x1 + θ2x2 ∈ C (10)

The above is called conic combination of x1,x2, which is a special case of linear combination,

since it is defined to be every linear combination of two points with positive multiplication factors.

Hyperplane: A Hyperplane P is a set of points x with a constant inner product to some given

vector a 6= 0:

P = {x ∈ Rn : aTx = b} (11)

where b ∈ R.

x = (x1, . . . , xn) , a = (a1, . . . , an)

Alternatively, P = {(x1,, xn) : a1x1+a2x2+. . .+anxn = b}. A projection of a hyperplane

in a two-dimensional plane is shown in the figure below.

5

a

x0

x

The hyperplane P equation is also written as: aT (x − x0) = 0 where x0 is any point on P,

(namely, it satisfies aTx0 = b). Vector a defines a hyperplane P, and it is vertical to all points of

the hyperplane.

The dimension of mathbfx, n, specifies the type of hyperplane.

1. If n = 2,the hyperplane is:

P = {(x1, x2) : a1x1 + a2x2 = b} (12)

which is a straight line with slope defined by vector (a1, a2).

2. If n = 3, (three-dimensional space), then

P = {(x1, x2, x3) : a1x1 + a2x2 + a3x3 = b} (13)

which is the usual plane.

Half-spaces: A hyperplane P satisfying aTx = b divides the space into two Half-spaces. The

one half-space is all points x such that aTx ≤ b and the other one consists of all points x such that

aTx ≥ b.

a

half-space: a
T
X ≥ b

half-space: a
T
X = bhalf-space: a

T
X ≤ b

6

Polyhedron: A Polyhedron is the intersection of many half-spaces and hyper-planes

P =
{
x : aT

j x ≤ bj , j = 1, . . . ,m and cT
j x = dj , j = 1, . . . , p

}

In this definition, there are m half-spaces and p hyper-planes that make up the polyhedron P.

Example: A polyhedron defined as intersection of 5 half-spaces

aT
j x ≤ bj , j = 1, ..., 5 (14)

P

a1

a5

a4
a3

a2

• If the polyhedron is closed (bounded), it is called a polytope.

5 Application 1: Region of feasible transmission rates

Consider M BSs and N users per BS. A single-channel (slot) system is assumed.

Let Gij be the channel gain for the link between BS i and user j. Gain Gij shows the distance

of the user from the BS,and also accounts for fading. We consider that all Gij are fixed and known

and will not worry about temporal evolution of them.

Each user is connected to a certain BS.

We will examine the special case M = 2, N = 2 for downlink and uplink and will characterize

the region of feasible BS transmission rates. Each BS can transmit to one user at most in the channel.

Constraint: at the receiver of each user j, the Signal-to-Interference Ratio SIRj should exceed

a threshold γj , namely

SIRj ≥ γj (15)

7

where γj = f(rj), where f(·) is an increasing function and rj is the transmission rate from the

corresponding BS to user j.

Function f(rj) specifies the smallest SIRj at the receiver of a user j, when transmission towards

him is with rate rj , so that the bit-error-rate (BER) is at most ε. A usual form of f is

f(rj) =
− ln(5ε)

1.5
(2rj − 1) (16)

More about this problem, on next Lecture, Lecture 3.

8

Advanced Topics in Networking - Fall 2006

Instructor Iordanis Koutsopoulos

Lecture 3 : 10/10/06

Notes by : Charalampos Daskalakis and Constantinos Houmas

1 Transmission rate region for down-link

System with M Base Stations (BS) and N Users for each BS, in down-link.

S2

BS1

S1

bi

SIR1>f(bi) SIR2>f(bj)

bj

BS2

user1 user2 user3 user4

Figure 1: Two BSs with two users for each BS

Model: Each BS communicates with all users assigned to it, using one carrier frequency with

TDMA. Let Si be the set of users assigned to BSi.

Our main goal is to determine the feasible transmission rate vector (r1, ..., rM) for each BS and

then to characterize the region of achievable rates. Note that ri is the transmission rate of BSi, for

some receiving user.

A BS is called active, if it transmits to a user. An active BS can transmit to at most one user in Si

at the same time. A BSi can choose among different transmission rates in the set B = {0, b1, . . . , bL}
to transmit to a user at each time slot. For each selected rate bl ∈ B, there is a minimum required

1

Signal-to- Interference ratio(SIR) SIRij = f(bl), at the receiver of the selected user j by BSi (if BS

i transmits to user j ∈ Si with rate bl).

Let ui be the user to which BSi transmits. Each BSi should choose rate max
bl∈B

{b : f(b) ≤ SIRiui},
for some ui ∈ Si. Clearly for a larger transmission rate, we need a better quality channel to keep the

Bit Error Rate(BER) below a threshold ε (BER ≤ ε). Therefore, function f(·) is increasing (↑).
In our example where M = N = 2, a vector of transmission rates (r1, r2) is called feasible in a

time slot if r1, r2 ∈ B (note that ri = 0 if BSi is inactive) and SIRiui ≥ f(ri), where ui ∈ Si, for

i = 1, 2.

The BS activation vector q is a binary vector, for which qi = 1 if BSi is active and qi = 0

otherwise. In our example, the set of possible q is A = {(0, 0), (0, 1), (1, 0), (1, 1)}.
If q = (0, 0) there is no communication,

else if q = (1, 0), BS1 can choose among {u1, u2} (only BS1 transmits),

else if q = (0, 1), BS2 can choose among {u3, u4} (only BS2 transmits),

else if q = (1, 1), BS1 and BS2 can choose among {(u1, u3), (u1, u4), (u2, u3), (u2, u4)} to transmit to

respectively (both BS1, BS2 transmit simultaneously).

Selection of users for a given q. For q = (1, 0) or q = (0, 1) we select user u1 (or u2

respectively) that has the largest SNR. For activation vector q = (1, 1), (where there is interference),

intuitively we can select users u1 and u4 which are further from BS1, BS2 (Fig.1), since their SIR

will be maximum. The mathematical formula which gives the SINR at the receiver of user i for given

activation vector q is:

SINRiui =





Giui

σ2 +
∑

k 6=i,qk=1

Gkui

, if
∑

k 6=i

qk > 0

Giui

σ2
, if

∑

k 6=i

qk = 0

(1)

where ui ∈ Si, Gij is the gain of the transmission channel between BSi and user j, and σ2 is the noise

power. Note that
∑

k 6=i

qk > 0 means that another BS (apart from i) transmits and causes interference

to user ui. When
∑

k 6=i

qk = 0 and qi = 1, then BSi is the only active BS. In that case there is only

noise at the receiver of user ui.

2

Therefore, for given activation vector q, BSi chooses to transmit to user:

u∗i (q) = arg max
ui∈Si

{
max
b∈B

(b : SIRiui ≥ f(b))
}

(2)

We can observe that the user choice for each BS depends only on whether other BSs are active and

not on the other BSs’ choices. This happens in the downlink, but not in uplink, as we will see later.

For example, let’s assume that L = 3 and B = {0, 50Kbps, 100Kbps, 200Kbps}. Without loss

of generality, we focus on BS1’s choice of user and transmission rate. Suppose that SIR11 = 10dB,

SIR12 = 20dB and the corresponding SIR thresholds for b = 0, 50Kbps, 100Kbps, 200Kbps are f(b) =

0, 5dB, 12dB, 15dB. In this case BS1 selects user 2 because it has the largest SIR, and transmits with

rate that equals to 200Kbps, because it is the maximum and satisfies that f(200Kbps) = 15dB ≤
20dB. Note that we do not consider fairness issues in our example, but we only focus on how to

maximize the transmission rate of a BS.

Assuming that the link gains do not change with time, for each activation vector q we can find

a rate vector rq = (rq1, rq2), where rq1, rq2 ∈ B. This vector represents the transmission rates of the

BSs at each slot when the activation vector is q.

Let tq ∈ [0, 1] be the portion of time when activation vector q is used. Then the BS transmission

rate vector R over the entire (presumably long) time horizon is given by:

R =
∑

q∈A
tqrq (3)

Different time portions tq for each activation vector q (and therefore rate vector rq) result in different

rate vectors R. The set Z of all feasible rate vectors is:

Z =





∑

q∈A
tqrq :

∑

q∈A
tq = 1, tq ≥ 0



 = conv {rq : q ∈ A} (4)

Thus Z is the convex hull of the rate vectors that correspond to different activation vectors.

For example, assume that q0 = (0, 0), q1 = (1, 0), q2 = (0, 1), q3 = (1, 1) and B = {0, b1, b2, b3}
(0 < b1 < b2 < b3). If rq0 = (0, 0), rq1 = (b3, 0), rq2 = (0, b3) and rq3 = (b2, b3), then the region of

feasible transmission rates can be seen in Fig.2.

An appropriate generalization can be done when link gains vary with time.

3

0 b1 b2 b3

b1

b2

b3

q3=(1,1)

q0=(0,0) q1=(1,0)

q2=(0,1)

Figure 2: The region of feasible transmission rate vectors for downlink.

2 Transmission rate region for an uplink System

In the uplink, users transmit to BSs. The way of computing feasible transmission rates is quite

similar to the downlink case, except for the following difference: In the uplink, the receiver is at the

BS. For a BS to select a user, it is not enough to know whether the other BS is active or not, but it

also needs to know which is the user that transmits to the other BS. Different users cause different

amount of interference in the other BS (see Fig.3).

S2

BS1

S1

BS2

user1 user2 user3 user4

Figure 3: user 3 and user 4 cause different interference to BS1

Therefore in the uplink, the activation vectors q0 = (0, 0), q1 = (1, 0) and q2 = (0, 1) (for

M = N = 2), correspond to the same transmission rate vectors rq as in the downlink case, since

at most one BS is active. For q3 = (1, 1), we have different scenarios, and rate vectors depend on

which user transmits. As we see in Fig.4, for a different pair of selected users for BS1, BS2 we have

different rate vectors in the diagram. Of course, the region of feasible transmission rate vectors is

again the convex hull of rate vectors for different BS activation vectors and different user selections.

4

0 b1 b2 b3

b1

b2

b3

q3=(1,1) & (u1,u4)

q0=(0,0) q1=(1,0)

q2=(0,1)

q3=(1,1) & (u1,u3)

q3=(1,1) & (u2,u3)

q3=(1,1) & (u2,u4)

Figure 4: The region of feasible transmission rate vector for up-link

5

Advanced Topics in Networking - Fall 2006

Instructor: Iordanis Koutsopoulos

Lecture 4 : Power Control and Base Station Assignment - 11/10/06

Notes by : Anastasia Narou and Maria Papadopoulou

1 Models of uplink transmission

Transmission modes:

• CDMA: more than one users can communicate with one Base Station at the same slot and the

same frequency.This is due to the fact that different user transmissions can be distinguished

at the same BS, since each user uses a different code to pre-multiply its signal with, before

transmission.

• TDMA: at most one user can communicate with each Base Station at each slot.

• FDMA: at most one user can communicate with each Base Station at the same frequency.

We will focus on CDMA transmission.In our example we will use two Base Stations and two

users for each BS.

1.1 Assumptions

• M BS, N users

• Each user is assumed to be connected to one BS in order to transfer its message. We will see

that users can switch between BSs with which they talk in order to achieve smaller transmission

power.

• “Frozen” system with no change of link gains (defined below).

1

ki

.............
i

j k

h
ji

h

Figure 1: Users sending to BSs in an uplink scenario.

• Degree of freedom: for each user i, we define ai = k if user i communicates with BS k,

aiǫ{1, ..., M}.

• We assume that the system operates in a single channel.

• We define hki as the link gain between user i and BS k. The link gain is the fraction of received

power over transmitted power.Thus, if i transmits with unit power, BS k receives amount of

power hki.

Example: We consider M BS and n users who communicate with one of the two BSs, as shown

in Figure 1.1.

As mentioned before, suppose we freeze the system. We assume all link gains {hki}, for k = 1, 2,

i = 1, 2 are fixed and do not worry about temporal variations.

User i transmits power Pi. Then the SINR at the receiver corresponding to user i at BS ai = k

is

SINRi =
hkiPi

∑

j 6=i

hkjPj + σ
2

k

=
haii

Pi
∑

j 6=i

haij
Pj + σ

2

ai

(1)

Note that SINRi depends on the transmission power of user i, Pi and the interference created

by other transmitting users j 6= i. This interference is created at the receiver corresponding to user

i in the BS with which i talks(i.e, BS ai = k).

SINRi depends on the entire power vector P = (P1, ..., Pn) and noise power σ
2
ai

at the receiver.

SINRi also depends on assignment factor ai (which is the Base station i talks to. Note that it

is independent of BS assignments aj of other users, j 6= i.

2

Define the assignment vector a = (a1, ..., an) where ai is the BS with which user i is connected.

The dependencies above are expressed by denoting the SINR as: SINRi(ai,P).

Thus, the following should hold:

SINRi(ai,P) ≥ γi ∀i, (2)

where γi refers to the minimum SINR threshold for user i.

Now, we want to satisfy a minimum SINR threshold, γi for each user i, which is equivalent to

saying that BER ≤ ǫ at the receiver of each user. A different SINR threshold γi for user i may mean

that different users require different minimal quality in their links to achieve BER at most ǫ. This

is the case when users transmit with different rates because they carry different types of traffic (e.g,

video,audio etc). Higher transmission rate for a user i means higher SINR threshold γi.

The objective is formulated as an optimization problem:

min
a,P

N
∑

i=1

Pi (3)

subject to:

SINRi(ai,P) ≥ γi (4)

and also Pi ≥ 0, for all i = 1, ..., N . Also, it should be ai ∈ {1, ..., M}. Call the formulation above

“Problem (P)”.

The objective is to find the BS assignment vector a and the user transmission power vector P

such that all users fulfil their SINR threshold requirements SINRi ≥ γi and the total transmission

power of users is minimized.

Notice that two different users may talk with the same BS (because of the CDMA assumption).

1.2 Problem Analysis with M = 2 and N = 2

Consider the case of M = 2 BSs and N = 2 users and let user 1 be connected to BS1. The SINR of

user 1 is:

SINR1 =
h11p1

h12p2 + σ
2

1

≥ γ1 =⇒ P1 ≥
γ1h12

h11

P2 +
σ

2

1
γ1

h11

=⇒ P1 ≥ (0
γ1h12

h11

)P +
σ

2

1
γ1

h11

. (5)

Observe that SINR1 is not affected from the BS with which user 2 is connected (since anyway,

there will be the same interference at the receiver of user 1).

3

Vector

(

0
γ1h12

h11

)

is symbolized as H
(1)

1
and shows that user 1 communicates with BS 1. The

”0” in the first element of H
(1)

1
is because a user cannot cause interference to himself. Also, quantity

(
σ

2

1
γ1

h11
) is symbolized as δ

(1)

1
.

Thus, the SINR requirement for user 1, if it is connected to BS 1 is written as:

P1 ≥ H
(1)

1
P + δ

(1)

1
(6)

Likewise, suppose user 2 is connected to BS 1, then, the SINR requirement SINR2 ≥ γ2 is written

as:

P2 ≥ (
γ2h11

h12

0)P +
σ

2

1
γ2

h12

(7)

or

P2 ≥ H
(1)

2
P + δ

(1)

2
(8)

In general vector H
(k)

i
is of dimension 1 × N and has elements given by:

H
k

ij =







γihkj

hki
, if j 6= i

H
(k)

ij
= 0, if j = i

(9)

and specifies that user i is connected to BS k. Also δ
k

i
=

γiσ
2

k

hki
for the general case.

Note that in the vector Hk

i
, element H

k

ii
= 0, since a user does not cause interference to itself.

Next, define the set L of all possible assignments of users to BSs. For example in the case of

M = 2, N = 2 there are 4 possible assignments:

1. user 1 → BS 1, user 2 → BS 1

2. user 1 → BS 1, user 2 → BS 2

3. user 1 → BS 2, user 2 → BS 1

4. user 1 → BS 2, user 2 → BS 2

Let ℓ be a specific assignment in L, then ai(ℓ) is the BS to which user i is assigned based on

assignment ℓ. Since each user i = 1, 2 can communicate with a BS k = 1, 2, we can define H
(k)

i
, δ

(k)

i
,

for each i = 1, 2 and k = 1, 2. Problem(P) can be divided in two subproblems:

1. Find transmission power for a given BS assignment to user.

2. Find the BS assignment for a given user transmission power.

4

For subproblem 2: Suppose users 1 and 2 transmit with power P1 and P2 respectively. Which

BS assignment should we do in order to have the minimum total transmission power?

It makes sense that user 1 will connect to the BS that results in the largest SINR (out of the

two possible BSs). The same for user 2.

For subproblem 1: If we have fixed BS assignment a then we will have the classical problem of

power control. For a particular assignment ℓ ∈ L the SINR requirement for user i is:

min
P

N
∑

i=1

Pi (10)

subject to:

SINRi(P) ≥ γi (11)

Now, consider again the original problem. We symbolize G
(ℓ)

i
= H

(ai(ℓ))

i
. If we write inequalities

for each user i and assignment ℓ ∈ L, we have,

Pi ≥ G
(ℓ)

i
P + δ

(ℓ)

i
(12)

and in vector form:

P ≥ G(ℓ)P + δ
(ℓ)

(13)

where matrix:

G(ℓ)
= [G

(ℓ)

1
,G

(ℓ)

2
, ...,G

(ℓ)

N
] (14)

and vector

δ
(ℓ)

= (δ
(ℓ)

1
, ..., δ

(ℓ)

N
)
T

(15)

Consequently the set of feasible transmission powers for a particular assignment ℓ is

P
(ℓ)

= {P ≥ 0 : P ≥ G(ℓ)P + δ
(ℓ)
} (16)

One can show that set P(ℓ)
is a cone. Indeed, suppose P ∈ Pℓ

, then αP ∈ Pℓ
, for α ≥ 1.

Consider M = 2 and N = 2. For a fixed assignment ℓ, the set of feasible powers P(ℓ)
is the cone

that is defined by inequalities:

P1 ≥ G
(ell)

1
P + δ

(ℓ)

1
(17)

P2 ≥ G
(ℓ)

2
P + δ

(ℓ)

2
(18)

5

From the theory of power control, the power vector P∗(ℓ)
= (P

(ℓ)

1
, P

(ℓ)

2
) that solves the power mini-

mization problem is the intersection of straight lines

P1 = G
(ℓ)

1
P + δ

(ℓ)

1
(19)

P2 = G
(ℓ)

2
P + δ

(ℓ)

2
(20)

which is the vertex of the cone, P∗(ℓ)
= v(ℓ)

and, for a specific assignment is shown in the figure

below (Figure 2.

2

P
1

P

Figure 2: Region of feasible powers for a fixed BS assignment.

In figure 3 below, we show all 4 possible assignments of BS to users. In fact, two out of the 4

straight lines with equations shown above, correspond to a specific BS assignment ℓ = 1, 2, 3, 4.

−→ straight line (a) represents communication between user 2 and BS 1 and has equation

P2 = H
(1)

2
P + δ

(1)

2
(21)

−→ straight line (b) represents communication between user 1 and BS 1 and has equation

P1 = H
(1)

1
P + δ

(1)

1
(22)

−→ straight line (c) represents communication between user 2 and BS 2 and has equation

P2 = H
(2)

2
P + δ

(2)

2
(23)

6

P_1

a

b

d

c

P_2

Figure 3: 4 lines showing 4 possible assignments to BSs.

−→ straight line (d) represents communication between user 1 and BS2 and has equation

P1 = H
(2)

1
P + δ

(2)

1
(24)

♦ Now as far as the points of intersection of these lines are concerned :

−→ Lines (b) and (c) represent assignment ℓ = 1 (user 1 → BS 1, user2 → BS 2). The point of

intersection of these lines is denoted as v(1)
.

−→ Lines (a) and (d) represent assignment ℓ = 2 (user 1 → BS 2,user 2 → BS 1). The point of

intersection of these lines is denoted as v(2)
.

−→ Lines (a) and (b) represent assignment ℓ = 3 (user 1 → BS 1, user 2 → BS 1). The point

of intersection of these lines is denoted as v(3)
.

−→ Lines (c) and (d) represent assignment ℓ = 4 (user 1 → BS 2, user 2 → BS 2). The point

of intersection of these lines is denoted as v(4)
.

Theorem: Out of the cone vertices v(1)
, ...,v(|L|)

, there exists a vertex v∗ ∈ {v(1)
, ...,v(|L|)},

such that v∗ ≤ v(ℓ)
for all ℓ = 1, ..., |L|. This vertex shows the BS assignment and the power vector

(the power vector is the one that corresponds to that intersection point) that form the solution to

the joint BS assignment and power control problem.

We make a note about the algorithm that solves the problem.

Define the vector

M
(k)

i
(P) = H

(k)

i
P + δ

(k)

i
(25)

7

where M
(k)

i
(P) actually represents Pi, depends only on Pj ,j 6= i and it is the minimum power needed

by user i to transmit to BS k if other users j 6= i keep their powers fixed.

Define vector

Mi(P) = min
k

M
(k)

i
(P). (26)

This is the minimum power needed by user i to transmit to any BS.

Algorithm:

Start with an initial assignment a0
and power vector P0

. that is vector (a
0

1
, a

0

2
), (P

0

1
, P

0

2
).

Users take turns, one at a time (user 1, then user 2, etc.) and produce assignments and powers

(a
n

1
, P

n

1
) and (a

n

2
, P

n

2
).

At each iteration, each user i selects the best BS out of BS 1, BS 2, namely the one that allows

the user to achieve γi with the least power Pi. For example, user 1 does the following:

P
(n+1)

1
= min

{

M
(1)

1
(P(n)

),M
(2)

1
(P(n)

)

}

(27)

where M
(1)

1
(Pn

),M
(2)

1
(Pn

) depend only on the power of the other user P
n

2
(at the previous iteration).

Specifically:

P
(n+1)

1
= min

{

H
(1)

1
P(n)

+ δ
(1)

1
,H

(2)

1
P(n)

+ δ
(2)

1

}

(28)

or in even more detailed form:

P
(n+1)

1
= min

{

γ1h12

h11

P
(n)

2
+

σ
2

2
γ1

h11

,

γ1h22

h21

P
(n)

2
+

σ
2

2
γ1

h21

}

. (29)

Thus, we get assignment a
(n+1)

1
∈ {1, 2} and the power of user 1 is fixed to the minimum needed

so as to achieve SINR γ1. Similarly by the update P
(n+1)

2
, and user 2 selects BS and power.

By doing this iteration, the algorithm converges to the optimal solution (optimal BS assignment

and power vector) that was represented by vertex v∗
.

Contraction mapping theory helps us understand better the convergence of such iterative algo-

rithms. A basic notion in contraction mapping theory is the fixed point of a function.

The point x∗
is called fixed point of function f(·), if f(x∗

) = x∗
namely, if the point is mapped

to itself. Based on this theory, one can show that the iteration defined by:

x(n+1)
= f(x(n)

). (30)

8

converges fixed point of f , x∗
so that x∗

= f(x∗
), under some assumptions. We can use contraction

mapping theory in our case, since our function has the structure below:

P(n+1)
= GP(n)

+ δ. (31)

Iteration converges to point P∗
, the fixed point of f(P) = GP + δ, if the eigenvalue of matrix G,

λ(G) < 1. Then,

P∗
= GP∗

+ δ. (32)

9

Linear Programming Notes

Instructor : Iordanis Koutsopoulos

Lecture 5 : Convexity Definitions - 17/10/06

Notes by : Eleni Anagnostopoulou and Nena Xanthopoulou

1 Outline of lecture:

• Various definitions

– Convex function and concave function

– Neighborhood N(x)of point x

– Local and global solutions

– Gradient and Hessian Matrix

• Convexity Conditions (first and second order)

2 Definitions:

2.1 Convex Function

Given function f : Ω → R, we say that f is convex if and only if

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀x,y ∈ Rn and θ ∈ [0, 1] (1)

The schematic representation of a function f(x) of one variable is shown below in Figure 1. In the

definition above, Ω ⊆ R is the set of points at with f(·) is defined.

Inequality (1) can be interpreted as follows: Given any two points x, y ∈ Ω with values f(x), f(y)

respectively, the chord between points (x, f(x)) and (y, f(y)) lies above the graph of f (see Figure

1).

1

x yf(x)f(y)
f(x)

x
Figure 1: A convex function of one variable, f(x).

2.2 Concave function

Given function f : Ω → R, we say that f is concave if and only if

f(θx + (1− θ)y) ≥ θf(x) + (1− θ)f(y), ∀x,y ∈ Rn and θ ∈ [0, 1]. (2)

The schematic representation of a concave function f(x) of one variable is shown below (Figure 2).

Inequality (2) can be interpreted as follows: Given any 2 points x, y ∈ Ω with values f(x), f(y)

x y

f(x)

f(y)

f(x)

x

Figure 2: A concave function of one variable, f(x).

respectively, the chord between points (x, f(x)) and (y, f(y)) lies below the graph of f (see Figure

2).

2

Note :

If we have

f(θx + (1− θ)y) = θf(x) + (1− θ)f(y), ∀x,y ∈ Rn and θ ∈ [0, 1], (3)

then function f is linear. A linear function can be considered both convex and concave.

2.3 Neighborhood

Given a point x ∈ Rn, the set of points {y ∈ Rn : ‖y − x‖2 < ε} is called neighborhood of x and is

symbolized as N(x), where ‖a‖2 =
√

aTa is the quadratic norm of vector a and ε is a small positive

constant.

Depending on the dimension, n of set Rn, the neighborhood can be as follows:

• In one dimension (n = 1) : the neighborhood of x ∈ R is shown in Figure 3 and is the set of

points N(x) = {y : y ∈ (x− ε, x + ε)}.

x-ε x+εx

Figure 3: Neighborhood of x in one dimension.

• In two dimensions (n = 2): the neighborhood of x is a disk centered at x with radius ε and is

shown in Figure 4.

x
ε

Figure 4: Neighborhood of x in two dimensions.

• In three dimensions (n = 3): the neighborhood of x is a sphere centered at x with radius ε.
...

• In n dimensions (n > 3), the neighborhood of x is a ”hyper-sphere”.

3

2.4 Local and global solutions

A feasible solution x∗ is called local optimum (minimum) of function f in a neighborhood N(x0) of

point x0 if

f(x∗) ≤ f(x), ∀x ∈ N(x0). (4)

A feasible solution x∗ is called global optimum (minimum) of function f if

f(x∗) ≤ f(x), ∀x ∈ Ω (definition set of f). (5)

Reminder: The first derivative f ′(x0) of function f of one variable at point x0 is defined as :

limx→x0

f(x)−f(x0)
x−x0

= f ′(x0). For a function f : Rn →R of more than one variables x = (x1, x2, . . . , xn)

, the first derivative of a function of one variable corresponds to the gradient of f(·) at point x, it is

denoted as grad(f)(x) or ∇f(x) and is defined as the n× 1 vector:

∇f(x) =




∂f
∂x1

(x)

∂f
∂x2

(x)
...

∂f
∂xn

(x)




.

Note that the gradient can be defined at point x only if all partial derivatives of f at x with

respect to its variables exist.

The i-th component of ∇f(x) denotes the rate of of f when only variable xi changes and the

others remain fixed.

Example: Given f(x) = x2 + y2, calculate the gradient ∇f(x) at point x0 = (1, 2).

∇f(1, 2) =


 2x

2y


 =


 2

4


 .

2.5 Hessian Matrix

The second-order derivative of a function of one variable corresponds to the Hessian Matrix of a

function of several variables f : Rn →R at point x and is defined as:

∇2f(x) =




∂f2

∂x2
1
(x) ∂f2

∂x2∂x1
(x) . . . ∂f2

∂xn∂x1
(x)

∂f2

∂x1∂x2
(x) ∂f2

∂x2
2
(x) . . . ∂f2

∂xn∂x2
(x)

...
...

...
...

∂f2

∂x1∂xn
(x) ∂f2

∂x2∂xn
(x) . . . ∂f2

∂x2
n
(x)




= F (x)

4

If f has continuous second derivatives, then the Hessian Matrix is symmetric, namely ∂f/∂xi∂xj =

∂f/∂xj∂xi, i 6= j.

Example:

Given x an N × 1 vector and A a N ×N matrix, the following properties hold:

1. ∇(xTAx) = (A+AT)x , and if A is symmetric matrix (A = AT) , then ∇(A+AT)x = 2Ax.

2. ∇(yTx) = y.

3. ∇(xTx) = 2x.

4. ∇(yTAx) = ATy

For example suppose x = (x1, x2),y = (y1, y2) and A is 2× 2 matrix , then we have:

∇(x1y1 + x2y2) =


 y1

y2


 = y.

∇(x2
1 + x2

2) = 2


 x1

x2


 = 2x.

3 Convexity Conditions

3.1 First-order Convexity Conditions

If the first-order derivatives of f(x) exist, then

f is convex ⇔ f(y) ≥ f(x) +∇T f(x)(y − x), ∀x,y ∈ Rn. (6)

It is useful to note that the right part of inequality (6) consists of the first two terms of Taylor’s

expansion formula of f(y) around point x.

Taylor’s formula : f(y) = f(x) +∇T (f(x))(y − x) +
1
2
(y − x)T∇2f(x)(y − x) + . . . (7)

The schematic representation is shown below for a function of one variable (Figure 5). The equation

of the tangent line of f at point x is f(x)+f ′(x)(y−x). For more than one dimensions, the equation

of the tangent plane of f at point x is f(x) +∇T f(x)(y − x).

Note : Generally we could say that because f is convex, we can use a local information (the

right term of inequality (7), f(x) + ∇T (f(x))(y − x), which holds ”locally” around x, in order to

5

f(y)

[x,f(x)]

Figure 5: Tangent line of f at point x.

obtain a global information (a global lower bound on f(y). Thus, from local information (a value

and a derivative of a convex function at a given point x) we can derive global information (global

lower bound).

If ∇f(x∗) = 0 for point x∗ then from inequality (6) we have : f(y) ≥ f(x∗), ∀y ∈ Rn ⇒ x∗ is

global optimum (minimum).

Note: If function f depends on only one variable then the inequality (6) can be written as:

f(x) ≥ f(x0) + f ′(x0)(x− x0). (8)

3.2 Second-order Convexity Conditions

Suppose f is twice differentiable (all second derivatives exist). Then, f is convex if and only if

∇2f(x) ≥ 0 ∀x ∈ Ω ⊆ Rn. (9)

That is to say the Hessian matrix is positive semi-definite, symbolized as ∇2f(x) ≥ 0.

Note : A matrix A is positive semi-definite (A > 0) if and only if : xT Ax ∀x ∈ Rn. If A > 0

then A has all its eigenvalues positive.

If function f depends on only one variable then condition (9) is written as:

f(x) convex if and only if f ′′(x) ≥ 0. (10)

Similarly a function f is concave if and only if ∇2f(x) ≤ 0 ∀x ∈ Ω ⊆ Rn.

Examples of convex and concave functions (of one variable):

1.

f(x) = eαx is convex on R, ∀α ∈ R.

6

2.

f(x) = xα =





convex on R+ if a ≥ 1 and a ≤ 0,

concave if a ∈ [0, 1]

3.

f(x) = xα =





concave on R− if a ≥ 1 and a ≤ 0,

convex if a ∈ [0, 1]

4.

f(x) = log x is concave on R+.

7

Advanced Topics in Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 6 : 18/10/06

Notes by : Evagelos Galanis and Panagiotis Theodosiou

1 Outline Of Lecture:

• Utility functions

• Convex and concave functions of several variables

• Jensen’s Inequality

• Feasible Directions

• Conditions for existence of minimum

2 From previous lecture: Utility function

Given the function of one variable f(x) = log x, we take its second derivative, f
′′
(x) = −

1

x2 < 0,

∀x > 0. Thus, f(·) is a concave function. The log-function is useful in defining capacity and solving

relevant problems.

Definition of Capacity(Information-theoretic) : the largest number of bits per second that can

be transmitted over a link with arbitrarily small probability of error,

C(P) = log(1 + SNR) = log(1 +
P

N

), (1)

where P is the transmission power and N is the noise power. Function C(P) is a concave function

of P and is depicted in figure 1.

1

Capacity C(p)

Power, P

Figure 1: Capacity Function.

The first derivative in a point x of the curve gives the slope of the tangent line at x. Since

f
′′
(x) < 0, then f

′
(x) is decreasing (↓). So, as powerP increases, the rate of increase of capacity

dC/dP decreases (this attribute holds only for concave functions) as figure 1 shows. For large enough

values of power, the capacity is ”saturated”, in the sense that there are marginal returns. Thus, the

higher the power, the smaller the rate of increase of capacity. We have the following approximations:

• For large power P , C(P) = log(1 +
P

N
) ≈ log

P

N

• For small P , C(P) ≈
P

N
, since log(1 + x) ≈ x for small x.

A similar phenomenon is observed if we define the more general notion of utility function (used

e.g. in Pricing theory of Networks), which is depicted in figure 2.

Function U(x) denotes the amount of satisfaction of a user as a function of the amount of

allocated resources to him. Resources can be power of bandwidth.

3 Convex functions of several variables

• f(x) =

√
xTx = ||x||2 is a convex function of x = (x1, x2, . . . , xn).

• f(x) = max{x1, x2, . . . , xn} is a convex function of x = (x1, . . . , xn).

2

Utility U(x)

x

Figure 2: Utility Function.

• f(x) = log(e
x1 + . . .+ e

xn) is a convex function of x = (x1, x2, . . . , xn) (although f(x) = log(x)

is a concave function of x in R+).

Note: We will use this later to show that function

f(P) =

N
∑

i=1

qi log
GiiPi

∑

j 6=i

GjiPj

=

N
∑

i=1

qi log(SIRi(P) (2)

is a concave function of P, where SIR is the signal-to-interference ratio. Then, we will solve

the corresponding maximization problem.

• f(x) =

(

n
∏

i=1

xi

)1/n

is a concave function of x = (x1, x2, . . . , xn) in R+.

4 Jensen’s Inequality

If f is a convex function then

f

(

x + y

2

)

≤
f(x) + f(y)

2
(3)

If f is a convex function and X is a random variable, we can generalize the above to show that

f(E[X]) ≤ E[f(X)].

Sketch of Jensen’s Inequality: First, we use the definition of convex function f for two

points x, y : f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y).

3

Then extend the inequality to more points: x1, x2, . . . , xk as

f(θ1x1 + . . . + θkxk) ≤ θ1f(x1) + . . . + θkf(xk), (4)

where

k
∑

i=1

θi = 1, ∀ θi ≥ 0 (convex combination of k discrete points).

Considering that
∫

S
p(x)dx = 1, where S is the set of points where f is defined, the inequality

for continuous set of points becomes

f

(
∫

S

p(x)xdx

)

≤

∫

S

f(x)p(x)dx. (5)

Thus the probability distribution p(·) is ”similar” to a continuous distribution of θ’s and declares the

convex combinations. Eventually, we conclude that f(E[X]) ≤ E[f(X)].

Notation: x∗
= arg min

x∈Ω

f(x) ⇐⇒ f(x∗
) ≤ f(x)∀x ∈ Ω. (”arg” stands for argument of a

function)

5 Feasible Directions

Suppose that we have a convex set Ω as in figure 3. Assume that x ∈ Ω (Omega in the figure) is

x

Omega

Figure 3: Feasible Direction.

a feasible point. A feasible direction d at a point x is a vector d 6= 0 such that x + αd is feasible

∀α > 0 which are small enough. Given a point x, all the directions towards which we can move from

x constitute the set of feasible directions. We show some of these directions in figure 2.

4

Equivalently, we say that a vector d 6= 0 is a feasible direction x ∈ Ω if ∃ α0 > 0 : x + αd ∈

Ω ∀ α ∈ [0, α0].

In Linear Programming, we will see that Ω will be polyhedron that will arise from the constraints

of the problem, the possible solutions are the vertices of the polyhedron and the feasible directions

are the edges of the polyhedron.

We can imagine we stand in a point x and choose to move towards a direction ∆x. The deference

between the value of f at the new point x + ∆x minus the value of f at the old point x can be

approximated as follows: (note ∆x = (∆x1, ∆x2, . . . ,∆xN)

1) First Order Approximation : f(x+∆x)−f(x) ≈ ∇T
f(x) ∆x =

N
∑

i=1

∂f (x)

∂xi

∆xi. For example,

for direction d such that d = (
1
√

2
,

1
√

2
), with ||d|| = 1, this means that we move in a direction that

forms angle of 45
◦

with the tangent line of f at x. In general, we can move with a step ε towards

direction d.

2) Second Order Approximation : f(x + ∆x) − f(x) ≈ ∇T
f(x)∆x +

1

2
(∆x)

T
∇

2
f(x)(∆x) (we

have used Taylor’s Theorem).

6 Conditions for existence of minimum point

6.1 First Order - Necessary Condition

Assume x∗
is local minimum of function f . By using the first order approximation we have that

f(x∗
+ ∆x) − f(x∗

) ≈ ∇T
f(x∗

) ∆x ≥ 0 ∀∆x. This means that
∑

N

i=1

∂f(x
∗
)

∂xi
∆xi ≥ 0 for all ∆x =

(∆x1, . . . ,∆xN). Clearly, the value of function f increases wherever we move to, since currently we

are at x∗
, the minimum point. We want to prove that if x∗

is a local minimum of function f , then the

gradient of f is 0 (∇f(x∗
) = 0). Take ∆x to be positive and negative multiples of the unit coordinate

vectors (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1). The positive ones are: ∆x(1)
= ε(1, 0, . . . , 0)

∆x(2)
= ε(0, 1, . . . , 0)

.

.

.

∆x(n)
= ε(0, 0, . . . , 1)

and the negative ones are :

∆x(1)
= −ε(1, 0, . . . , 0)

∆x(2)
= −ε(0, 1, . . . , 0)

5

.

.

.

∆x(n)
= −ε(0, 0, . . . , 1).

Since

N
∑

i=1

∂f(x∗
)

∂xi

∆xi ≥ 0 for all ∆x = (∆x1, . . . ,∆xN), we have for example for x1:

∂f(x∗
)

∂x1

ε ≥ 0 and
∂f(x∗

)

∂x1

ε ≤ 0. (6)

These lead us to
∂f(x∗

)

∂x1

ε = 0. Similarly for the rest of xi, i = 2, . . . , N , we have:
∂f(x∗

)

∂xi

ε = 0 and

finally, since ε > 0, we get
∂f(x∗

)

∂xi

= 0 ∀i. So we have proved the following:

If x∗
is a local minimum of function f , then ∇f(x∗

) = 0 (assuming that function f has first

derivative at x∗
). This is the First Order Necessary Condition for existence of local minimum.

6.2 Second Order Necessary Condition

From the Second Order Taylor approximation we saw: If x∗
is a local minimum, then f(x + ∆x) −

f(x) ≈ ∇T
f(x)∆x+

1

2
(∆x)

T
∇

2
f(x)(∆x) ≥ 0. Since ∇T

f(x∗
) = 0, the above becomes: f(x+∆x)−

f(x) ≈
1

2
(∆x)

T∇2
f(x)(∆x) ≥ 0∀∆x.

Thus, we proved that if x∗
is local minimum of function f , then ∇2

f(x∗
) ≥ 0 (assuming that f

has all partial second derivatives at x). This means that if x∗
is a local minimum, then the Hessian

matrix of f at x∗
, ∇2

f(x∗
) is positive semi-definite.

6.3 Sufficient Conditions

Assume that function f : R
n → R

n
has two derivatives. If x∗ ∈ Ω satisfies ∇f(x∗

) = 0 and

∇2f (x∗
) > 0, then x∗

is a local minimum of function f in Ω.

Similarly, for a local maximum, we can prove that if x∗ ∈ Ω satisfies ∇f(x∗
) = 0 and ∇2

f(x∗
) <

0 , then x∗
is a local maximum of function f in Ω.

Note: If f is convex function, every local minimum is also global minimum, while if f is a

concave function every local maximum is also global maximum.

Remark: Necessary and sufficient condition meaning:

N is necessary condition for A or A ⇒ N .

S is sufficient condition for A or S ⇒ A.

For a pictorial representation, see figure 4.

6

A

S

N

A

Figure 4: Necessary and Sufficient conditions.

Exercise: We are given a set of vectors {x(1)
, . . . ,x(p)}, with x(i) ∈ R

n
for i = 1, . . . , p. Find

the vector x ∈ R
n

such that the average squared distance (norm) between x and all x(1)
, . . . ,x(n)

,

given by

1

p

p
∑

i=1

||x − x(i)
||

2
(7)

is minimized. Is the local minimum a global minimum as well?

The solution to the above is

x∗
=

1

p

p
∑

i=1

x(i)
. (8)

7

Advanced Topics in Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 7 : Minimum of functions of one variable and examples of

Convex Optimization problems 24/10/06

Notes by : Katerina Mamoura and Eleana Parlavantza

1 Outline of lecture 7:

• Methods for minimization:

– Bisection method

– A direct method for finding the minimum

– Newton’s method

• Two examples of Convex Optimization Problems.

2 Finding the minimum of functions of one variable

2.1 First method

• Given a function f : < → < that has a first derivative, a point x? that minimizes f(x) has the

property that:

f ′(x?) = 0. (1)

Define g(x) = f ′(x). Then, we need to find a point x? such that

g(x?) = 0, (2)

i.e. a root of g(·). In order to find x?, we can use the bisection method.

1

The pseudo-algorithm for the bisection method is the following:

STEP 1: Find two points a, b such that g(a) · g(b) < 0 (this means that g(a), g(b) have

opposite signs. Otherwise, function g(·) is increasing, or decreasing and the minimum within

interval [a, b] coincides with one of the two end points.

STEP 2: Compute intermediate point y = b−a
2 + a.

STEP 3:

(a) If g(a) · g(y) < 0 , then set b = y,

(b) If g(y) · g(b) < 0 , then set a = y,

(c) If g(y) · g(a) = 0 or g(y) · g(b) = 0, then y is the minimum. STOP.

STEP 4: If |b− a| < δ (where δ << 1) STOP.

Note : If we search for the minimum in a closed interval [c, d], the minimum is either c or d,

depending on whether f is increasing or decreasing.

In the algorithm above, either the root is found (hit exactly) or the searching range is progres-

sively narrowed, until the minimizer is found with some specified accuracy δ.

The first step of the algorithm is depicted in figure 1.

g(x)

a

b

b−a

2

Figure 1: The first step of bisection method.

Algorithm Complexity : It takes at most log2
|b−a|

δ steps to find the minimum. Thus, the algorithm

complexity depends on the initial search range [a, b] and the tolerance parameter δ.

2

2.2 Second method

In the second method, we attempt to minimize function f : < → < directly, namely without finding

the root of the derivative of f .

Definition of Unimodal function : Given a function f : < → < defined in a closed interval

[a, b], f : [a, b] ⊂ <, f is called unimodal in [a, b] if f has only one local minimizer in [a, b]. Specifically,

f is unimodal if, given a x? ∈ [a, b], f is increasing for x ≥ x? and decreasing for x ≤ x?, x ∈ [a, b].

Conditions that are satisfied by unimodal functions: Given points x1, x2 such that

a ≤ x1 < x2 ≤ b, there exists a point x? that:

(a) If x1 > x?, then f(x1) < f(x2). Thus, f is decreasing, as x moves from x1 towards x?

(Figure 2).

(b) If x2 < x?, then f(x1) > f(x2). Thus, f is increasing, as x moves from x? towards x2

(Figure 3).

x
?

x1 x2

Figure 2: Conditions satisfied by a unimodal function.

x1 x2 x
?

Figure 3: Conditions satisfied by a unimodal function.

Note that The bisection method cannot be used in this case, because we cannot make any

3

conclusions about the sign of the intermediate point. For example f can have one of the two forms

shown in figure 4, and the minimum can be either in the first interval or in the second interval.

a b
b−a

2

type1
type2

Figure 4: Bisection method cannot give any hint on where the minimum is.

Thus, we proceed as follows: We find two points x̂1, x̂2 ∈ [a, b] such that a < x̂1 < x̂2 < b and

we find f(x̂1), f(x̂2). Then, we can distinguish the following cases.

(I) If f(a) > f(x̂1) > f(x̂2), the interval [a, x̂1] is excluded, as there is no way the minimum is

located in that interval. Thus, we set the right point of searching interval x̂1 ← a. The minimum

should be somewhere in [x̂1, b]. This case is shown is figure 5.

(II) If f(b) > f(x̂2) > f(x̂1), the interval [x̂2, b] is being excluded, as there is no way the

minimum is located in that interval. The minimum should be somewhere in [a, x̂2]. Thus, we set the

left point of searching interval x̂2 ← b. This case is shown is figure 6.

We proceed in that fashion, until we find the minimum x? with some accuracy. The question

that arises is the following: How do we choose the points x̂1, x̂2 in each iteration? We need to choose

them so that the number of iterations and the searching interval at every step are reduced fast. The

following methods exist for choosing x̂1, x̂2: Golden ratio search and Fibbonacci search.

2.3 Third method - Newton’s method

Newton’s method is an iterative method which uses the second derivative of f . Thus, it assumes

that f is twice differentiable.

Given a function f(x) and a point x(k) the idea is to approximate f(x) through a quadratic func-

tion, namely a second degree q(x). Instead of minimizing f we attempt to minimize its approximation

4

a bx̂1 x̂2

f(a)

f(x̂1)

f(x̂2)

Figure 5: Case II in the method of directly finding the minimum.

a bx̂1 x̂2

f(b)

f(x̂2)

f(x̂1)

Figure 6: Case I in the method of directly finding the minimum.

q(x), which has the form:

q(x) = f(x(k)) + f ′(x(k))(x− x(k)) +
1
2
f ′′(x(k))(x− x(k))2 (3)

Note that approximation f(x) ≈ q(x) is selected so that q(x) satisfies:

q(x(k)) = f(x(k)), (4)

q′(x(k)) = f ′(x(k)), (5)

q′′(x(k)) = f ′′(x(k)). (6)

By minimizing function q(·) we get: q′(x) = 0 ⇒ f ′(x(k)) + f ′′(x(k))(x − x(k)) = 0. Solving this

equation to find the x that minimizes f ,we get:

x = x(k) − f ′(x(k))
f ′′(x(k))

(7)

By setting the next point to be that minimizing x, i.e, x ← x(k+1) the equation above becomes:

x(k+1) = x(k) − f ′(x(k))
f ′′(x(k))

(8)

5

and gives the form of iteration of Newton method.

Note that Newton method is a special form of gradient method.

- This iterative method, starts from an initial point x0 and terminates either if f ′(x(k)) = 0 (in

which case x(k+n) = x(k), for n > 0) or when |x(k+1) − x(k)| < ε

- In the stopping condition |x(k+1) − x(k)| < ε, there exists a tradeoff: if ε is too small, then the

result is more accurate, but it takes more iterations to reach that. On the other hand, if ε is

larger, then, despite the fact that the result is found faster, the error is also larger.

- For functions of several variables, we will see that the Newton iteration becomes:

x(k+1) = x(k) − [∇2f(x(k))]−1∇f(x(k)) (9)

where ∇2f(x(k)) is the Hessian matrix of f at point x(k).

3 Examples of Convex Optimization Problems

3.1 Routing with transmission rate control

Source Destination

λ bits
λ

G

Hop 1 Hop 2

Hop N

BER ≤ ε at each receiver

Fig.3 : Multi-hop transmission in a sensor network

r

Figure 7: Bit transfer from a source to a destination in multi-hop in a wireless sensor network.

Consider a sensor network, in which λ bits have to be transmitted from a source (S) to a destina-

tion (D) which can be a processing center. The λ bits come as the output of sensing and measurement

at the sensor in (S). So, in each hop in the path from S to D, there happens a transmission from the

transmitter to the corresponding receiver.

There exist L possible data transmission rates, r ∈ {r1, ...rL}, and each transmitter has to

choose an ri ∈ {r1, ...rL}.

6

The λ bits need to be transferred within a certain period of time. Then, λ can be written as

function of the transmission rate as follows

λ =
bits

symbol
· symbols

sec
· sec (10)

⇒ λ = r · s · t (11)

where s is the symbol rate (symbols
sec) and s = 1

T , where T is the symbol (pulse) duration. Bits are

transferred on symbol pulses (which can be square pulses or sigmoid ones). The rate r determines

the number of transmitted bits per symbol, namely it determines the modulation level. Assume t is

a fixed known time interval.

In this problem, the modulation level for the transmitter of each hop is controllable. At each

receiver along the S-to-D path, the SNR should satisfy:

SNR ≥ − ln(5ε)
1.5

(2r − 1) (12)

if rate r is used at the transmitter, so that BER ≤ ε at each receiver, where ε is a fixed number

(e.g.10−6, 10−7) that shows the maximum tolerable bit error rate (BER) at each transmission hop.

The inequality above results from the following approximate formula for BER:

BER ≈ 1
5
e−

1,5·SNR
2r−1 (13)

The receiver is aware of transmitter rate and tries to decode the signal according to that. If r is too

large, this means that the signal points in the constellation diagram are too close to each other, so

there is a difficulty in distinguishing what has been sent. Thus, in order to reduce the number of

errors, a better channel is needed.

The SNR is related to transmission power as follows:

SNR =
G · P
σ2

(14)

where G is the link gain between transmitter-receiver and σ2 is the noise power at the receiver. From

(12) and (14) by using equality and solving for P we have the following:

P ≈ k · 2r (15)

where k is a proportionality constant. Thus P is an exponential function of rate r. The transmission

energy at some hop is given by:

Energy = Power× time (16)

7

From equation (10) the energy is :

E = P · λ

s
r (17)

⇒ E =
k · 2r

sr
λ

⇒ E = k · 2r · λ

sr

Thus, for example for hop 1 (h1) we have from above that the consumed energy for transmission is:

⇒ E1 ≈ k1 · 2r1

r1

and in general for hop i, i = 1, . . . , N :

⇒ Ei ≈ ki · 2ri

ri
(18)

where ki is a constant and ri is the transmission rate at hop i (transmitter i to receiver i).

What is the problem that arises ?

(a) Given a route from S to D, what is the transmission rate ri in each hop (hi) so that the total

energy
∑N

i=1 Ei is minimized.

If there are no constraints on the time by which the bits need to be transferred and since

Ei ≈ ki · 2ri

ri
(19)

and there are L choices for the rate, r ∈ {b1, ...bL} with b1 < b2 < ... < bL , the optimal choice is to

operate with the minimum rate for each hop, namely ∀ hops i, choose ri = bi.

(b) What happens when there is a deadline by which bits need to be transferred to the desti-

nation? Then λ bits need to be transferred from source to destination within some deadline time T .

We also make the assumption that only one hop is active at a time, the one that transmits. Is the

solution still the same?

There are two conflicting arguments : The sum
∑N

i=1 Ei needs to be low (because in a sensor

network battery consumption has to be low). That means that energy transmission in each hop has

to be low. Thus,in order to achieve low energy consumption, each ri has to be low. But if each ri is

low then λ bits are transmitted in a longer period of time. Hence λ
sri

increases and it is very likely

for the end-to-end transmission to last longer and not satisfy the deadline T .

8

Therefore, we can formulate the following optimization problem (assuming that the rates are

continuous variables):

min
r

N∑

i=1

ki · 2ri

ri
,

subject to the constraint:
N∑

i=1

1
ri
≤ Ts

λ

with r = {r1, ...rN}.
Objective function f(r) =

∑N
i=1 ki

2ri

ri
is convex in r , since it is the sum of convex functions of

the form ex

x . Also the constraints are convex. Therefore, we have a convex optimization problem.

3.2 Convexity issues in an M/M/1 queue

λ

µ

Fig.4 : M/M/1 queue

Figure 8: An M/M/1 queue.

In the depicted M/M/1 queue let λ be the average customer arrival rate (in customers/sec) and

µ be the customer service rate.

From Little’s theorem for the average number of customers N in the system we have N = λ ·T ,

where T is the average waiting time in the queue for a customer and T = 1
µ−λ for an M/M/1 queue.

Is function N = λ
µ−λ convex or concave ? For fixed λ, it is N ′′(µ) > 0. Thus, for fixed λ,

function N(·) is convex for µ. For fixed µ, it is N ′′(λ) < 0, thus function N(·) is concave for λ.

9

Advanced Topics in Networking - Fall 2006

Instructor: Iordanis Koutsopoulos

Lecture 8 : Gradient Methods and Gradient Descent Method -

25/10/06

Notes by : Nikolaos Kapetanios and Konstantinos Sotiropoulos

1 Gradient Methods

The level set of a function f : Rn −→ R at level c is the set of points

S = {x : f(x) = c} (1)

If a point x0 is on the level set S at level c, then f(x0) = c.

Fact: Assuming that f is continuously differentiable, the vector ∇f(x0) is orthogonal to the tangent

vector to an arbitrary smooth curve passing through x0 at the level set f(x) = f(x0). A curve lying

on S can be parameterized by a continuously differentiable function x : R −→ Rn.

Definition of a curve: A curve γ on S is defined as γ = {x(t) : t ∈ (a, b)} ⊆ S, where a denotes

the start and b denotes the end of the curve. The beginning and ending points of the curve are x(a)

and x(b). Now suppose also that x(t0) = x0 and x′(t0) 6= 0 is the tangent vector to curve γ at x0

(see Figure 1). We will show:

∇f(x0)⊥x′(t0). (2)

Proof: Let g(t) = f(x(t)) with t, t0 ∈ (a, b) and x0 = x(t0). From the level set of f we have :

f(x(t)) = c.
df(x(t))

dt
= 0 ⇔ ∇T

xf(x(t)) x′(t) = 0 from the chain rule (3)

and for t = t0 we have,

∇T
xf(x(t0)) x′(t0) = 0. (4)

The direction of ∇f(x): ∇f(x) actually is always the direction of maximum rate of increase of f

at point x.

1

X2

X1

, 2XX1))f = c

X02

X01

)f X0)

∆

X0 t0

)

)X=

t0

)

)’X

level set

γ

Figure 1: Orthogonality of the gradient to the level set

Directional derivative: Define as ∂f(x
∂d the directional derivative of function f : Rn −→ R in the

direction d at point x, as

∂f

∂d
= lim

α→0

f(x + αd)− f(x)
α

= dT∇f(x). (5)

If ||d|| = 1, then ∂f
∂d(x) is the rate of increase of f at direction d at point x. If we apply the

Cauchy-Schwartz inequality for vectors a and b: ((aTa)2 ≤ (aTa)(bTb) = ||a||2||b||2) we have that:

(dT∇f(x))2 ≤ ||d||2 ||∇f(x)||2 ⇒ dT∇f(x) ≤ ||∇f(x)||. (6)

Thus the maximum value of the left side of expression (6) is ||∇f(x)||. For direction

d =
∇f(x)
||∇f(x)|| , (7)

namely the unit-norm direction of gradient, we get that ∂f
∂d = ||∇f(x)||, i.e, the maximum value of

rate of increase.

Note: The amount of increase of f to the direction d is α ∂f
∂d .

A simple problem: Suppose that we have function f : Rn −→ R and we are looking at the

maximum (or minimum) value p∗ = f(x∗). The solution to this problem is given by solving equation

∇f(x∗) = 0, which includes n unknown variables.

A simple example: Given function f(x) = 1
2x

T Qx+qTx+r, where Q > 0, vector q ∈ Rn and q ∈
R, compute the value x∗ at which f(x) is optimized (minimized in this case).

Solution: We have ∇f(x) = 1
22Qx + q = Qx + q, which we set equal to 0 and we get the result

x = −Q−1q = x∗.

2

2 Descent Methods

2.1 General Form

We will consider iterative methods for finding the minimum of a function f : Rn −→ R.

• Definitions

– Descent method A method is called descent method, if it satisfies the following relation

f(x(k+1)) < f(x(k)), (8)

where k is the iteration number, and when x(k) has not reached the optimal point. Thus,

the method is called descent method, if it leads to decrease of the value of the objective

function.

– Descent direction In this section, we will consider algorithms that produce a sequence

of points x(0),x(1), ...,x(k), ..., where

x(k+1) = x(k) + t(k)∆x(k), (9)

where ∆x(k) is a vector in Rn, called the search direction of iteration k, and scalar

t(k) > 0 ∈ R is the step size at iteration k. In a descent method, the search direction

must be such that ∇f(x(k))T ∆x(k) < 0 for all k so that the value of the function decreases

with iteration k. In that case, the direction is called descent direction for f at x(k). That

is, the search direction should make acute angle with the negative direction of the gradient

at x(k) (otherwise f(x(k+1)) > f(x(k))).

• The algorithmic steps for a General Descent Method

Start with initial point x(0).

At each iteration k:

1. Determine a descent direction ∆x(k).

2. Determine a step t(k).

3. Update the point according to equation: x(k+1) = x(k) + t(k)∆x(k)

STOP if ‖∇f(x(k))‖ ≤ ε, where ε a small positive number. More on stopping conditions later.

2.1.1 Question:

If ∇T f(x(k))∆x(k) < 0 like above and f is a convex function, show that f(x(k+1)) < f(x(k)).

Answer: Since f is a convex function, we have f(x(k+1)) ≥ f(x(k)) +∇T f(x(k)) (x(k+1) − x(k))

for two points x(k),x(k+1).

Since ∆x(k) = x(k+1) − x(k) and ∇T f(x(k))∆x(k) < 0, we have f(x(k+1)) < f(x(k)).

3

2.2 Steepest descent method

The steepest descent method is a special case of descent methods, where the step size is selected

based as follows. Assuming a step t(k) and a descent direction ∆x(k), the step for steepest descent

method is found as

t(k+1) = arg min
s≥0

f(x(k) + s∆x(k)) (10)

where x(k+1) = x(k) + s∆x(k) is the (k + 1)-th point in the descent direction method. The steepest

descent method optimizes the step, so that the value f(x(k+1)) is as small as possible. This method

accelerates the search of global minimum x∗ for a convex function f .

There is also another descent method with constant step t at all iteration, which is simpler to

implement but it is not as efficient as the method above.

3 Upper and lower bounds on Hessian matrix of f

Suppose that f is defined in a domain Ω and is a strongly convex function (∇2f(x) > 0). Then there

exists m > 0 such that

∇2f(x) ≥ mI (11)

and also there exists M ≥ m > 0 so that

∇2f(x) ≤ MI, (12)

where I is the identity matrix of size n (assuming xεRn).

The lower bound is easily derived.

Proof of upper bound : Assume that λ(x) is the eigenvalue of ∇2f(x) and y(x) is the

corresponding eigenvector of ∇2f(x). This means that

∇2f(x)y(x) = λ(x)y. (13)

Note that λ(x) and y(x depend on the particular point x, since ∇2f(x) depends on x and that

y(x) > 0, since ∇2f(x) is positive definite.

Define Λ to be the maximum eigenvalue of ∇2f(x) in domain Ω :

Λ = max
x∈Ω

λ(x) (14)

which leads us to inequality:

∇2f(x)y ≤ Λy. (15)

Multiply from the left by y(x) > 0 to get:

yT (x)∇2f(x)y(x) ≤ yT (x) Λy(x) = yT (x) Λ I y(x) (16)

4

and finally set M = Λ to get:

∇2f(x) ≤ MI. (17)

More information about the upper and lower bounds can be found in section 9.1.2 of the book

”Convex Optimization” by Boyd and Vandenberghe.

3.1 Condition Number

From the strong convexity inequality and inequality (11) we have

mI ≤ ∇2f(x) ≤ M I. (18)

The ratio M
m is said to be an upper bound on the condition number of matrix ∇2f(x). The condition

number of this matrix is defined as the ratio of its largest eigenvalue to its smallest eigenvalue.

ConditionNumber =
λmax(x)
λmin(x)

(19)

and from the bounds above we get:

ConditionNumber ≤ M

m
. (20)

The condition number gives a measure of ”eccentricity” of domain Ω. If it is close to one, it means

that the set has approximately the same ”width” in all directions, i.e. it is nearly spherical. We will

see later the role that condition number plays on convergence of descent methods.

One can show the following bound on the optimal value of objective function :

f(x)− 1
2m

‖∇f(x)‖2 ≤ p∗ ≤ f(x)− 1
2M

‖∇f(x)‖2, (21)

where p∗ = f(x∗) is the value of the objective function f at the global optimum x∗.

5

Advanced Topics in Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 9 : 30/10/06

Notes by : Aggelos-Christos Anadiotis, Giannis Dimitropoulos, Odysseas Kalamiotis

1 Gradient Descent Methods

In the gradient descent method, we choose as search direction ∆x(k) = −5 f(x(k)). In figure 1 we

depict some descent directions. The iteration for the gradient descent method is:

(k)f(x)
x(k)

���
���
���

���
���
������

���
���

���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

����
����
����

����
����
����

∇
∆

Figure 1: Descent directions for the Gradient Descent method.

x(k+1) = x(k) − t(k) 5 f(x(k)). (1)

Variable step t(k): (Steepest descent method)

The step t(k) at each iteration is found such that the value of the objective function at the next

iteration is as small as possible, namely

t(k) = arg min
s≥0

f(x(k+1)) = arg min
s≥0

f(x(k) − s∇f(x(k))) (2)

1

We can view f(x(k) − t(k)∇f(x(k))) as a function of one variable (the step), and its optimum is

found by taking the derivative equal to 0. Thus, at each iteration, the step is optimized so that it

causes the largest decrease in the value of the objective function at iteration k + 1, f(x(k+1).

df(x(k) − t(k)∇f(x(k)))
dt(k)

= 0 (3)

Fixed Step t : We can use a fixed step at each iteration and thus have

x(k+1) = x(k) − t∇f(x(k)). (4)

Function f(·) achieves its minimum p∗ with accuracy ε > 0,(i.e. |f(x(k))− p∗| < ε)

in at most

k =
log(

|f(x(0))− p∗|
ε

)

log
1

1− m
M

(5)

steps. The number of steps it takes the algorithm to converge depends on:

1. Accuracy ε (the stricter the accuracy, i.e. the smaller the ε, the more the steps).

2. Initial point, x(0) and initial distance of f(x(0)) from the optimal.

3. Parameters m, M that appear in the bound: mI ≤ ∇2f(x) ≤ MI. If
m

M
¿ 1 we can make the

approximation: log 1
1−m

M
= − log(1− m

M)
m
M
¿1
≈ m

M

since log(1 + x) ≈ x, for x ¿ 1

Then we get that the number of steps is at most k ≈ M

m

d(f(x(0)), p∗)
ε

, where d(a, b) is the

distance between points a, b.

2 Properties of Gradient descent

1. For each iteration k, the points produced by the iteration are such that: (x(k+2) − x(k+1)) ⊥
(x(k+1) − x(k)). Thus, vector (x(k+1) − x(k)) is orthogonal to vector (x(k+2) − x(k+1)), which

equivalently means ∇f(x(k+1)) ⊥ ∇f(x(k)), or ∇f(x(k)) is parallel to the tangent plane to the

level set {f(x) = f(x(k+1))} at x(k+1).

2. For each new point generated by the Gradient descent method, the value of function f decreases

namely f(x(k+1)) < f(x(k)) (this is clear, since gradient descent is a special case of a descent

method)

2

����

0 1 2c > c > c > c3

x(0)

x(1)

x(2)

x(3)
x*

f=c0

f=c1

f=c2
f=c3

Figure 2: Point Sequence in the gradient descent method.

3 Example

Consider the quadratic function f(x) =
1
2
xT Qx − bTx, where Q is a n × n symmetric (Q = QT)

positive-definite matrix, b ∈ <n, x ∈ <n. We want to find the form of iteration of gradient descent.

Thus, we need to find the step t(k) and the gradient ∇f(x(k)) = g(k) at each step, and then the

iteration will be:

• x(k+1) = x(k) − t(k)∇f(x(k)).

We have:

• ∇f(x(k)) = Qx(k) − b = g(k)

• t(k) = arg mint f(x(k+1))

= arg mint f(x(k) − tg(k))

= arg mint

{
1
2
(x(k) − tg(k))T Q(x(k) − tg(k))− bT (x(k) − tg(k))

}

• Define Φ(t) =
1
2
(x(k) − tg(k))T Q(x(k) − tg(k))− bT (x(k) − tg(k))

• By differentiating Φ(t) with respect to step size t, we get:

Φ
′
(t) =

1
2
[(−g(k))T Q(x(k) − tg(k))] +

1
2
[(x(k) − tg(k))T Q(−g(k))] + bTg(k)

= (x(k) − tg(k))T Q(−g(k)) + bTg(k).

In order to find t which minimizes Φ(t), we take the derivative of Φ
′
(t) equal to zero:

Φ
′
(t) = 0 ⇔ tg(k)T

Qg(k) = (x(k)T
Q− bT)g(k) = 0

3

Observe that:

(x(k)T
Q− bT) = g(k)T

(6)

Then we get that

t(k) =
g(k)T

g(k)

g(k)T Qg(k)
=

||g(k)||2
g(k)T Qg(k)

. (7)

Finally, the iteration is:

x(k+1) = x(k) − ||g(k)||2
g(k)T Qg(k)

g(k). (8)

4 Stopping criteria

The following stopping criteria for the iterative algorithm x(k+1) = x(k) − t(k)∇f(x(k)) are valid:

1. ||∇f(x(k)|| ≤ ε, where ε > 0 is a positive constant.

2. |f(x(k+1)) − f(x(k))| ≤ ε (the value of the objective function does not change significantly

between two iterations).

3. ||x(k+1) − x(k)|| < ε (the point does not change between two iterations).

4.
|f(x(k+1))− f(x(k))|

f(x(k))
< ε (the relative value of the object does not change much between two

iterations)

5 Convergence of descent Algorithms

The sequence of points produced by the descent algorithm converges to a minimum x∗, namely

x(k) → x∗. We will now study the rate of convergence for the following:

• Descent method,

• Gradient Descent method with fixed step t,

• Quadratic functions of the form f(x) =
1
2
xT Qx−bTx. Note that f(·) is convex function since

∇2f(x) = Q > 0.

• In order to make analysis easier, we define the quadratic function V (x) = f(x) + 1
2x

∗T
Qx∗ =

1
2(x−x∗)T Q(x−x∗), where x∗ = Q−1b is the point at which f(x) is minimized (∇f(x) = 0 ⇒
x∗ = Q−1b).

4

• If x = x∗, which means we have reached the minimum of f(x), then V (x∗) = 0.

We start from the quadratic function property:

Property 1: The gradient descent iteration x(k+1) = x(k) − t(k)∇f(x(k)) for f(x) satisfies the

equation: V (x(k+1)) = (1− γk)V (x(k)), where:

γk =





1, if g(k) = 0

t(k) g(k)T
Qg(k)

g(k)T Q−1g(k)
(2

g(k)T
g(k)

g(k)T Qg(k)
− t(k)), if g(k) 6= 0

where g(k) = ∇f(x(k)) = ∇V (x(k)). Note that, γk = 1 − V (x(k+1))
V (x(k))

≤ 1, since V (x(k+1)) < V (x(k))

from the gradient descent method. Also γk 0. Therefore, 0 ≤ γk ≤ 1.

If γk = 1 for some k, then V (x(k+1)) = 0, and this means we have reachead the optimum,

x(k+1) = x∗. Then, ∀i ≥ k + 1, it is x(i) = x∗.

Property 2: Let x(k) be the the sequence of points for the gradient descent method x(k+1) =

x(k) − akg(k). Let γk be defined as above. Then, x(k) → x∗, for any initial point x(0), if and only if

γk satisfies
∞∑

k=0

γk = ∞. (9)

We now state some additional properties:

1. Rayleigh Inequality:For the n× n matrix Q = QT > 0, the following holds:

λmin(Q)||x||2 ≤ xT Qx ≤ λmax(Q)||x||2

where λmin(Q), λmax(Q) > 0 are the minimum and maximum eigenvalues of Q.

2. For Q = QT , it is

λmin(Q−1) =
1

λmax(Q)
, λmax(Q−1) =

1
λmin(Q)

(10)

For Q = QT and any x ∈ <n, it is:

λmin(Q)
λmax(Q)

≤ (xTx)2

(xT Qx)(xT Q−1x)
≤ λmax(Q)

λmin(Q)
(11)

5

Advanced Topics in Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 10 : 31/10/06

Notes by : Konstantinos Gerogiokas and Alexandra Xamilothori

We continue with the convergence of quadratic function V (x). The sequence of points {x(k)}
converges to the optimal point x?.

Proof:

• if g(k) = 0 ⇒ x(k) = x∗ and the result holds.

• if g(k) 6= 0, the best step was found to be: t(k) = g(k)T g(k)

g(k)T Qg(k)
, from which we get for γk:

γk =
(g(k)T

g(k))2

(g(k)T Qg(k))(g(k)T Q−1g(k))
≥ λmin(Q)

λmax(Q)

Where the last inequality is found by applying inequality:

λmin(Q)

λmax(Q)
≤ (xTx)2

(xT Qx)(xT Q−1x)
≤ λmax(Q)

λmin(Q)
, for x = g(k).

Thus:
∞∑

k=0

γk →∞

and the result follows from Property 2 of previous lecture.

1 Gradient descent method with fixed step

For the gradient descent algorithm with fixed step t,

x(k+1) = x(k) − tg(k)

we have convergence x(k) → x? if and only if 0 < t < 2
λmax(Q)

.

1

2 Rate of convergence of gradient descent for quadratic function

with variable step t(k)

For the gradient descent with variable step t(k) we have:

V (x(k+1)) ≤
(

λmax(Q) − λmin(Q)

λmax(Q)

)
V (x(k)) (1)

Proof:

From a previous property: V (x(k+1)) = (1 − γk) · V (x(k)) and from above we have shown that

γk ≥ λmin(Q)

λmax(Q)
. Thus (1) can be easily derived.

• Define r = λmax(Q)

λmin(Q)
as the condition number of matrix Q. We get from (1) by substituting r,

that: V (x(k+1)) ≤ (1− 1
r) · V (x(k)), where 0 < r ≤ 1 since 0 < 1− 1

r ≤ 1.

The parameter (1− 1
r) is called convergence ratio and shows how fast the value of the quadratic

function V (x) decreases at each iteration.

If (1− 1
r) ↓ ⇒ r ↓ ⇒ V (x(k)) converges faster to zero and thus at the optimal point.

If r = 1 (then λmax(Q) = λmin(Q)), we get convergence to the optimum x∗ in one step.

Example: Consider function f(x) = f(x1, x2) = x2
1 + x2

2, that has minimum value 0, achieved

at x∗ = (0, 0).

. x2
1 + x2

2 can be written in the form 1
2x

T Qx as
1
2
(x1 x2)


 2 0

0 2





 x1

x2


.

. Q =


 2 0

0 2


has rank(Q) = 2. It has two positive eigenvalues, both equal to 2. Thus:

λmax(Q) = λmin(Q) = 2 and r = 1.

Consider the gradient method x(k+1) = x(k) − tg(k),where fixed step t. Let t = 1
2 . With this

step, we can go to (0,0) in one step. Indeed, we have x(1) = x(0) − tg(0), where ∇f(x) = 2x and

g(0) = 2x(0) ⇒
⇒ x(1) = x(0) − x(0) = 0 in just one iteration.

Note that for different steps, we get to (0, 0) in more iterations. As can be shown, the level sets

of f are circles of different radii. The convergence of the gradient descent algorithm is depicted in

figure 1.

Example: Show the convergence of gradient method with fixed step for function f(x1, x2) =
x2
1
5 + x2

2.

2

x*
x(0)g(0)

Figure 1: Convergence to the optimal point x∗.

The level sets are ellipses and the convergence to the optimal point (0, 0) is realized in more

steps.

x* x(0)x(1)
Figure 2: Convergence of the gradient method.

3 Newton method for finding the minimum of f

Given a function f(x), the purpose of Newton method is to approximate f(x) through another

function q(x) and find the minimum of q. The approximation should be such that:

f(x(k)) = q(x(k)) (2)

∇f(x(k)) = ∇q(x(k)) (3)

F (x(k)) = Q(x(k)) (4)

3

for all points x(k), where F(·), Q(·) are the Hessian matrices of f , q. A square function q(x) that

fulfills the above criteria is:

q(x) = f(x(k)) + (x− x(k))Tg(k) +
1
2
(x− x(k))T F (x(k))(x− x(k)) (5)

where g(k) = ∇f(x(k)) and F (x(k)) is the Hessian matrix of f(x) at point x(k). We can verify that:

f(x(k)) = q(x(k)) (6)

∇f(x(k)) = ∇q(x(k)) (7)

F (x(k)) = Q(x(k)). (8)

Calculating the gradient of q(x) and setting it to 0 ,we get to the point:

∇q(x) = 0 ⇒ g(k) + F (x(k))(x− x(k)) = 0 ⇒ x = x(k) − F−1(x(k))g(k)

For the next iteration we set x = x(k+1), so the iteration becomes:

x(k+1) = x(k) − F−1(x(k))g(k) ⇒ x(k+1) = x(k) − [∇2f(x(k))]−1∇f(x(k)).

Note that, as a special case, if [∇2f(x(k))]−1 is a diagonal matrix with the vector of fixed step

{t(k) . . . t(k)} in its diagonal, then we have the gradient descent method. Note that the Newton

method at each iteration goes toward direction u(k) = −F−1(x(k))∇f(x(k)) .

• Disadvantages of Newton method are:

1. Calculation of the inverse table ([∇2f(x(k))]−1) at each step, which is of complexity O(n3) for

n× n matrix.

2. The inverse of ∇f(x(k)) has to exist and be positive definite.

However, the advantage of Newton method is that it converges faster to the optimal point.

4 Convergence Order

Given a sequence x(k), k = 1... we say that it converges to vector x∗, if

lim
k→∞

‖ x(k) − x∗ ‖= 0.

4

The convergence order of x(k) is p ∈ R (1 ≤ p ≤ ∞), if

0 < lim
k→∞

‖ x(k+1) − x∗ ‖
‖ x(k) − x∗ ‖p

< ∞

Then we get

‖ x(k+1) − x∗ ‖∼ c ‖ x(k) − x∗ ‖p for some c ∈ R, 0 < c < ∞

The larger the p, the faster the convergence. It turns out that:

• The Gradient descent method has p = 1 (linear convergence)

• The Newton method has p = 2 (quadratic convergence), which is faster than the gradient

method.

5 Throughput maximization with power control in wireless com-

munications

Example: There are N transmitters, N receivers, and each transmitter i is connected to a receiver

i.

1

2

N

Figure 3: N transmitters connected to N receivers. The different transmitter-receiver links can have

different relative positions.

The Signal to Interference and Noise Ratio at each receiver i as a function of the transmitter

power vector P = (P1, . . . , PN) is given by

SINRi(P) =
GiiPi

N∑

j=1,j 6=i

GjiPj + Ni

(9)

5

where Ni is the noise power at receiver i and Pi is the transmission power of transmitter i.

The capacity for each link i is Ci = log2(1 + SINRi(P))≈ log2(SINRi(P)) for large enough

SINRs.

We assume that at each transmitter i, where packets arrive and wait in a queue before being

transmitted. Let qi be the number of packets (size of queue) that are waiting for transmission. The

product qiCi(P) is called throughput of link i.

Our purpose: We wish to maximize the sum of qiCi(P), namely the total system throughput,

or

max
P

N∑

i=1

qiCi(P),

by appropriately controlling transmission power vector P.

6

Advanced Topics in Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 11 : An optimization problem - 6/11/06

Notes by : George Noutsis and George Xatziparaskevas

1 An optimization problem solved by the gradient method

In the previous class, we had the problem of optimizing the following function:

max
(P1,...,PN)

N∑

l=1

ql log(SINRl) = max
(P1,...,PN)

N∑

l=1

ql log

(
GllPl

N∑

k=1,k 6=l

GklPk + Nl

)
= max

(P1,...,PN)
f(P) (1)

by controlling transmission power vector P = (P1, . . . , PN), where qi is the queue size of transmitter

i and Ci(P) is the capacity of link i.

Although f(P) does not seem to be a concave function of P , we will transform it to a concave

function. If we prove that f(P) is concave the local maximum is global as well.

Consider the transformation: P̃l = lnPl,for l = 1, . . . , N and the vector P̃ = (P̃1, . . . , P̃N).

We have:

f(P̃) =
N∑

l=1

ql log

(
Glle

ePl

N∑

k 6=l

Gkle
fPk + Nl

)
=

N∑

l=1

ql

[
log

(
Glle

ePl

︸ ︷︷ ︸
term 1

)
− log

(N∑

k 6=l

Gkle
fPk + Nl

︸ ︷︷ ︸
term 2

)]
(2)

Term 1 is linear in P̃. We will prove that term 2 is convex in P̃. In order to do that, we shall examine

first under which conditions a function f(·) that arises as composition of functions h(·) and g(·) is

convex or concave.

Let f(x) = (h ◦ g)(x), with f(x) = h(g(x)). For functions of one variable x, h : R −→ R and

g: Rn −→ R, assume that h and g are twice differentiable. In this case convexity of f(·) means

1

f ′′(x) ≥ 0 for all x ∈ R. The first and the second derivatives of f(·), f = h ◦ g are:

f ′(x) = h′(g(x))g′(x),

f ′′(x) = h′′(g(x))(g′(x))2 + h′(g(x))g′′(x)

Function f is concave if:

(i.) h is concave, increasing and g is concave, or

(ii.) h is concave, decreasing and g is convex.

Function f is convex if:

(i.) h is convex, increasing and g is convex, or

(ii.) h is convex, decreasing and g is convex.

Vector Composition: Consider now the case where f(.) is composition of several functions,

that is:

f(x) = h(g1(x), . . . , gk(x)) = h(g(x))

with h : Rk −→ R, gi : R −→ R.

The first and the second derivatives of f(.) are as follows:

f ′(x) = ∇hT (g(x))g′(x)

f ′′(x) = g′T (x)∇2h(g(x))g′(x) +∇hT (g(x)g′′(x)

where g′(x) = (g′1(x), . . . , g′k(x)). Function f is convex if:

(i.) h is convex, increasing in each argument and gi is convex.

(ii.) h is convex, decreasing in each argument and gi is concave

Proof of concavity of f(P̃): Consider function h(z) = log(
∑k

i=1 ezi). As a first step for proving

concavity of f(P̃), we will prove that h(z) is convex, or that its Hessian matrix H(z) > 0.

The first derivative of the function h(z) is:

ϑh(z)
ϑzi

=
ezi

k∑

k=1

ezi

2

The second derivative with respect to the ith component:

ϑ2h(z)
ϑz2

i

=
ezi

k∑

j=1

ezj

− e2zi

(
k∑

j=1

ezj)2

The second derivative with respect to component zi, zj with (i 6= j) is:

ϑ2h(z)
ϑziϑzj

= − ezi+zj

(
k∑

j=1

ezi)2

Consider the case of N = 2 to better visualize the situation. Let A = ez1 + ez2 . Then for any v ≥ 0,

v = (v1, v2) the quadratic for vHHv, with H the Hessian of h(z), should be shown non-negative.

Thus:

vT Hv ≥ 0 ⇔
(

v1 v2

)



Aez1−e2z1

A2 − ez1+z2

A2

− ez1+z2

A2
Aez2−e2z2

A2





 v1

v2


 ≥ 0 ⇔

⇔ v2
1

(
ez1

A
− e2z1

A2

)
− 2v1v2

ez1+z2

A2
+ v2

2

(
ez2

A
− ez2

A2

)
=

=
A(v2

1e
z1 + v2

2e
z2)− (v1e

z1 + v2e
z2)2

A2
≥? 0. (3)

In order to prove the above, we use the Cauchy-Schwartz inequality for vectors q,b:

(aTa)(bTb) ≥ (aTb)2

for

a =
(

e
z1
2 e

z2
2

)
,b =

(
v1e

z1
2 v2e

z2
2

)
.

Once we proved that inequality (3) holds, we have proved that h(z) = log(
∑k

i=1 ezi) is convex, h(.)

is increasing (↗) in its argument zi. Thus, function h(g(x)) = log(
∑k

i=1 egi(x)) is convex if gi(x) is

convex [rule (i.)].

Now, we have:

f(P̃) =
N∑

l=1

ql

[
log

(
Glle

ePl

)

︸ ︷︷ ︸
term 1

− log
(∑

k 6=l

eln Gkl+ ePk + Nl

)

︸ ︷︷ ︸
term 2

]

Term 1 is linear in P̃, as we said before. Also, gk(x) = lnGkl + P̃k is linear in P̃k, so it is convex as

well. Thus, log
∑

k 6=l e
ln Gkl+ ePk + Nl is convex in P̃ and thus (− log

∑
k 6=l e

ln Gkl+ ePk + Nl) is concave

and the whole f(P̃) is concave in P̃.

3

Now, we use the gradient ascent method to find the global maximum of f(P) (we come back to

the initial notation with P, since we have used the transformation to P̃ only to show the concavity

of f(·)).

f(P) =
N∑

l=1

ql log
GllPl

N∑

k 6=l

GklPk + Nl

ϑf(P)
ϑPl

=
ql

Pl
−

∑

j 6=l

qjGjl∑
k 6=j GjkPk + Nj

1. Start with an initial vector P(0) = (P (0)
1 , P

(0)
2 , . . . , P

(0)
N).

2. At the (k + 1)-th step of the algorithm, we have the iteration: P(k+1) = P(k) + β∇f(P(k)),

where β is the constant step size.

Note that since we want to maximize f(P), we have a gradient ascent method, with f(P(k+1)) >

f(P(k)) and we move towards the direction of maximum increase of f(·), (i.e towards the direction

of the gradient)

Each transmitter l updates its power according to rule:

P
(t+1)
l = P

(t)
l + β

ϑfP

ϑPl
=⇒

=⇒ P
(t+1)
l = P

(t)
l + β

(
ql

P
(t)
l

−
∑

j 6=l

qjGil∑
k 6=j GjkP

(t)
k + Nj︸ ︷︷ ︸

m
(t)
j

)

Let m
(t)
j given as noted above. By multiplying numerator and denominator by Gjj and P

(t)
j we have:

m
(t)
j =

qjSINR
(t)
j

GjjP
(t)
j

Consequently, at the (t + 1)-th step of the iteration we have:

P
(t+1)
l = P

(t)
l + β

(
ql

P
(t)
l

−
∑

j 6=l

Gjl m
(t)
j

)

Thus m
(t)
j can be considered as a message pertaining to transmitter j, for j = 1, . . . , N . Each

transmitter knows its queue qj , its gain to its receiver Gjj and its transmission power P
(t)
j . It also

receives channel state information (CSI) from the receiver in the form of SINRj .

4

i

i

j
j

k

k

Pi
j broadcasts
its message
mj in the
network

Figure 1: Explanation of message broadcasting in the network for distributed algorithm operation.

Each node j broadcasts this message to every other node, l 6= j which then updates its power

according to the rule above. It turns out that the gradient ascent method P(t+1) = P(t) +β∇f(P(t))

above (independently of the initial power vector P(0) = (P (0)
1 , . . . , P

(0)
N) and the sequence in which

the iteration will be executed by the users) converges to the optimal vector P∗. This is the vector

that maximizes f(P). The algorithm is distributed, since each transmitter uses quantities that he

only knows and needs to know only messages mj(t).

Observation: In general, if the objective function is separable in its variables, namely if

f(x) = f(x1, x2, . . . , xn)

can be written as sum of functions, where each function depends only on one variable, i.e if

f(x) =
∞∑

i=1

fi(xi)︸ ︷︷ ︸
concave

then the iteration of gradient ascent method

x(t+1) = x(t) + β∇f(x(t))

becomes:

x
(t+1)
i = x

(t)
i + β

ϑfi(xi)
ϑxi

and thus there is no message passing needed among nodes. Simply, each node computes ϑfi(xi)
ϑxi

(since

it knows fi(xi), but not fj(xj)) and does the updates of its variables independently from others.

The independent iterations for each node will again lead to the optimal vector x∗, namely the

vector that maximizes f(x).

5

Advanced topics in Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 12 : Linear Programming - 07/11/06

Notes by Eleni Galanou and Despina Koutsagia

1 Linear Programming (LP)

LP problems originally appeared in Operations Research. The form of an LP problem is as follows:

minimize cTx, (1)

subject to the constraints:

Ax = b or Ax ≥ b

x ≥ 0, (2)

with x = (x1, x2, . . . , xn) ∈ Rn, c = (c1, c2, . . . , cn) ∈ Rn, b = (b1, b2, . . . , bm) ∈ Rm.

Function cTx : Rn → R is called the objective function and Ax ≤ b are called constraints.

More specifically:

• ci is the cost per unit of variable xi.

• The total cost can be represented by cTx = c1x1 + . . . + cnxn.

• xi is the i-th variable i.

The constraints and the objective function are linear to vector of variables x. Matrix A ∈ Rmxn

is a m× n matrix, b ∈ Rm, and

A =




a11 a12 . . . a1n

a21 a22 . . .
...

...
...

. . .

am1 am2 . . . amn




1

Therefore the problem can be written as:

minimize c1x1 + · · ·+ cnxn

s.t. a11x1 + · · ·+ a1nxn = b1

...

am1x1 + · · ·+ amnxn = bm

or

minimize c1x1 + · · ·+ cnxn,

aT
i x = bi, (3)

where ai is the i-th row of matrix A, for i = 1, . . . ,m. We will focus on formulating and solving LP

problems.

2 Example 1 : A company with 4 products

A company constructs four products : Π1, Π2, Π3, Π4.The resources that are needed are: man-weeks,

kg of material A and quantity of material B (in packages).

Resources Π1 Π2 Π3 Π4 Resources

man-weeks 1 2 1 2 20

kg of material A 6 5 3 2 100

packages of material B 3 4 9 12 75

Each cell (i, j) in the table above contains the number of units of resource i which are necessary to

produce one unit of product j. Thus, for example Π2,Π4 are the most demanding ones in man-weeks.

Also,6 kilograms of material A are needed to make one unit of Π1.

The last column of the table shown the availability of resources. Availability shows the amounts

of the resources that the company can waste to produce the products. So availability is going to be

vector b and the table is going to be matrix A of the Linear Program.

There is also a cost vector [6475], where each cost coefficient ci expresses the benefit of the

company for each unit of product Πi, i = 1, 2, 3, 4 that is sold. Thus c1 = 6 is the profit per unit of

product Π1.

2

The company’s objective is to find the vector x = (x1, x2, x3, x4) with xi the quantity of Πi that

must be constructed so as to maximize the total benefit from all products. The problem is stated as

follows:

maximize cTx = 6x1 + 4x2 + 7x3 + 5x4 (4)

subject to the constraints :

x1 + 2x2 + x3 + 2x4 = 20 (5)

6x1 + 5x2 + 3x3 + 2x4 = 100 (6)

3x1 + 4x2 + 9x3 + 12x4 = 75 (7)

and x = (x1, x2, x3, x4) ≥ 0.

In the formulation, we assumed that all available resources are used.

3 Example 2 : Diet Problem

There are n different kinds of food and m vitamins. Each unit of food j costs cj , j = 1, . . . , n. To

achieve balanced diet, we must receive at least bi units of vitamin i per day, i = 1, . . . , m.

A unit of food j contains aij units of vitamin i. Elements aij form matrix A . x = (x1, . . . , xn)

is the vector of variables, where xj is the amount of food j in the diet. We want to find the quality

xj of each food j that should be consumed per day, so that all necessary vitamins are received and

the cost is minimized. This is the min-cost diet problem which can be formulated as follows:

minimize
n∑

i=1

cixi = cTx

subject to

a11x1 + · · ·+ a1nxn ≥ b1

...

am1x1 + · · ·+ amnxn ≥ bm

and x = (x1, . . . , xn) ≥ (0, 0, . . . , 0) or,

min cTx (8)

subject to:

Ax ≥ b,x ≥ 0. (9)

3

4 Geometrical interpretation of LP Problems

Consider the problem:

max
(

1 5
)


 x1

x2




s.t.


 5 6

3 2





 x1

x2


 ≤


 30

12


with x1, x2 ≥ 0.

Infinitely many points (x1, x2) satisfy the two constraints and the set of feasible solutions is all such

points. Now, we draw the region of feasible solutions. This is shaded area OABC in the figure below.

3x1 + 2x2 = 12 (constraint 2)

5x1 + 6x2 = 30 (constraint 1)

x1 + 5x2 = a1

x1 + 5x2 = a2

O

A

B

C

Figure 1: The feasible region of an LP problem.

Later we will see that the optimal solution x∗ = (x∗1, x
∗
2), i.e. the one that maximizes the

objective x1 + 5x2 is always one of the four vertices O,A,B or C.

Geometrically, maximizing cTx = x1+5x2 subject to x ∈ (OABC) amounts to finding a straight

line x1 + 5x2 = a that intersects with the shaded region and has the largest value, a.

Thus, we can draw the lines x1 + 5x2 = a and consecutively increase a to values a1 < a2 <

Thus, we form the parallel lines

x1 + 5x2 = a1

x1 + 5x2 = a2

4

...

x1 + 5x2 = amax,

until we reach the value amax, beyond which if we increase a further, we will go out of the feasible

region. Then amax is the maximum value of the objective function, and the point of intersection of

x1 + 5x2 = amax with region (OABC) is the optimal solution.

In general the LP problem is of the form:

minimize cTx (10)

s.t. x ∈ P. (11)

Then P is called set of feasible solutions of the LP problem and is a polyhedron.

Objective cTx is linear in the vector of variables x, so its level curves are hyperplanes orthogonal

to c (shown by dashed lines).

x
∗

−c

c
T
x = a (hyperplane)

P (polyhedron)

Figure 2: Feasible region of LP problems is a polyhedron.

The optimal solution x∗ is the point in P as far as possible in direction −c. Sometimes the

optimal solution is not only one point but several.

Example: Consider the LP problem

minimize c1x1 + c2x2 (12)

subject to:

−x1 + x2 ≤ 1, with x1 ≥ 0, , x2 ≥ 0, A = [−1 1] b = [1]. (13)

5

We have the following cases with regard to a solution:

1. An LP problem may have a unique solution, e.g. when c = (1, 1), then ⇒ x∗1 = 0, x∗2 = 0 ⇒
x∗ = [0, 0] is the optimal solution.

2. The problem may have multiple optimal solutions.

– If c = (1, 0), then any vector (0, x2) is optimal with x2 ∈ [0, 1]. The set of the optimal

solutions is infinite but bounded, since 0 ≤ x2 ≤ 1.

– If c = (0, 1), then there exist several optimal solutions of the form(x1, 0) with x1 ∈ [0,∞].

The set of the optimal solutions is infinite and unbounded in this case.

3. An LP problem has optimal cost −∞ and no finite feasible solution. For example, if c =

(−1,−1), then for the problem

min (−x1 − x2)

s.t. x2 ≤ 1 + x1

for any feasible solution (x1, x2), we can produce another feasible solution with less cost by

simply increasing x1. By considering vectors with increasing values of x1, x2, we obtain a

sequence of feasible solutions that goes to −∞.

5 Standard form of an LP Problem

An LP problem is said to be in standard form if it is of the form:

min cTx

s.t. Ax = b with x ≥ 0

A ∈ Rm×n, m < n, rank(A) = m, b ≥ 0.

Namely, an LP is said to be in standard form has equality constraints, and is a minimization problem.

An LP problem is in inequality form if it is of the form:

min cTx

s.t. Ax ≥ b with x ≥ 0

A ∈ Rm×n, m < n, rank(A) = m, b ≥ 0.

6

Those two forms are equivalent in the sense that starting from a feasible solution of a standard form

problem we can produce a feasible solution of an inequality form problem with the same cost (and

vice versa)

Consider a non-standard LP problem:

min cTx

s.t. Ax ≥ b with x ≥ 0.

In order to convert it to standard form, we need to convert the inequalities to equalities. We subtract

a positive quantity yi out of each constraint i. We call yi, i = 1, 2 . . . , m surplus variables, with y ≥ 0.

Then, we have:

a11x1 + . . . + a1nxn ≥ b1 ⇒ a11x1 + . . . + a1nxn − ym = b1

...

am1x1 + . . . + amnxn ≥ bm ⇒ am1x1 + . . . + amnxn − ym = bm

or in matrix form it is written as: (A − Im)


 x

y


 = b where (A − Im) is a block matrix and

Im is the m ×m unit matrix. Thus, the non-standard LP problem is transformed into a standard

LP problem:

min cTx

s.t. Ax− y = [A − Im]


 x

y


 = b x ≥ 0,y ≥ 0.

Note that the vector of variables is (x,y) but the cost is the same as above, cTx + 0Ty = cTx.

If the problem is in the non-standard form:

min cTx

s.t. Ax ≤ b with x ≥ 0,

we need to define positive variables yi, i = 1, 2 . . . ,m, to add to each constraint, which we call slack

variables and y ≥ 0. The new form of the problem is:

min cTx

s.t. Ax + y = [A Im]


 x

y


 = b x ≥ 0, y ≥ 0.

7

Advanced Topics in Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 13 LP in standard form, LP BFSs - 13/11/06

Notes by : Charalampos Daskalakis and Constantinos Houmas

1 Exercise 15.10. Expressing a minimization problem in its typical

form

We start from the problem:

max x2 − x1

s.t. 3x1 = x2 − 5

|x2| ≤ 2

x1 ≤ 0

In order to bring an LP problem to a standards form, we change ”max” to ”min” and we need to

transform all variables to non-negative ones. Also we transform all inequalities in the problem into

equalities. So, the variable x1 will be replaced by the variable x′1 = −x1 and the two inequalities

implied by |x2| ≤ 2 will be converted to equalities using slack variables x3 and x4. Now the problem

is expressed as:

min −x2 − x′1

s.t. −3x′1 = x2 − 5

x2 + x3 = 2, −2 + x4 = x2

x3, x4, x
′
1 ≥ 0

In the original form of the problem, we have inequality −2 ≤ x2 ≤ 2, x2 should be redefined as u− v

with u, v ≥ 0. The reason is that a variable which is unrestricted in sign (such as x2) can be written

in general as the difference of two positive variables. So in its standard form, the problem above

becomes:

1

min −x2 − x′1

s.t. 3x′1 = 5− x2

u− v + x3 = 2, v − u + x4 = 2

x3, x4, x
′
1, v, u ≥ 0

2 Routing as an LP problem

Routing in communication networks means selecting paths for transferring traffic from given source(s)

to given destination(s).

Consider a network which is abstracted as a directed graph G(N ,A), where N is the set of

nodes and A is the set of edges of the graph. Let N = n be the number of nodes of the network. For

each edge (i, j) ∈ A we define uij to be the capacity of edge junction (i, j), which is the maximum

amount of traffic (in bps) that can be carried over the edge. Also, let cij be the cost per unit of

transmitted traffic over the edge (i, j).

For each source k and destination l, define as bkl the amount of traffic (bps) that is generated by

node k and needs to be transferred to l. In this example, all nodes may be sources and destinations

(if not, then bkl = 0). Problem:

Figure 1: A graph, depicting a network (note here the graph is directed).

Choose the paths for routing traffic for each source k = 1 . . . n to each destination l = 1 . . . n while

minimizing total cost.

The variables in this problem are defined as xkl
ij , the amount of traffic with origin k and desti-

nation l that traverses link (i, j) ∈ A. For each node i = 1 . . . n we define:

bkl
i =





bkl if i = k

−bkl if i = l

0 otherwise

(1)

2

Thus, bkl
i denotes the net inflow at node i of traffic originated at k and destined at l.

So we have the problem:

min
∑

(i,j)∈A

n∑

k=1

n∑

l=1

cij xkl
ij

s.t. xkl
ij ≥ 0 ∀k, l = 1 . . . n and ∀(i, j) ∈ A
∑

j:(i,j)∈A
xkl

ij −
∑

j:(i,j)∈A
xkl

ji = bkl
i ∀i = 1 . . . n

n∑

k=1

n∑

l=1

xkl
ij ≤ uij ∀(i, l) ∈ A

In the problem there is a set of constraints, one for each node that reflect the flow conservation

constraint at each node. Also, there is a constraint for each link that denotes the capacity constraint

for each link.

The problem is called minimum cost network flow problem, and as we will see later, there are

several known problems that emerge as special cases of this, such as the shortest path, the Max flow

and the assignment problem.

3 BFS (Basic Feasible Solution)

Consider the system of inequalities Ax = b, with x ≥ 0 and matrix A of dimension m× n , m ≤ n

and rank(A) = m. Matrix A can be written in a block matrix form as A = [B D], where (i) the

m×m matrix B includes all m linearly independent columns of A and (ii) the m× (n−m) matrix

D includes the rest of the columns of A.

By definition, B is non-singular (|B| 6= 0) where |B| is the determinant of matrix B. Then,

matrix B is said to be the basis for the system. The columns of B called basic columns. Then, the

system of equations BxB = b has a unique solution, xB = B−1b. Vector xB is of dimension m× 1

and consists of those variables that correspond to the columns of B (these are called basic variables.

Thus, for example if A is 2 × 4 and the first and third column of A are linearly independent,

then xB = (x1, x3)
T .

Note that vector x = (xB 0)T solves the original system Ax = b.

Definition 1: We call a vector of the form (xB 0)T a Basic solution with respect to the basis

B. Thus, all vectors of values variables that can be divided into a non-zero and a zero variable part

3

(the non-zero part corresponding to the columns of a basis) are called Basic solutions (Note here

that this definition does not imply feasibility).

Defintion 2: A basic solution x that satisfies Ax = b, x ≥ 0 (i.e. it is feasible) is called Basic

Feasible Solution (BFS).

If the BFS xB > 0 has all m components positive, the BFS is called non-degenerate BFS.

Otherwise, if some of the components of xB are zero (i.e the positive components of xB are fewer

than m, the BFS is called degenerate BFS.

An alternative definition: Consider an LP problem with constraints Ax = b, x ≥ 0 and A a

m×n matrix, m ≤ n (with m linear independent rows). Then x ∈ Rn is a Basic Feasible Solution if

there exist indices B(1), ..., B(m) such that columns aB(1),aB(2), . . . ,aB(m) of matrix A are linearly

independent and ∀i 6= B(1), B(2), ..., B(m) it is xi = 0. Also it should be Ax = b. In addition if

xi > 0 ∀i ∈ {B(1), B(2), ..., B(m)} ⇒ x is a non-degenerate BFS.

An Example Consider the set of constraints:

x1 + x2 + 2x3 ≤ 8

x2 + 6x3 ≤ 12

x1 ≤ 4

x2 ≤ 6

x1 , x2 , x3 ≥ 0

After converting them to a standard form, we get:

x1 + x2 + 2x3 + x4 = 8

x2 + 6x3 + x5 = 12

x1 + x6 = 4

x2 + x7 = 6

x1 , x2 , . . . , x7 ≥ 0
So the constraints correspond to the following representation: Ax = b where:

x = [x1, x2, . . . , x7]
T ,

b = [8, 12, 4, 6]T ,

A =




1 1 2 1 0 0 0

0 1 6 0 1 0 0

1 0 0 0 0 1 0

0 1 0 0 0 0 1




Let the basis be B = [a1 a3 a4 a7]. If we consider the system of equations BxB = b, the

4

solution to that is xB = [4, 2, 0, 6]T and x = [4, 0, 2, 0, 0, 0, 6]T is a BFS which is degenerate (since

x4 = 0).

• In the case that we choose the basis to be B = [a4 a5 a6 a7] then we have solution xB =

[8, 12, 4, 6]T and x = [0, 0, 0, 8, 12, 4, 6]T is a BFS that is non-degenerate.

Clearly, there are several ways of choosing the basis for an LP problem. For a matrix A of

dimension m × n, m ≤ n with rank(A) = m, we can choose among C(n,m) = n!
(n−m!)m! different

bases B, and so we can have so many basic solutions.

The basic theorem in LP is that in order to solve a LP problem, we will only need to check the

BFS and among them find the optimal BFS, i.e the BFS that minimizes cTx.

Theorem 15

• (a) If there exists a feasible solution in an LP problem, then there exists a BFS.

• (b) If there exists an optimal feasible solution in an LP problem, then there exists an optimal

BFS.

5

Advanced Topics in Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 14 : Rationale of Simplex algorithm for LP problems -

14/11/06

Notes by : Anastasia Narou and Maria Papadopoulou

1 Introduction

Definition: Consider a polyhedron P, defined by linear equality and inequality constraints as defined

in the first lectures. Then, the point (represented by vector) x0 is a vertex of P if there exists c such

that cTx0 < cTy for all y ∈ P with y 6= x0.

T

w

x

c y = c w T T

c y = c x T

Figure 1: A vertex point x and a point w that is not a vertex.

As shown in figure 1, w in the figure is not a vertex because there is no hyperplane that meets P

only at w. That is, a point w of a polyhedron is a vertex of the polyhedron if and only if a hyperplane

1

passing through the point divides the space in two half-spaces and all points of the hyperplane except

from w lie on the same side (same half-space). In the example of figure 1, there exist all the points

y on the hyperplane cTy = cTw that make the definition of w being vertex of P not hold.

Defintion: A point x is called extreme point of P if there are no distinct points x1,x2 of P

such that x = αx1 +(1−α)x2. In other words, if x is an extreme point and it is x = αx1 +(1−αx2)

for some α ∈ (0, 1), then it must be x = x1 = x2. Thus, an extreme point of a polyhedron cannot

be represented as a convex combination of two other points of the polyhedron.

Theorem (Fundamental theorem of Linear Programming) For a linear programming

problem with constraints that define the polyhedron P of feasible points we have: The point x0is a

vertex of P ⇔ x0 is an extreme point of P ⇔ x0 is a BFS (basic feasible solution) of the LP problem.

We now demonstrate part of the proof which will help us in the subsequent discussion about the

Simplex Algorithm. We will show that if a point x is an extreme point of the polyhedron of feasible

points P, then x is BFS of the LP problem.

Assume that x is extreme point of P. Then it satisfies x ∈ P and Ax = b, x ≥ 0. Assume that

x is of the form x = (x1, . . . ,xp, 0, . . . , 0)
T
, with p ≤ n. Namely it has some of its elements non-zero.

Point x satisfies the equation

x1a1 + . . . + xpap = b (1)

where ai is the ith column of matrix A. Note that A can be written as A = [a1 . . .an].

Define numbers yi, for i = 1, ..., p such that:

y1a1 + . . . + ypap = 0. (2)

In order to show that x is a BFS of the LP problem, it suffices to show that columns ai, i = 1 . . . p

of matrix A are linearly independent. If they are, then they will form a basis and the solution

x = (x1, . . . , xp) will be a BFS.

To show ai, i = 1 . . . p of matrix A are linearly independent, we will show that yi = 0 for

i = 1, . . . , p. We multiply (2) by ε > 0 and add and subtract it from (1). We get:

(x1 + εy1)a1 + . . . + (xp + εyp)ap = b, (3)

and

(x1 − εy1)a1 + . . . + (xp − εyp)ap = b. (4)

2

Since xi > 0, ε > 0 can be we chosen arbitrarily small arbitrary very small so that xi + εyi ≥ 0, and

xi − εyi ≥ 0. It can be easily deduced that we can choose

ε = min

{
∣

∣

∣

∣

xi

yi

∣

∣

∣

∣

, i = 1, . . . , p, yi 6= 0

}

. (5)

Then, for the vectors

z1 = (x1 + εy1, . . . , xp + εyp, 0, . . . , 0) (6)

and

z2 = (x1 − εy1, . . . , xp − εyp, 0, . . . , 0) (7)

we have Az1 = b, Az2 = b, z1, z2 ≥ 0, z1, z2 ∈ P.

Now observe that x =
1

2
z1 +

1

2
z2, but the fact that x is extreme point results in x = z1 = z2

which leads to yi = 0. Thus vectors a1, . . . ,ap are linearly independent and thus x is a BFS.

As a result of the theorem : if we want to solve an LP problem, we need to search for the

optimal solution only among the extreme points of P.

2 Useful facts

Assume we have the system of linear equations Ax = b. Let matrix A have some m linearly

independent columns, A is of dimension m × n, m < n, and rank(A) = m. Denote by B the sub-

matrix that consists of these columns. Let D be the submatrix with the rest of the columns. The

augmented matrix of this system is [A b]. We want to bring this matrix to the form [I D b̃].

We know from the methodology of solving linear systems of equations that the augmented

matrix can be brought in that form with elementary operations on it:

• Interchanging any two rows of the matrix,

• Multiplying one of its rows by a real, non-zero number

• Multiplying one of its rows by a real, non-zero number and adding to another row

If the augmented matrix is brought in that form, then x = b̃ is the solution of the linear system

Ax = b. Because A is of dimension m×n, m < n, and rank(A) = m the system has infinite solutions.

Matrix A is brought in the form [I D b̃] and then the linear system of equations can be written

as:

x1 + y1,m+1xm+1 . . . y1nxn = y10 (8)

3

x2 + y2,m+1xm+1 + . . . + y2nxn = y20 (9)

.

.

.

xm + ym,m+1xm+1 + . . . + ymnxn = ym0 (10)

where the first factor in each equation is reflected in the unit matrix I, the remaining factors in each

equation represent matrix D and the right side of the equations represent b̃.

2.1 Example

We have the following constraints:

x1 + x2 − x3 + 4x4 = 8 (11)

x1 − 2x2 − x3 + x4 = 2 (12)

The augmented matrix is:

(

A b

)

=





1 1 −1 4 | 8

1 −2 −1 1 | 2





Multiply the first row by −1 and add to the second row:

(

A b

)

=





1 1 −1 4 | 8

0 −3 0 −3 | −6





Divide the second row by −3:

(

A b

)

=





1 1 −1 4 | 8

0 1 0 1 | 2





Multiply the second row by −1 and add to the first row.

(

A b

)

=





1 0 −1 3 | 6

0 1 0 1 | 2





If we choose as basis matrix B = [a1,a2], an obvious solution is x = (6, 2, 0, 0). This solution is

feasible (since it satisfies Ax = b), basic and non-degenerate.

If we choose as basis B = [a3,a4], the solution x = (0, 0, 0, 2) is feasible, basic and degenerate.

Another possible solution is x = (3, 1, 0, 1) which is feasible but not basic.

If we choose as basis B = [a2,a3], the solution x = (0, 2,−6, 0) is basic but non-feasible, since

we do not admit negative solutions.

4

3 Introduction to Simplex Algorithm

In order to solve a Linear Programming problem, we move from one BFS to another BFS until we

find the optimal one, which will be the one with the property that if I try to move to whatever

other BFs, the value of the objective function is not improved. This is precisely what the Simplex

algorithm does.

��
��
��
��

��
��
��
�� ��

��
��

��
��
��

�
�
�
�

Figure 2: In LP, the Simplex algorithm moves from one BFS to another.

In the following, we will assume that we have non-degenerate solutions. We will treat the cases

of degenerate solutions separately.

A given BFS at some step of the algorithm

Consider that at some stage of the algorithm, we have the BFS

x = (y10, . . . , ym0, 0, . . . , 0), yi0 > 0, i = 1, . . . , m. (13)

The way, we move from one BFS (vertex, or extreme point of the polyhedron defined by the

constraints Ax = b) to another is as follows: In each step we change a non-basic variable to basic

and a basic variable to non-basic. This operation is called pivoting. The non-basic variables are set

to zero while the basic variables are found to be non-negative values. Talking in columns, we insert

to the basis a column that is currently not in the basis and we take out of the basis a column that

used to be in the basis.

Suppose we have chosen the column aq, q > m (non-basic column now) and we want to have it

5

inside the base. We have the column aq as a linear combination of the current basis {a1, . . . ,ap}:

aq = y1qa1 + y2qa2 + . . . + ymqam (14)

where matrix A = [a1, . . . ,am,am+1, . . . ,aq, . . . ,an]. Also note that B = [a1 . . .am] and D =

[am+1, . . . ,an]

We want to move the non-basic column aq in the basis. Multiply the left- and the right-hand

side of the equation above with ε > 0 to get:

εaq = ε(y1qa1 + . . . + ymqam) (15)

Now we know that the current BFS (the vector b̃ we saw before) satisfies Ax = b and can be

written as a linear combination of the basic columns as:

y10a1 + . . . + ym0am = b (16)

Subtract the one equation from the other to get:

(y10 − εy1q)a1 + (y20 − εy2q)a2 + . . . + (ym0 − εymq)am + εaq = b (17)

Notice that since the equation Ax = b is satisfied again, the coefficients correspond to a new solution,







































y10 − εy1q

y20 − εy2q

.

.

.

ym0 − εymq

0

ε

0







































where ε appears in the q-th position, q > m.

This operation can be understood as follows: currently xq = 0. Assume we start increasing

the (currently non-basic) variable xq to some positive value ε, so as to make it basic. Equivalently,

column aq will enter the basis. When ε increases, then q-th component increases too. The variables

x1, . . . , xm 1 decrease if yiq > 0 and increase if yiq < 0.

6

The question that arises now is: Up to which value ε can xq be increased so that we go from

one BFS to another? The answer is the following: the maximum value that ε can take is determined

by that component of the solution that becomes zero first. This value of ε is clearly

ε = min
i

{

yi0

yiq

: yiq > 0

}

(18)

Suppose that p is the index that is first zeroed, 1 ≤ p ≤ m . Then, p corresponds to the basic

variable that will now become non-basic. Specifically, it is

p = arg min
i=1,...,m

{

yi0

yiq

: yiq > 0

}

(19)

Therefore, variable xp now becomes zero, or equivalently column ap exits the basis. The new

basis is therefore,

{a1, . . . ,ap−1,ap+1, . . . ,am,aq} (20)

and the new BFS is:






































































y10 − εy1q

.

.

.

yp−1,0 − εyp−1,q

0

yp+1,0 − εyp+1,q

.

.

.

ym0 − εymq

0

.

.

.

ε

.

.

.

0







































































with ε in the q-th position.

7

Advanced Topics in Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 15 : Simplex algorithm and an example - 15/11/06

Notes by : Eleni Anagnostopoulou and Nena Xanthopoulou

1 Outline of lecture:

• Case of degenerate BFS

• Critical questions:

– When does Simplex algorithm stop?

– How can I choose which non-basic variable will become basic variable?

• Simplex algorithm steps

• Example

In the previous lecture, we saw the switch from one BFS to another BFS, or in other words

specified what it means for a currently non-basic column aq to enter the basis and for a currently

basic column ap to exit the basis. The Simplex Algorithm that we will see in today’s lecture uses

this principle of moving among different BFSs.

2 Cases of degenerate BFS

It may happen that the new BFS is degenerate, namely a variable that is basic is zero. This can

happen in the following cases:

1

1. The coefficients are such that two basic variables can become zeroe when we want to change

the base. For the example above, we may have two indices 0 ≤ p1, p2 ≤ m such that xp1 = 0

and xp2 = 0.

2. It may happen that ε = 0. Then, the variable we want to turn to basic and place it in the

basis cannot take a larger value and the BFS remains the same. When the current BFS x is

degenerate, then it may be that ε = 0 and the new BFS remains the same as the current BFS

(especially this is the case if some basic variable is 0 and the corresponding denominator is

positive).

3. Cycling phenomenon : It may happen that the a sequence of basis changes lead us through a

sequence of changes of bases back to the initial basis.

Also note that in the case that none of coefficients yiq is positive, we can move further from

the current BFS, but we cannot discover any new BFS for the problem ⇒ the polyhedron P is

unbounded and the LP problem is said to be unbounded.

3 Critical questions

3.1 When does Simplex algorithm stop?

Suppose that we have a BFS

x =


 xB

0


 =




y10

y20

...

ym0

0
...

0




What is the cost of the solution? In other words, we find the value of the objective function

cTx for this solution. We have the value

z = cTx = c1y10 + c2y20 + . . . + cmym0 = cT
Bx, (1)

2

where cT
B is the part of the cost vector c that corresponds to the basis. Suppose we get to a new

BFS,

x
′
=




y10 − εy1q

y20 − εy2q

...

ym0 − εymq

0
...

ε

...

0




where ε comes at the q-th component of the solution. The new cost is:

z
′
=

m∑

i=1

ci(yi0 − εyiq) + cqε, (2)

where q denotes the new variable xq that became a basic variable. We have

z
′
= z + ε[cq − (c1y1q + c2y2q + . . . + cmymq)]. (3)

Now set

zq = c1y1q + c2y2q + . . . + cmymq. (4)

Then we get

z
′
= z + ε(cq − zq) (5)

or z
′ − z = ε(cq − zq).

In order for the new solution to be ”better” than the current one, its objective function value has

to be smaller than the one of the current solution. If z
′−z < 0, then the new BFS (that corresponds

to the non-basic column aq entering the basis) has a lower objective function value. Since ε > 0, this

happens when cq − zq < 0 is true. Define cq − zq = rq as the reduced cost coefficient corresponding

to the newly entered variable xq. If cq − zq < 0 then by entering column aq in the basis, we have

arrived to a better BFS (one with a lower cost).

Fact: The solution

x =


 xB

0




3

is optimal if ∀q = m+1, . . . , n it is cq−zq > 0. In other words, this means that I am currently at the

optimal BFS if I try to change the basis by all possible means (i.e, insert to the basis any non-basic

column aq) and I will never manage to reduce the value of the objective function. Note that the

reduced cost variables cq − zq = rq are defined for each variable. As an exercise, we can easily show

the following:

Problem: Show that for the basic variables xi, i = 1, . . . , m, it is ri = 0.

Remark: The change of basis performed between columns ap and aq is called (p, q) pivoting

operation.

3.2 How do I choose which non-basic variable will become basic?

How can I select the column q that will enter the base? There are three possible ways to do that:

1. If z′ − z = ε(cq − zq), we choose q such that the difference cq − zq takes the minimum value

(the rate of cost reduction becomes as large as possible). To be more specific,

q = arg max
l∈{m+1,...,n}

|rl| = arg min
l∈{m+1,...,n}

rl. (6)

Thus, we choose to make basic the variable that leads to the largest rate of cost reduction (cost

reduction per unit of non-basic variable increase, cq − zq = z′−z
ε).

2. Choose

q = arg max
l∈{m+1,...,n}

εl|rl| = arg min
l∈{m+1,...,n}

εlrl. (7)

In this way of choosing q we take into account the total change is minimum, which also depends

on ε. Note that εl is the value of ε that turns the non-basic variable xl to basic and thus clearly

ε has a different value for different q.

3. Choose q = arg mini∈ {m+1,...,n}{ri : ri < 0}. That is, we examine all non-basic variables

starting from the lowest-indexed one and select to place at the basis the first one that has

negative reduced cost coefficient. The disadvantage with this approach is that it does not

guarantee that the value of the objective function at the new BFS will be the smallest possible.

If we choose q in that fashion (3) above, and choose p = min{j : yjo

yjq
} = mini{yio

yiq
} : yiq > 0}

(in other words, we choose to put out of the basis the lowest-indexed variable out of the ones that

become 0), then, even though I have a non-degenerate new BFS, the cycling phenomenon mentioned

above is avoided. This is known as lexicographic pivoting rule.

4

4 Simplex algorithm : steps

1. Begin with an initial BFS. If the LP problem is defined using inequalities, we define slack

variables and bring it to the standard form and find the BFS.

2. Calculate the coefficients rq for each non-basic variable xq.

3. - If rq ≥ 0 for all non-basic variables, then STOP the algorithm. We have found the optimal

solution.

- Else, choose q according to one of the rules that we described in question (2) previously.

If none of yiq > 0 then STOP(unbounded LP problem)

Else, calculate p = arg mini{yi0

yiq
: yiq > 0} (this selection rule for the variable that exits

the basis eliminates the cycling phenomenon).

4. Pivot(p,q) and find new BFS.

5. Go to step 2.

5 Example of Simplex Algorithm for an LP problem

Given the LP problem

max 7x1 + 6x2

subject to the constraints:

2x1 + x2 ≤ 3 (8)

x1 + 4x2 ≤ 4 (9)

x1, x2 ≥ 0. (10)

solve it (find the optimal BFS).

Solution: We convert the problem to the standard form by defining slack variables x3, x4, so

the new problem (P) is:

min−7x1 − 6x2

5

subject to:

2x1 + x2 + x3 = 3 (11)

x1 + 4x2 + x4 = 4 (12)

x1, x2, x3, x4 ≥ 0 (13)

The objective function value z is : z = −7x1 − 6x2 + 0x3 + 0x4.

We start running the Simplex Algorithm. Start with initial BFS: x = (0, 0, 3, 4). The basis is

B = [a3,a4].

At each step, we will express the cost as a function of the non-basic variables. We will also

write the basic variables as functions of the non-basic variables to facilitate computation of ε and

the pivoting.

Initial cost:z = −7x1 − 6x2 + 0x3 + 0x4 with value z0 = 0 for the current BFS. Write the basic

variables as functions of the non-basic ones:

x3 = 3− 2x1 − x2 (14)

x4 = 4− x1 − 4x2 (15)

STEP 1: Our goal is to change the basis, so that we find a new BFS with lowest cost value.

The question is ”which (non-basic) variable xp should we choose to make basic?”. We choose it

according to the first rule case out of the three we described at question (2) in this lecture.

We see that r1 = −7, r2 = −6 (reduced cost coefficients). In other words, if I increase x1 or

x2 by making one of the two basic, I observe that the increase of x1 causes the largest decrease in

z. That is, since |r1| > |r2|, we choose to make variable x1 basic (equivalently put the first column

a1 of matrix A in the basis. Thus it is q = 1. If we increase x1, we observe that, out of the basic

variables x3, x4, the first that becomes zero is x3 and this occurs for x1 = ε = 3/2. Thus p = 3 and

x3 will become non-basic.

Pivot(3, 1). New basis: B = [a1,a4]

New BFS: x = (3
2 , 0, 0, 5

2) and new cost value: z = −21
2 (observe that we reduced the value of

the objective).

We now write the new basic variables as functions of non-basic variables:

x1 =
3
2
− 1

2
x2 − 1

2
x3 (16)

6

x4 =
5
2
− 7

2
x2 +

1
2
x3 (17)

and the cost:

z = −7x1 − 6x4 = −21
2
− 5

2
x2 +

7
2
x3 (18)

STEP 2: Now again we will have to choose which non-basic variable to make basic. Observe

that if we make variable x3 basic, the cost will be increased, which is undesirable. So we choose to

make basic the variable x2. Thus q = 2.

If we increase x2, we observe that, out of the basic variables x1, x4, the first that becomes zero

is x4 and this occurs for x2 = ε = 5/7. Thus p = 4 and x4 will become non-basic.

Pivot(4, 2). New basis: B = [a1,a2]

New BFS: x = (8
7 , 5

7 , 0, 0) and new cost value: z2 = −81
7 (observe that with the change of basis

we have reduced the objective function value more). From equations

Again, we write the basic variables as a function of non-basic variables.

x1 =
8
7
− 4

7
x3 +

1
7
x4 (19)

x2 =
5
7

+
1
7
x3 − 2

7
x4 (20)

and the cost:

z = −7x1 − 6x2 = −86
7

+
22
7

x2 +
5
7
x4 (21)

STEP 3: Now gain we will have to choose which non-basic variables to make basic. However,

observe that if make either x3 or x4 basic (i.e try to increase them from 0), the cost value will be

increased. So the algorithm stops here and we say that we found the optimal BFS and we solved the

LP problem.

Optimal solution: x = (8
7 , 5

7 , 0, 0).

7

Advanced Topics in Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 16 : 27/11/06

Notes by : Evaggelos Galanis and Panagiotis Theodosiou

1 Outline Of Lecture:

• Wireless Sensor Networks - an LP problem

• Carrier assignment in OFDM - an LP problem

2 Maximum lifetime routing in wireless sensor networks

gateway

sensor

i

j

Figure 1: A wireless sensor network with a set of sensor nodes and a set of gateways.

We will now see an example of a problem from wireless sensor networks, that is formulated as

an LP problem.

A sensor network consists of a set of miniature-sized sensor nodes that sense and monitor

processes such as vibration, sound, light, temperature, movement. The information needs to be

1

transferred from the sensors to a set of information processing centers, called gateways. The data

will be transferred with multi-hop routing as shown in figure 1. Of course the different routes may

intersect (something that is not shown in the figure). Sensor nodes have the ability to forward their

data, as well as other nodes’ data.

All sensors can potentially produce information (data. Gateways are connected with optical

fiber and we will assume that the data from a sensor will have reached its destination if it reaches

any of the gateways. We will also not deal with interference from multiple ongoing transmissions

(which can be here assume to be reduced or eliminated by means of an appropriate scheduling

protocol). We assume there exist several kinds (or commodities) of traffic (e.g. temperature, sound,

etc)

The transmitted energy from a sensor node can be adjusted to a level appropriate for a receiver

within its transmission range to the able to receive the data correctly. We will discuss later this

issue.

Upon arrival of new information at a node (either generated by the node itself or forwarded from

other nodes) a routing decision needs to be made so that the data is forwarded to an appropriate

neighbor. We will see that routing accounts to finding the way to split the traffic streams across

different routes, so as to ”balance” energy consumption among nodes and thus increase network

lifetime.

The topology is considered to be static, namely with no mobility. Note that mobility either of

the sensor nodes or of the gateways or both may further help in reducing the energy consumption

and improve network lifetime. However, we will not consider such an issue here.

We define the following quantities:

Pij : the minimum power needed for sensor i to send information to to sensor j. This os

proportional to the distance dij between the nodes i and j and is given as Pij = γd
a

ij
, where a is a

constant that specifies the type of wireless propagation environment and γ is the minimum required

SNR at the receiver such that reception is acceptable. sensors

Specifically, at the receiver we have SNR ≥ γ ⇒
Pij

d
a

ij
σ

2
≥ γ, and thus the minimum power is

Pij = γd
a

ij
σ

2
. Note that σ

2
is the noise power.

eij : The amount of energy consumed by sensor i for the transport of one unit of information

(bit or packet) to sensor j. It is measured in Joules per bit. Now, we determine eij in more detail

2

and note that eij is known to each sensor i only for its neighbors j (let Ni be the set of neighbors of

sensor node i).

Energy and power are related as E = Pt, which has units (energy/bit) = (power/bit) × (sec).

We understand that energy per bit is the product of power and transmitting rate, eij = Pijrij . Thus,

the parameter eij captures both changing the power level and the transmission rate, e.g changing the

modulation level to reach j.

Each sensor has an initial amount of energy Ei. During a sensor operation, energy can be

consumed to perform the following tasks:

• Transmission of information (this is the most energy-consuming task).

• Reception of information (since the reception circuits have to be on and process the received

information).

• CPU operation (battery is consumed to perform numerical operations and tasks. Thus, the

algorithms for sensor networks need to be simple and of low computational load.

• Sensing (the sensing module consumes energy)

• ON-time of circuits. Even if not involved in any of the operations above, a sensor consumes

energy even by being ON (awake as we say).

In this problem, we will assume that energy is consumed only for transporting data. The network

can be represented as a directed graph G = (N ,A), where N is the set of nodes and A is the set of

edges. An edge exists whenever a node j is within the transmission range of node i (can be reached

for a constant power P)

We now define the following quantities that will help us construct the model in our problem.

Let c = 1, . . . , C denote the C different kinds of information transferred in the network.

• Q
(c)

i
: Rate of generation of kind c of traffic at node i in units bits/sec.

• Qi =

C
∑

c=1

Q
(c)

i
: total rate traffic generation at node i.

• q
(c)

ij
: The rate at which information of kind c is transferred from node i to j (in bits/sec).

• qij =

C
∑

c=1

q
(c)

ij
: The total rate of information transfer from sensor i to sensor j (in bits/sec).

3

• Oc = {i ∈ N : Q
(c)

i
> 0}. The set of origin nodes of traffic of type c.

• Dc : the set of destinations of traffic of type c

The variables are the qij ’s. The problem of routing is equivalent to finding flows qij or equivalently

the flow vector q = {qij∀(i, j) ∈ A}. Vector q shows how information flows in each edge (i, j) and

the way that information streams are split in each node.

2.1 Network Lifetime

The sensor network lifetime is defined as time between the beginning of network operation and the

time when first node ”dies”, namely its energy vanishes and its battery is drained. Here, we should

note that there are several different definitions of network lifetime. For example, we lifetime can be

alternatively defined as the time until transfer of information from the sources to the destinations

is still feasible no matter how many nodes have zero battery. Or network lifetime, can be the time

when the battery of some percentage k% of sensor nodes becomes zero. However, we will consider

the definition of network lifetime we said before. This is a meaningful definition in the following

sense: the network operates normally until the first node’s battery finishes. Then, this node cannot

handle traffic any more and additional re-routing algorithms need to be applied in the network to

circumvent that node and find alternative routes. Hence, much more additional energy is needed and

the rate at which nodes’ batteries will be emptying will be higher from then on. Therefore, the time

when the battery of one node vanishes is a benchmark and can be defined as the network lifetime.

Let us express the network lifetime as a function of flow vector q. First, we express the node

lifetime as a function of the flow vector. In the problem formulation from now on, we will assume

that the network carries one type of traffic. The generalization to more than one types of traffic is

easy.

For a flow vector q, the node lifetime is:

Ti(q) =
Ei

∑

j∈Ni
eijqij

(1)

where the denominator shows the total rate of decrease of energy for node i.

The Network lifetime for flow vector q is defined as:

TN (q) = min
i∈N

Ti(q) = min
i∈N

Ei
∑

j∈Ni
eijqij

(2)

4

The maximum lifetime routing problem is defined as follows: Find the flow vector q so as to

maximize network lifetime:

max
q

TN (q) = max
q

min
i∈N

Ei
∑

j∈Ni

eijqij

(3)

for qij ≥ 0, ∀ i ∈ N , ∀j ∈ Ni.

There is also the following constraint for the problem:

Qi +

∑

j:i∈Nj

qij =

∑

k∈Ni

qik, ∀ i ∈ N \ D
c

(4)

This equation expresses the flow conservation principle at each node i. The way the problem is

formulated now is difficult to solve. With a change of variables and the definition of a new variable,

we will show that the formulation above is actually equivalently to a Linear Programming problem.

Define the network lifetime as a new variable,

T = min
i∈N

Ei
∑

j∈Ni

eijqij

. (5)

Then, clearly,

T ≤
Ei

∑

j∈Ni

eijqij

,∀i. (6)

Multiply the flow conservation equation with T to get: multiplying

TQi + T

∑

j:i∈ Nj

qij = T

∑

k∈Ni

qik (7)

We define new variables q̂ij = Tqij where q̂ij ≥ 0. Then, the flow conservation equation becomes:

TQi +

∑

j:i∈Nj

q̂ij = T

∑

k∈Ni

q̂ik. (8)

Also, there appears the inequality constraint:

∑

j∈Ni

eij q̂ij ≤ Ei. (9)

The objective function is now linear in the variable vector (q̂, T) and the objective is now stated as

max
q̂,T

T (10)

Thus, we converted our problem into a linear programming problem, since the objective is linear in

the variable vector and the constraints are linear in the variables as well.

5

In general if we have a problem of the form min-max (ours was of the max-min form)

min
x

max
i=1,...,m

aT

i x + bi, (11)

the idea is to define an extra variable,

t = max
i=1,...,m

aT

i
x + bi. (12)

and the problem will be:

min
x,t

t (13)

subject to the constraints:

t ≥ aT

i x + bi,∀ i = 1, . . . , m (14)

When we have several linear functions of x, the min-max problem is converted into a linear program-

ming problem.

3 Carrier assignment in OFDM systems

1 2 3

carriers

1/T

FDMA

OFDMA(orthogonal)/TDMA

Figure 2: OFDM versus conventional FDMA.

We will now examine and formulate the problem of carrier assignment in OFDM systems as

a linear programming problem. OFDM (Orthogonal Frequency Division Multiplexing) is different

from conventional FDMA systems in the following sense: in OFDM systems, the spectrum is divided

into several sub-carriers with overlapping spectra (see figure 2). Note than in FDMA, the spectrum

is divided into non-overlapping spectra.

6

The innovation in OFDM is that, due to a well-known property of the Fourier transform, al-

though the spectra are overlapping they are orthogonal to each other, that is, they do not cause

interference to each other. Thus, more efficient use of spectrum is achieved. The OFDM is said

to have higher spectral efficiency than FDMA. Another innovation is that each user can split its

f

t

.f N

.

.

f 2

f3

f 1

slot

Figure 3: Resources in the system : Timeslots making up one frame and sub-carriers

bit stream and use several sub-carriers in parallel (each sub-carrier corresponds e.d. to a different

frequency. Note that in FDMA, each user was allocated one frequency.

We will consider here an OFDM/TDMA system. There exist K users and N subcarriers. Time

is divided into time slots and C time slots make up one time frame. There are two kinds of resources

to be allocated to users: the frequencies (subcarriers 1, . . . , N) and the timeslots (slots 1, . . . , C

within a frame). See figure 3 for how resources are organized. In the next lecture, we will formulate

a sub-carrier assignment problem as an LP problem.

7

Advanced Topics in Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 17 LP example, Introduction to duality in LP: 28/11/06

Notes by : Katerina Mamoura and Eleana Parlavantza

1 Lecture Outline

• Carrier assignment in OFDM systems (continued from lecture 16)

• Introduction to duality in LP

2 Carrier assignment in OFDM systems

This example is about carrier assignment to users in one cell. the BS transmits to K users with N

subcarriers in the down-link.

There exist a set of subcarrier frequencies and a set of C time slots that need to be assigned to

users in an OFDM system. The timeslots make up a time frame of duration Tf sec. In general, a

user can be assigned several time slots in several different subcarriers. The figure below shows the

resources (subcarriers/timeslots) that are assigned to two users A and B. Each user i perceives each

subcarrier j to be of different quality. There exist two main reasons for that:

• Co-channel interference. Different users are located in different regions within a cell and thus

experience different amounts of co-channel interference in each sub-carrier due to different

amounts of subcarrier reuse in neighboring cells. For example, a user may be in a location that

is close to a cell in which subcarriers 1 and 2 are reused which subcarrier 3 is not. In that case,

that user perceives subcarrier 3 as being of very good quality, while subcarriers 1 and 2 are of

lower quality. Also, different users perceive the same subcarrier as being of different quality for

1

t

f1

f2

f3

Tf

A

A

A A

B B B

Figure1 : Example

Tf : frame duration

the same reason. For example, if another user is in a location close to a cell where subcarrier

3 is used, then this user perceives subcarrier 3 as of lower quality than the first user does.

• Frequency selectivity. Even in the absence of interference whatsoever, a user has different chan-

nel gain in different frequencies. That is, a transmitted signal has different channel attenuation

in different frequencies. Frequency selectivity results in different frequency response function

H(f) in different subcarrier frequencies f . The phenomenon of frequency selectivity is at-

tributed to multi-path: the same signal follows several different paths while traveling from the

transmitter to the receiver and each path is of different length (and thus arrives with different

delay at the receiver). These delay differences give rise to a frequency dependence on the am-

plitude and phase of the signal (for more details, look in the class of Wireless Communications

notes).

In the problem, we assume that the time frame duration is small enough, so that each user has

the same quality across all time slots of a subcarrier. Therefore, we do not consider temporal channel

quality variations in our problem.

Given the fact that different users experience different quality in a subcarrier, there comes the

question: Which user is the most suitable to be assigned to a subcarrier?

As mentioned above, each user i experiences different quality in different subcarriers j. If the

user utilizes only one carrier j, the achieved transmission rate ri is:

ri =
S

Tf
· bij · aij , (1)

2

where S is the number of symbols of the user transmitted in a time slot, aij is the number of time

slots that are used in a frame in subcarrier j and bij is the maximum tolerable modulation level (in

bits/symbol) that can be assigned to a user in subcarrier j. Rate ri has units of bits/sec. Clearly,

the achievable rate for a user i in a subcarrier j depend on bij , aij . The more slots the user uses, the

more bits it can transfer in a frame duration. Also, the larger the modulation level, the larger the

achievable rate. The quality of each subcarrier j for a user i is reflected on the Signal-to-Interference

and Noise ratio (SINR) of a user.

As we have said before, if the SINR is large (the subcarrier is of good quality), the BS can afford

to transmit with a large modulation level (and still maintain the BER below a threshold ε. On the

other hand, if the SINR for a user in a subcarrier is not good, the BS cannot transmit with a high

modulation level. Instead, it needs to use lower modulation level, so as to maintain BER below ε.

Each user sends a message to the BS and informs it about the quality in each subcarrier. The

user receiver can easily measure the quality in different subcarriers at its receives and then it can

feed back this information at the BS. The user i thus essentially indirectly informs the BS of the

modulation level vector (bi1, ..., biN) that the BS can give in the different subcarriers. Now, if the

user has also declared its requirements in rate to the BS, the BS gets informed about the user’s

preferences and can estimate how many slots are needed for every user in order to fulfil its rate

requirements (if the user uses exclusively one subcarrier). Thus, the number of slots that are needed

by a user i in order to fulfil its rata requirements if it used only one subcarrier j is:

aij =
⌈

ri · Tf

S · bij

⌉
(2)

Thus we make the following observations:

• The more the user rate requirements, the more the slots that the user needs in order to fulfil

them.

• The better the channel quality in a subcarrier for a user, the higher the achievable modulation

level and thus the fewer the number of slots that are required in order for the user to fulfil its

rate requirements.

The BS faces the following problem: Given a number of users with some rate requirements and given

a number of carriers, allocate carriers and timeslots to users, such that the user rate requirements

3

are satisfied and the minimum total number of time slots are used. This optimization objective is

meaningful, since the BS would like to have as many free slots are possible in case they are needed:

• in order to serve a burst of many new arriving users. Hence the free slots help to serve sudden

increased in user loads.

• in order to cope with sudden subcarrier quality deterioration for many users. This often occurs

in wireless systems. If the quality of one or more subcarriers deteriorates for users, then the

users need additional time slots in order to fulfil rate requirements.

An example with three users A,B and C and three subcarrier frequencies f1, f2, f3 is given in

the figure below (denoted as Figure 4). The matrix element (i, j) shows the number of required

time slots by user i in subcarrier j in order to fulfil its rate requirements by using exclusively this

subcarrier. Thus for example user A prefers to use subcarrier f1 since it will occupy fewer slots there.

User C also prefers subcarrier f1 to the other two for the same reason.

A

B

C

f1 f2 f3

2

2 5

5

3

3

4

4

1

Figure 4 : User requirements in frequencies

However, if a subcarrier is preferable by several users, it may happen that the number of slots

in that subcarrier is not adequate to accommodate all users. For instance, if subcarrier f1 has C = 4

time slots in a frame, and user A is assigned to subcarrier f1, user B to subcarrier f2 and user C

to subcarrier f1, then 5 slots are needed to satisfy users A and C in subcarrier f1 (but only 4 are

available!). This is shown in the figure below (denoted as figure 5)

So,only 2 slots out of the 3 needed can be given to user C at subcarrier f1. Thus the rest of its

requirements need to be fulfilled by assigning to the user slots by lesser quality subcarrier (e.g the

next more preferable subcarrier for user C is f2). However note that if user C is given slots from

4

f1

f2

f3

A A

B

C C

Figure 5

subcarrier f2 the 1 remaining needed slot (if it was assigned to subcarrier f1) is equivalent to more

than one (actually d4/3e = 2 slots, if assigned to subcarrier f2).

3 Linear Programming formulation

The variables of the problem are xij : portion (percentage) of rate requirements of user i that

are satisfied by carrier j, i = 1, . . . , K and j = 1, . . . , N . The variable vector is x = (xij : i =

1, . . . , K, j = 1, . . . , N).

A problem instance is described by the long NK×1 vector a = (aij : i = 1, . . . , K, j = 1, . . . , N).

As mentioned before, the parameters aij are known to the BS for each user i and each subcarrier j

and denote the number of time slots that are needed by user i to entirely fulfil its rate requirements

when assigned only to carrier j. Let aij ∈ R. Let all the subcarriers have capacity of C time slots

per frame.

We want to minimize the total number of time slots that are needed to satisfy all users:

min
x

K∑

i=1

N∑

j=1

aijxij (3)

subject to the following constraints:

K∑

i=1

aijxij ≤ C, for j = 1, . . . , N. (4)

5

and
N∑

j=1

xij = 1, for i = 1, . . . ,K. (5)

The first constraint specifies that the available slot capacity must not be exceeded. The second

constraint says that user rate requirements need to be satisfied. Also, for the variables xij it is

0 ≤ xij ≤ 1. Since the objective function and the constraints are linear in the variable vector x, the

formulation above is an LP problem.

4 Introduction to Duality

We now turn our attention to a very important topic of Linear Programming, that of duality. Duality

appears in LP as well as in non-LP problems.

Consider the non-linear problem:

minx2 + y2 (6)

subject to:

x + y = 1 (7)

Eliminate the constraint and define the Lagrangian function:

L(x, y, λ) = x2 + y2 + λ(1− x− y). (8)

Thus, instead of enforcing the constraint x+y = 1, we allow it to be violated and associate a so-called

Lagrange multiplier λ (price per unit of violation) with the amount 1−x−y by which the constraint

is violated. Then, we have an unconstrained minimization problem that is solved by taking:

∂L

∂x
= 0 and

∂L

∂x
= 0 ⇒ x = y = λ/2 (9)

From the constraint that needs to be satisfied, we obtain λ = 1 and thus x = y = 1/2.

When the price is appropriately chosen (as in here, λ = 1), the optimal solution to the un-

constrained problem is also optimal for the constrained one. Either we take into consideration the

constraint or not, the effect on the solution is the same.

In LP problem, we associate a price variable with each constraint. We then search for the prices

under which the presence or absence of constraints does not affect the optimal cost. The optimal

prices are found by solving a new LP problem, the dual problem.

6

4.1 Linear Programming

Consider the original LP optimization problem as we have seen it till now:

min cTx (10)

subject to:

Ax = b, and x ≥ 0. (11)

This is called Primal problem (P).

Suppose there exists an optimal solution x∗. Matrix A has dimension m× n (that means that

there are m constraints). Relax the problem and define the Lagrangian function

L(x, λ) = cTx + λT (b−Ax) (12)

and we have the unconstrained problem:

min cTx + λT (b−Ax) (13)

subject to x ≥ 0. The term λT (b − Ax) is the penalty associated with violating the constraints.

Define g(λ) the optimal cost for the relaxed problem as a function of λ,

g(λ) = min
x≥0

cTx + λT · (b−Ax) (14)

We have

g(λ) ≤ min
x≥0,Ax=b

cTx + λT (b−Ax) (15)

since minx∈A f(x) ≤ minx∈B f(x) for B ⊆ A. Thus, we further get:

g(λ) = cTx∗ + λT (b−Ax∗) = cTx∗ (16)

since x∗ is feasible solution for the primal problem.

For each λ, g(λ) is a lower bound on the optimal cost of the primal problem, cTx∗. The question

now in to find the best (highest) lower bound. This is the dual problem.

4.2 Dual Problem

The dual problem is a maximization problem. The primal problem without the constraints is:

g(λ) = min
x≥0,Ax=b

cTx + λT (b−Ax) (17)

7

and then

g(λ) = λTb + min
x≥0

(cT − λT A)x (18)

Now,

min
x≥0

(cT − λT A)x = 0, if cT − λT A ≥ 0T (19)

else it is −∞. Hence, in maximizing g(λ), we must only consider those values of λ for which g(λ) is

not −∞.

The dual problem is therefore:

maxλTb (20)

subject to the constraints:

λT A ≤ cT (21)

Notice that the dual has no constraints on the sign of λ. The primal problem is a minimization

problem, whereas the dual problem is a maximization problem. In the dual problem cT (the cost

vector for the primal) has become right-hand side of the constraints.

If we have an LP problem in inequality form (constraints are Ax ≥ b), we convert it to the

standard form by using a slack variable s ≥ 0:

Ax− s = b (22)

or

[A − I](x s)T = b (23)

Then, according to the previously found dual, we will have the dual constraints:

λT [A − I] ≤ [cT 0T] (24)

or

λT A ≤ cT (25)

and λ ≥ 0.

So, if in the primal problem the constraints are inequalities, in the dual, we have the constraint

that the dual variables λ ≥ 0.

8

Advanced Topics in Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 18 : Duality in Linear Programming - 04/12/06

Notes by : Nikolaos Kapetanios and Konstantinos Sotiropoulos

1 Lecture outline

• Duality in LP

• Weak and strong duality lemmas

• Complementary slackness conditions and interpretation

2 Primal LP problems and their dual problems

2.1 Forms of the primal problem

Below we show some primal problems of linear programming and their corresponding dual.

PRIMAL PROBLEM DUAL PROBLEM

min cTx, s.t. Ax = b, x ≥ 0 −→ maxλTb, s.t.λT A ≤ cT , λ unrestricted. (1)

min cTx, s.t. Ax = b, −→ maxλTb, s.t. λT A = cT , λ unrestricted. (2)

min cTx, s.t. Ax ≥ b, −→ maxλTb, s.t.λT A = cT , λ ≥ 0. (3)

min cTx, s.t. Ax ≥ b, x ≥ 0 −→ maxλTb, s.t. λT A ≤ cT , λ ≥ 0. (4)

Generally, when the primal problem has inequality constraints, then in the dual we have the

variables λ ≥ 0. When the primal problem has equality constraints, then in the dual the variables

λ are unrestricted in sign.

Fact: The dual of the dual is the primal problem.

Proof: Assume the primal problem and its corresponding dual of equation (4) before. The dual

problem can be written as

minλT (−b) s.t. λT (−A) ≥ −cT , λ ≥ 0. (5)

1

The dual problem of the above is:

max (−c)Tx, s.t. (−A)x ≤ (−b), x ≥ 0, (6)

which can be written as

min cTx, s.t. Ax = b, x ≥ 0, (7)

which is the primal problem of equation (4). Thus, we proved that the dual problem of a dual

problem is its primal problem.

2.2 Example (The Diet Problem)

A diet contains m different vitamins that need to be received daily with quantities at least equal to

b1, ..., bm respectively. The diet also have n different foods. Let aij denote the amount of vitamin i

per unit of j-th food.

A company intends to propose a diet that is most economical. We can compose such a diet by

choosing nonnegative food quantities x = (x1, ...xn). One unit quantity of food j and has a cost of cj

. We want to determine the cheapest diet that satisfies the nutritional requirements. This problem

can be formulated as the LP primal problem,

min cTx, s.t.Ax ≥ 0, x ≥ 0. (8)

The corresponding dual problem can be defined as

maxλTb, s.t.λT A < cT , λ ≥ 0, (9)

where λi (dual problem variable) is the price of the unit quantity of vitamin i = 1, ..., m. In other

words, this is the problem that another company (competitive to the first one) needs to solve. The

company proposes a diet in which it has synthetically reproduced each food with vitamins. It then

needs to find the pricing mechanism for each vitamin, i.e find the price vector λ to maximize its total

benefit. At the same time, it has the constraints that the cost of the equivalent for food j should be,

λ1a1j + λ2a2j + ... + λmamj ≤ cj . (10)

The inequality above should hold in order for the second company to be competitive. One unit

quantity of food j has a production cost cj and a price λTAj where Aj is the j-th column of matrix

A, with elements aij , i = 1, . . . , m and j = 1, . . . , n.

2

2.3 Theorems and Lemmas in Duality

2.3.1 Duality Theorem

If the primal problem has an optimal solution x∗, then so does the dual (it has an optimal solution

λ∗, and the optimal values of their respective objective functions are equal. In other words,

cTx∗ = λ∗Tb. (11)

Before coming to that, we will show that cTx∗ ≥ λTb.

2.3.2 Weak Duality Lemma

Suppose that x0 and λ0 are feasible solutions to primal and dual problems respectively. Then,

cTx0 ≥ λT
0 b. (12)

This inequality is known as the Weak Duality Lemma. Now, set λ∗ = λ0 and x∗ = x0 and we get

cTx∗ ≥ λ∗Tb. (13)

Every feasible solution of the dual problem gives a lower bound on the value of the objective function

of the primal problem. Also, every feasible solution to the primal problem gives an upper bound on

the value of the objective function of the dual.

Note that as, it can be verified easily, the weak duality lemma holds for any of the four primal-

dual pairs that we mentioned in the beginning. Two immediate conclusions are:

• If the primal problem is unbounded so that cTx∗ = −∞, then the dual problem is infeasible.

• If the dual problem is unbounded so that λ∗b = +∞, then the primal problem is infeasible.

Note: By saying a problem is infeasible, it means that its set of feasible solutions is the empty

set.

2.3.3 Theorem

Suppose that x and λ are feasible solutions to the primal and dual problem respectively. If cTx =

λTb, then x and λ are optimal solutions to the primal and dual problems respectively.

2.3.4 Lemma

Suppose that x and λ are feasible solutions to the primal and dual problem respectively. Then,

cTx ≥ λT Ax ≥ λTb. (14)

3

Proof: For the first inequality, we must show that

(cT − λT A)x ≥ 0, (15)

which is true because cT − λT A ≥ 0 and x ≥ 0. For the second inequality, we must show that

λT (Ax− b) ≥ 0, (16)

which is also true because λ ≥ 0 as a feasible solution to the dual problem and Ax− b ≥ 0 as x is

a feasible solution to the primal problem.

If the constraint Ax ≥ b was replaced by Ax = b then the respective dual problem would be

maxλTb, s.t.λT A ≤ cT , λ unrestricted, (17)

which shows us that λT (Ax− b) ≥ 0, is always true.

2.3.5 Strong Duality Theorem

Suppose that x∗ and λ∗ are feasible solutions to the primal and dual problem respectively and

cTx∗ ≥ λ∗Tb. There are four options about the solutions of primal and dual problems:

• Both problems have optimal solutions (of finite value).

• Both problems are infeasible (their sets of feasible solutions are empty).

• The primal problem is unbounded and the dual problem is infeasible.

• The primal problem is infeasible and the dual problem is unbounded.

2.3.6 Theorem: Complementary Slackness Conditions

The feasible solutions x∗ and λ∗ to the primal and dual problem respectively are optimal solutions

if and only if

1. (cT − λ∗Tb)x∗ = 0

2. λ∗T (Ax∗ − b) = 0.

We omit the proofs and focus on their interpretation.

1. We know that x∗ ≥ 0 and cT − λ∗T A ≥ 0T . This means that,

(cj − λ∗TAj)x∗j = 0 ∀ j = 1, ..., n. (18)

The conclusions are:

If x∗j > 0 ⇒ λ∗TAj = cj , (19)

if λ∗TAj < cj ⇒ x∗j = 0, (20)

4

where cj is the j-th element of vector c, x∗j is the j-th element of vector x∗ and Aj is the j-th column

of matrix A.

Thus, if a component of the primal solution is strictly positive, the corresponding constraint in

the dual must be met with equality at the optimal solution. And also, if an inequality constraint at

the dual is not met with ”clean” inequality at the optimal solution, the corresponding variable at

the primal optimal solution is zero.

2. We know that λ∗ ≥ 0 and Ax∗ ≥ b. This means that

λ∗Ti (aT
i x∗ − bi) = 0 ∀ i = 1, ...,m. (21)

The conclusions are:

If λ∗i > 0 ⇒ aT
i x∗ = bi, (22)

If aT
i x∗ > bi ⇒ λ∗i = 0. (23)

where λi is the i-th element of vector λ, ai is the i-th row of matrix A and bi is the i-th element of

vector b. Similar statements can be made here as those for case 1.

5

Advanced Topics in Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 19 : Dual variables and Shortest Path problem - 5/12/06

Notes by : Aggelos-Christos Anadiotis, Giannis Dimitropoulos, Odysseas Kalamiotis

1 Lecture outline

• Interpretation of dual variables

• Sensitivity analysis

• Shortest path problem

• Minimum cost flow problem

2 Interpretation of dual variables

Consider the primal LP problem

min cTx (1)

subject to:

Ax = b, x ≥ 0 (2)

Recall as ri the reduced cost coefficients from the simplex algorithm. Let the optimal BFS be

x = (xB 0). At the end of the simplex algorithm, matrix A is partitioned as [B D], where B is

the matrix of linearly independent columns, corresponding to the basis. As we know, xB = B−1b.

Recall also that at the end of the simplex algorithm the vector of relative coefficients corresponding

to the non-basic variables is r ≥ 0. It can be easily shown that at the end of the simplex algorithm,

it is

rT = cT
B − cT

BB−1D, (3)

1

where for the cost vector is separated in two parts corresponding to the basic and non-basic variables,

as

c = (cB cD). (4)

Since at the optimal solution it is rT ≥ 0T , we have the inequality

cT
DB−1D ≥ 0 ⇒ cT

BB−1D ≤ cT
D. (5)

Now, consider the dual problem,

maxλTb (6)

subject to:

λT A ≤ cT , (7)

and λ unrestricted in sign. Define λ = cT
BB−1. We are going to prove that λT = cT

BB−1 is the

optimal solution to the dual problem.

First, we will check if λ is a feasible solution to the dual problem, i.e. if it satisfies λT A ≤ cT .

Indeed, it is λT A = λT [B D] = [cT
B cT

BB−1D] ≤ [cT
B cT

D] = cT . Thus, λ is a feasible solution of the

dual.

Next, we prove that λ is the optimal solution for the dual problem. We have λTb = cT
BB−1b =

cT
BxB = cTx, where xB is the vector of the basic variables. Therefore, we proved that if the primal

LP has an optimal BFS with basis B, then λT = cT
BB−1 is optimal solution for the dual problem.

Vector λT is called vector of simplex multipliers.

3 Sensitivity Analysis

Consider the primal problem:

min cTx

subject to: Ax = b

x ≥ 0

Let the optimal basic feasible solution (BFS) be x = (xB, 0), with basis matrix B and xB = B−1b.

Let’s assume that the right-hand side of the constraints changes by a small ∆b, that is b Ã

b + ∆b. For small changes ∆b, the basis matrix B does not change. After the change, the new

optimal solution will be x′ = (xB + ∆xB, 0), with ∆xB = B−1∆b.

2

The value of the objective function before the change was cT
BxB. After the change, it is cT

B(xB +

∆xB). The objective function has been changed by quantity ∆z = cT
B∆xB = cT

BB−1∆b = λT ∆b.

Suppose there was only one constraint, m = 1, then: ∆z = λ∆b ⇒ λ = ∆z
∆b . So, λ can be

interpreted as the rate of change of the value of the objective function for small changes of the

constraints. Since the constraints often represent resources, λ can be interpreted as the price per

unit of the resources. This is also obvious from the fact that ∆z = λ∆b if ∆z is the profit delivered

by quantity b of the resources. Therefore, λ specifies the change in the value of the objective function

with respect to a unit change in resources. It is also called shadow price or marginal cost.

For more than one constraint, m > 1, it is λi =
∂z

∂bi
and λi is the rate of change in the value of

the objective function with respect to a change in constraint i.

Next, we will study some examples of LP problems and will try to interpret duality theorems

for them.

4 Shortest Path Problem

First, we consider the shortest path (SP) problem. This problem is a special case of the more general

minimum cost flow problem.

Consider a directed graph G = (V,E), where V represents the set of nodes and E represents

the set of edges of the graph. Let cj ≥ 0 be the cost associated with each edge ej ∈ E. The min-cost

path problem is the problem of finding a directed path of minimum total cost from a source node s

to a destination node t. For the special case where cj = 1 for each ej ∈ E, we have the shortest path

problem, i.e the problem of finding the shortest route to th destination.

The problem arises in several applications such as routing, power control etc. The cost of an

edge (i, j) may denote the required power to reach from transmitter i to receiver j. Then, the

shortest path specifies the route with the minimum total power consumption. energy costs can also

be similarly incorporated in that context. Costs may also denote delays in packet forwarding in a

network (which may model link rates or queueing delays at nodes).

In the SP problem, the feasible set is F = sequences {P = (ej1 , . . . , ejk
)} such that the sequence

is a directed path from s to t, i.e all possible paths leading from source to destination.

Let the path cost be c(P) =
∑k

i=1 cji . Define Let the node-edge incidence matrix A = [Aij], i =

3

e1

e2

e4

e5

e3
s t

Figure 1: An example network.

1, ..., |V |, j = 1, ..., |E|, with

Aij =





+1 if edge ej leaves node i

−1 if edge ej enters node i

0 otherwise.

Example: For the graph of Figure 4, it is

A =




+1 +1 0 0 0

0 0 0 −1 −1

−1 0 +1 +1 0

0 −1 −1 0 +1




The rows, starting from the first one, stand for nodes s, t, a, b respectively. The columns, starting

from the first one, stand for edges e1, e2, e3, e4, e5 respectively.

Associate a flow variable fj with each edge ej to represent flow of an imaginary fluid through

ej . Consider the flow vector f = (fj : j = 1, ..., |E|). The flow conservation principle at each node i

can be expressed as the equation

aT
i f = 0, i 6= {s, t} , (8)

where ai is the i-th row of matrix A. A path from s to t is a flow of one unit leaving s and entering

t. this flow satisfies the flow conservation equations above at each intermediate node in the path,

4

and also aT
s f = +1 and aT

t f = −1. Overall, the constraints are written as

Af =




+1

−1

0
...

0




The first two rows stand for s and t respectively and the next rows stand for nodes i 6= s, t. The

primal problem can be stated as:

min cT f

subject to: f ≥ 0

Af =




+1

−1

0
...

0




In its most general form, the problem is the minimum cost flow problem that has solutions f ≥ 0

and f ≤ 1. The shortest path problem is a special case of the minimum cost flow problem, where

fe ∈ {0, 1}. At the optimal solution,

• if fej = 1, then edge ej is part of the optimal path P ∗ to the destination.

• if fej = 0, then edge ej is not path of the optimal path.

In the dual problem there is one variable for each node in the network. The dual problem is:

max (λs − λt)

subject to: λi − λj ≤ cij , for each edge e = (i, j)

λi unrestricted in sign.

The constraints can be seeing as emerging from the dual constraints λT A ≤ cT . Let λi be the cost

of having one flow unit at node i. The complementary slackness conditions for this problem in the

optimal solution are written as

(λi − λj − cij) fij = 0 (9)

5

If λi − λj < cij ⇒ fij = 0. This means that if the cost of transporting one unit of flow from

node i to node j is more than the difference in costs of having the flows at i and j, then edge (i, j)

is not included in the shortest path (because there can be another way of transporting one unit of

flow from i to j. On the other hand, if fij > 0 ⇒ λi − λj = cij , and this means that edge (i, j) is

included in the shortest path.

For the shortest path problem from a single source to a single destination and non-negative edge

costs, there is the Dijkstra algorithm. A more general algorithm for multiple sources and destinations

and also negative costs is the Bellman-Ford algorithm.

5 Assignment Problem

Consider the following problem. There exist n tasks / jobs to be assigned to n persons. The benefit

of assigning task j to person i is aij . Alternatively, aij denotes the cost of assigning task j to person

i. Depending on one or the other case, we have the min-cost or max-weight assignment problem. We

will consider the second case.

Define the variables

xij =





0 if task j is not assigned to person i

1 if task j is assigned to person i
(10)

The maximum weight assignment problem (P) is the following:

max
{xij}

n∑

i=1

n∑

j=1

aijxij (11)

subject to:
n∑

i=1

xij = 1, ∀ task j (12)

n∑

j=1

xij = 1, ∀ person i, (13)

and xij ∈ {0, 1}.
Define a dual variable λj for each constraint corresponding to a task j and a dual variable µi for

each constraint corresponding to a person i. These can denote the cost of having the task j assigned

and the cost of having occupied person i. The dual problem is:

min
n∑

j=1

λj +
n∑

i=1

µi (14)

6

subject to:

λj + µi ≥ aij , ∀(i, j) (15)

and {λj} , {µi} unrestricted in sign.

Based on complementary slackness, we have at the optimal solution: (aij − λj − µi) xij = 0.

Thus, if λj + µi > aij ⇒ xij = 0. This means that if the benefit aij of assigning task j to person

i is less than the incurred cost, then do not assign task j to person i. On the other hand, if

xij > 0 ⇒ λj + µi = aij , i.e it is valid and meaningful to assign task j to person i if the incurred

benefit equals the incurred cost.

6 Minimum Cost Flow Problem

Consider a network represented by a directed graph G(V, E). Let cij be the cost of transferring one

unit of flow through the edge (i, j), and uij be the capacity of edge (i, j), i.e the maximum flow that

can be transported through the edge (i, j). Also define

bi





> 0 if i is the source

< 0 if i is the destination

= 0 otherwise

For each node in the network, we have

bi +
∑

j:(j,i)∈E

fji =
∑

j:(i,j)∈E

fij , (16)

namely the flow conservation equation. Also, 0 ≤ fij ≤ uij . The minimum cost flow problem is:

min
∑

(i,j)∈E

cijfij , (17)

subject to the constraints above. The problem is called uncapacitated min-cost flow problem, if

uij = +∞ for all edges (i, j), otherwise it is called capacitated.

7

Advanced Topics in Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 20 : NLP problems with equality constraints - 6/12/06

Notes by : Aggelos-Christos Anadiotis, Giannis Dimitropoulos, Odysseas Kalamiotis

1 Lecture outline

• Other special cases of the min-cost flow problem

• Introduction to non-linear programming problems with equality constraints

• Lagrange theorem

2 Maximum Flow Problem

Another special case of the min-cost flow problem is the maximum flow problem. This is to find

the largest possible amount of flow that can be sent from a given source s to a given destination t

without exceeding the edge capacities.

The problem is formulated as follows:

max bs (1)

subject to the constraints:

Af = b, 0 ≤ fij ≤ uij

bt = −bs, bi = 0, i 6= s, t

The maximum flow problem can be turned into a min-cost flow problem is we do the following.

The costs of all edges are set to 0. We introduce an edge (t, s) of infinite capacity with cost cts = −1.

Then, the min-cost flow objective min
∑

(i,j) cijfij becomes equivalent to max-flow objective max fts

1

(where flow fts needs to be returned from s to t through the original network). For the max-flow

problem, there is Ford-Fulkerson algorithm.

3 Transportation Problem

Another special case of the min-cost flow problem is the transportation problem. We have m suppliers

and n consumers. The i-th supplier supplies si units of a good and the j-th consumer demands dj

units of good, where i = 1, ..., m and j = 1, ..., n. The total amount of supply equals the total demand

m∑

i=1

si =
n∑

j=1

dj (2)

There is also a cost cij per unit of good carried from the i-th supplier to the j-th consumer.

The problem is to transport the good from the suppliers to the consumers at minimum cost and can

be formulated as follows:

min
m∑

i=1

n∑

j=1

cijfij (3)

subject to:
m∑

i=1

fij = dj , ∀ j = 1, ..., n (4)

n∑

j=1

fij = si, ∀ i = 1, ..., m (5)

and fij ≥ 0. The constraints imply that each supplier has to fully distribute the good to consumers

and also that each consumer needs to fully satisfy its requirements in the good.

4 Non-linear Programming Problems with Equality Constraints

In this part of the course, we will discuss methods for solving a class of nonlinear constrained

optimization problems that can be formulated as:

min f(x)

s.t hi(x) = 0, i = 1,,m

gj(x) ≤ 0, j = 1,, p,

where x ∈ <n, f : <n → <, gj : <n → <, and m ≤ n.

2

In particular, we will first consider the class of Non-linear Programming problems with con-

straints that can expressed as equalities {hi(x) = 0, i = 1, . . . , m}. A point x0 is called feasible point

if it satisfies the constraints.

The constraints hi(x) = 0, i = 1,, m define a surface S = {x : hi(x) = 0, i = 1,, m}.
The tangent plane at a point x0 on the surface S is the collection of derivatives at point x0 of

all differentiable curves on S passing through x0. A tangent plane to a surface can be visualized as

generalizing the tangent line to a point on a curve.

Problem: We would like to find an explicit characterization of the tangent plane at a point x0

on the surface defined by the constraints of our problem,

S = {x : hi(x) = 0, i = 1,, m} (6)

as a function of the gradients of the constraint functions hi, i = 1, . . . , m. For a point x0 ∈ S, we

introduce the set of points

M =
{
y : ∇hT

i (x0)y = 0,∀i = 1, . . . , m
}

(7)

Definition: A point x0 ∈ S is said to be a regular point if vectors ∇h1(x0), . . . ,∇hm(x0) are

linearly independent.

Theorem: At a regular point x0 ∈ S = {x : hi(x) = 0, i = 1,, m}, the tangent plane is M.

Thus, at regular points we can characterize the tangent plane in terms of the gradients of the

constraint functions.

Example 1: Consider the surface S =
{
x ∈ <3 : h1(x) = x1 = 0, h2(x) = x1 − x2 = 0

}
. The

surface is clearly S = {x = (0, 0, x3) : x3 ∈ <}, namely the x3-axis.

At a point x0 ∈ S, it is

5h1(x0) =
[

1 0 0
]

5h2(x0) =
[

1 −1 0
]

So, ∇h1(x0),∇h2(x0) are linearly independent ∀x0 ∈ S. So the tangent plane at S at point x0

is:

M =
{
y : ∇hT

i (x0)y = 0
}

=





y :




1

0

0




y1 +




1

−1

0




y2 =




0

0

0







⇒ (8)

3

M = {(0, 0, y3) : y3 ∈ <} ¥

Definition (as reminder):

1. The vectors u1, . . . ,un are linearly independent if and only if the equation λ1u1+. . .+λnun = 0

has as solution only the all-zero vector (λ1, . . . , λn) = (0, . . . , 0).

2. If the equation above has more solutions (essentially non-zero) other than the all-zero one, then

vectors u1, . . . ,un are called linearly dependent.

Note: One vector u by itself is linearly dependent or independent? If u 6= 0 then λu = 0 ⇒ λ =

0 ⇒ u: linearly independent. But if u = 0 then the equation λu = 0 has several (infinite) solutions.

So, u = 0 is linearly dependent.

Example 2: Consider the surface S =
{
(x1, x2) : h(x1, x2) = x2

1 = 0
}

= {(0, x2) , x2 ∈ <}.

We have ∇h(x1, x2) =
[

2x1 0
]




if x1 6= 0 then ∇h is linearly independent

if x1 = 0 then ∇h is linearly dependent

M =



(y1, y2) :

[
0 0

]

 y1

y2


 = 0





In this example we cannot define the tangent plane at non-regular points. From now on, unless

otherwise stated, we will consider surfaces S = {x : hi(x) = 0, i = 1,, m} that have all their

points regular.

Lemma (for one equality constraint): Let x0 be a regular point of the surface defined by

the equality constraints, S = {h(x) = 0} and x0 is a local minimizer of f : <n → <, subject to the

constraint h(x) = 0. Then all points y that satisfy ∇h(x0)Ty = 0 also satisfy ∇f(x0)Ty = 0. So,

that means that both vectors ∇h,∇f are orthogonal to vectors y on the tangent plane at point x0

of the surface S and this means that they are parallel to each other. Hence we arrive at the theorem

of Lagrange for one constraint m = 1 which is stated as follows:

Lagrange Theorem for m = 1 constraint: Let the point x0 be a local minimizer of f : <n →
< subject to the constraint hx = 0 , h : <n → <. Then, ∇f(x∗) and ∇h(x∗) are parallel. That is, if

∇h(x∗) 6= 0,then there exists a scalar λ∗ such that ∇f(x∗) + λ∗∇h(x∗) = 0.

The theorem above provides a first-order necessary condition for a point to be a local minimizer

of f(·) subject to an equality constraint.

4

An Example is shown in Figure 1 (where note that the curve h = 0 corresponding to the

constraints should be intersecting with line f = f2 at a point x0 so that the gradients of f and h are

at the same point).

∇

∇ h

f f3

f2

f1

h=0
f3>f2>f1

Figure 1: Example for the theorem of Lagrange.

Lagrange Theorem for m > 1 constraints: Let the point x∗ be a local minimizer of

f : <n → < subject to the constraints h1(x) = 0, . . . , hm(x) = 0. Assume that x∗ is a regular point.

Then, there exists a real vector λ ∈ <m : ∇f(x∗) +
∑m

i=1 λi∇h(x∗) = 0.

Thus, at an optimal point (if this is optimal), the gradient of the objective function can be

written as linear combination of the gradients of the constraints.

Example: Consider the following problem which is depicted in figure 2:

min f(x1, x2) = x1 + x2

s.t (x1 − 1)2 + x2
2 − 1 = 0, (h1(x1, x2) = 0)

(x1 − 2)2 + x2
2 − 4 = 0, (h2(x1, x2) = 0)

We have:

∇h1(x1, x2) = (2 (x1 − 1) , 2x2)

∇h2(x1, x2) = (2 (x1 − 2) , 2x2)

The surface S is the point (0, 0). So we have

∇h1 (0, 0) = (−2, 0)

∇h2 (0, 0) = (−4, 0).

5

(1,0) (2,0)

Figure 2: Lagrange theorem..

Now we try to confirm Lagrange theorem: ∇f(x∗) +
∑m

i=1 λi∇h(x∗) = 0 ⇒
 1

1


 + λ1


 −2

0


 + λ2


 −4

0


 =


 0

0


 ⇒

1− 2λ1 − 4λ2 = 0 ⇒
1 = 0.

So, because of (0, 0) is not a regular point, we can’t apply Langrange theorem here! The condi-

tion cannot hold for any λ1, λ2, namely the gradient of the objective function cannot be expressed

as a linear combination of the constraints. ¥

Recall again the form of the problem we are considering here:

min f(x)

s.t h1(x) = 0
...

hm(x) = 0

Define the Lagrangian function at point x as:

L (x, λ1, . . . , λm) = f(x) + λ1h1(x) + . . . + λmhm(x) = f(x) +
m∑

i=1

λihi(x) (9)

6

The Hessian matrix of the Lagrangian at point x, Λ(x, λ1, . . . , λm) is defined as

Λ(x, λ1, . . . , λm) = F (x) +
m∑

i=1

λiHi(x), (10)

where F (x) is the Hessian matrix of the objective function f at point x, given by

F (x) =




∂2f
∂x2

1
· · · ∂2f

∂xn∂x1

...
. . .

...

∂2f
∂x1∂xm

· · · ∂2f
∂x2

n




where the partial derivatives are evaluated at point x and Hi(x) is the Hessian matrix of hi at point

x, i = 1, ..,m.

5 Second-Order Necessary and Sufficient Conditions

We now state the necessary conditions of second-order for the existence of local minimum. Then, we

state second-order sufficient conditions for existence of local minimum.

Second order necessary conditions for existence of local minimum: Let point x∗ be a

local minimizer of f : <n → < subject to the constraints h1(x) = 0, ..., hm(x) = 0. Suppose x∗ is a

regular point. Then, there exists vector λ ∈ <m such that:

∇f(x∗) +
m∑

i=1

λi∇hi(x∗) = 0 (11)

Also let M = {y : ∇hi(x∗)y = 0, i = 1, ..., m} be the tangent plane at point x∗ of the surface defined

by the equality constraints. Then, matrix

Λ (x∗, λ) = F (x∗) + λ1H1(x∗) + ... + λmHm(x∗) (12)

is positive-semidefinite on M. That is,

yT Λ (x∗, λ)y ≥ 0, ∀y ∈M (13)

Second order sufficient conditions for existence of local minimum:

If there exists a real vector λ ∈ <m which, at a point x∗ satisfies

∇f(x∗) +
m∑

i=1

λi∇hi(x∗) = 0 (14)

7

and if matrix

Λ (x∗, λ) = F (x∗) + λ1H1(x∗) + ... + λmHm(x∗) (15)

is positive definite on M (where M =
{
y : ∇hi(x∗)Ty = 0, i = 1, ...,m

}
) that is, yT Λ (x∗, λ)y > 0,

∀y ∈M,

then x∗ is a local minimizer of f : <n → < subject to the constraints hi(x) = 0, i = 1, .., m.

Note: Note that, unless otherwise stated, in the cases we will consider, we will assume that

M = <n.

8

Advanced Topics on Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 21 : NLP Sensitivity analysis and examples - 6/12/06

Notes by : Alexandra Xamilothori and Konstantinos Gerogiokas

1 Lecture outline

• Conditions for convex functions and maximization problems

• Sensitivity analysis

• Examples

Consider the minimization problem we saw in the previous lecture

min f(x) such that hi(x) = 0, for i = 1, . . . , m. (1)

2 Sufficient conditions minimum for convex functions

Assume that the objective function f : Rn → R is a convex function and the constraint functions

hi(x), with hi : Rn → R are also convex functions which define the surface of constraints S = {x ∈
Rn, hi(x) = 0, i = 1, . . . ,m}. If there exists x∗ ∈ S and λ ∈ Rm such that

∇f(x∗) +
m∑

i=1

λi∇hi(x∗) = 0

then the x∗ is global minimum of f .

Note 1: In the case of convex functions, the sufficient conditions for existence of global minimum

are obtained only by equating the partial derivatives of the Lagrangian to zero. The Hessian matrices

of functions f , hi are positive-definite and the second condition is not needed. In the case of convex

functions, the local minimum is global minimum.

1

Note 2: The factors λi, i = 1, . . . , m are called Lagrange multipliers regardless if functions are

convex or not.

3 Interpretation of Lagrange multipliers

Consider again the NLP problem with one equality constraint,

min f(x)

s.t. h(x) = 0

Let λ be the Lagrange multiplier corresponding to the one equality constraint. Assume a small

variation c in the right-hand side of the constraint. Note that, as in the LP case, the constraint often

specifies requirements in resources. Let x∗(0) be the optimal solution to the problem by having the

constraint h(x) = 0 and the value of the objective function is f(x∗(0)). Let x∗(c) be the optimal

solution by having the constraint h(x) = c , c ∈ R, and let the corresponding value of the objective

function be f(x∗(c)).

We calculate the rate of change of the value of the objective function for small variations of the

constraints,

df(x(c))
dc

=
∂f(x(c))

∂x1

dx1(c)
dc

+ . . . +
∂f(x(c))

∂xn

dxn(c)
dc

= ∇f(x(c)Tx′(c) (2)

where x′(c) is the vector of derivatives (dx1(c)/dc, . . . , dxn(c)/dc). From the first-order conditions

we have

∇f(x(c)) + λ∇h(x(c)) = 0 ⇒
∂f(x(c))

∂xi
+ λ∇∂h(x(c))

∂xi
= 0 for i = 1, . . . ,m ⇒

∂f(x(c))
∂xi

= −λ
∂h(x(c))

∂xi
fori = 1, . . . ,m.

We substitute in the equation above and we have:

df(x(c))
dc

= −λ

(
∂h(x(c))

∂x1

dx1(c)
dc

+ . . . +
∂h(x(c))

∂xn

dxn(c)
dc

)
= −λ

since if we differentiate both sides of the constraint h(x) = c with respect to c, we get that
∂h(x(c))

∂x1

dx1(c)
dc + . . . + ∂h(x(c))

∂xn

dxn(c)
dc = 1. Therefore, λ is interpreted as the rate of change in the

value of the objective function per unit of change in the resources. Thus it represents the price of

the unit of constraint requirement.

2

3.1 Sensitivity analysis for m > 1 constraints

Consider the NLP problem with more than one constraints:

min f(x)

s.t. h1(x) = 0, . . . ,hm(x) = 0.

Note that all constraints can be collectively described by vector h(x) = 0. Let λ be the vector of

Lagrange multipliers associated with the constraints.

Now let c ∈ Rm denote a vector of small changes in the right-hand sides of the constraints.

Similarly with the case of one constraint, we can define x(0) the optimal solution for constraints

h(x) = 0 and x(c) the optimal solution for constraints h(x) = c. By following the methodology for

the case of one constraint, we can prove:

∇cf(x(c)) = −λ ⇒




∂f(x(c))
∂c1
...

∂f(x(c))
∂cn




=




−λ1

...

−λn




where

λi =
∂f(x(c))

∂ci
(3)

is again the price per unit of the resource i, or equivalently the rate of the of the value of the objective

function with regard to small changes in the resource (constraint) i.

Remark - Local and global maximum of NLP problems

For the maximization problem

max f(x)

s.t. h1(x) = 0 , . . . ,hm(x) = 0

the second-order sufficient conditions for existence of local maximum are as follows: If there exist

x∗, λ such that the gradient of the Lagrangian function is zero,

∇f(x∗) +
m∑

i=1

λi∇h(x∗) = 0

and the Hessian matrix of the Lagrangian

Λ(x∗, λ) < 0,

3

i.e, the matrix is negative-definite, then x∗ is local maximum of f under the constraints hi(x) =

0, i = 1, . . . ,m.

Note: If f(x) is a concave function and the constraint functions hi(x), i = 1, . . . , m are also

concave, then x∗ is a global maximum of f in the constrained maximization problem.

Example 1: Consider the minimization problem,

min 1
2x

T Qx

subject to Ax = b

where Q > 0 is symmetric, positive definite matrix, A ∈ Rm×n,m < n and b ∈ Rm.

From equation Ax = b we get a Lagrangian multiplier vector λ. The Lagrangian function is:

L(x, λ) =
1
2
xT Qx + λT (b−Ax)

The objective function 1
2x

T Qx is convex because ∇f(x) = Qx and the Hessian is F (x) = Q > 0.

The Lagrange condition for existence of minimum is:

∇x ÃL(x, λ) = 0 ⇒

Qx−AT λ = 0 ⇒

and the optimal solution satisfies:

x∗ = Q−1AT λ

To find λ, we use the fact that x∗ is a feasible point, so it satisfies the constraints. So:

Ax = b ⇒

AQ−1Aλ = b ⇒

λ = (AQ−1A)−1b

Thus,

x∗ = Q−1AT (AQ−1AT)−1b (4)

is the global minimum of our problem.

Example 2: Consider the problem

max f(x) = x1x2 + x2x3 + x1x3

subject to: x1 + x2 + x3 = 3.

4

Solution: The Lagrangian function is:

L(x1, x2, x3, λ) = x1x2 + x2x3 + x1x3 + λ(x1 + x2 + x3 − 3)

We equate the partial derivatives ∂L
∂xi

= 0, i = 1, 2, 3, and we get the equations below:

x2 + x3 + λ = 0 (5)

x1 + x3 + λ = 0 (6)

x1 + x2 + λ = 0 (7)

and we also have the constraint:

x1 + x2 + x3 = 3 (8)

Solving the 4× 4 system of equations, we have:

x∗1 = 1, x∗2 = 1, x∗3 = 1, λ = −2

For the objective function f(x), we get the gradient vector:

∇f(x) =




x2 + x3

x1 + x3

x1 + x2




The Hessian matrix is:

F (x) =




0 1 1

1 0 1

1 1 0




and does not depend on x. The Hessian matrix for the constraint h(x) = x1 + x2 + x3 − 3 is:

H(x) =




0 0 0

0 0 0

0 0 0




Thus,

Λ(x∗, λ) = F (x∗) + λH(x∗) =




0 1 1

1 0 1

1 1 0




5

since H(x∗) = 0. Now, we don’t know whether the Hessian matrix is positive- or negative- definite

in R3. As a result,we cannot claim if ∀y ∈ R3 : yT Λy is a positive or negative quantity. But, we take

into account the precise formulation of the sufficient condition, which states that the Hessian should

be positive-definite (negative-definite) on the tangent plane to the surface defined by the constraints,

so as to have local minimum (local maximum) in the problem. The tangent plane to the surface

defined by the (one and only) constraint in the problem,

h(x) = 0 ⇒ x1 + x2 + x3 − 3 = 0

is

M = {
(

y1 y2 y3

)
: ∇h(x)Ty = 0} = {y :

(
1 1 1

)



y1

y2

y3




= 0} ⇒ (9)

and finally M = { (y1, y2, y3) : y1 + y2 + y3 = 0}. We examine if the Hessian matrix is positive- or

negative-definite at the tangent plane M. We have

yT Λy =
(

y1 y2 y3

)



0 1 1

1 0 1

1 1 0







y1

y2

y3




= y1(y2 + y3) + y2(y1 + y3) + y3(y1 + y2) (10)

We have:

y2 + y3 = −y1, y1 + y3 = −y2, y1 + y2 = −y3

and thus yT Λy = −y2
1 − y2

2 − y2
3 ≤ 0. Thus, the Hessian matrix is negative-definite and x∗ = (1, 1, 1)

that was found above is local maximum to the problem.

Example 3: Consider the problem

max
xT Qx
xT Px

(11)

with matrix Q = QT ≥ 0 and P = P T > 0 (Q,P are symmetric and positive-definite matrices).

In the problem above, if x is an optimal solution, then all multiples ax, a 6= 0, a ∈ R are optimal

solutions too. In order to avoid the multiplicity of solutions, we set xT Px = 1 and we get the

constrained problem of maximizing xT Qx subject to xT Px = 1.

The Lagrangian function is:

L(x, λ) = xT Qx + λ(1− xT Px) (12)

6

and by the condition ∇L(x, λ) = 0 ⇒ 2Qx− 2λPx = 0 ⇒ Qx = λPx ⇒ P−1Qx = λx.

From the above, we observe that if x is a solution and maximizes xT Qx then it is an eigenvector

which corresponds to some eigenvalue λ of matrix P−1Q. Thus, suppose that x∗ is optimal solution,

then we have: x∗T Px∗ = 1 and then

P−1Qx∗ = λ∗x∗ ⇒ PP−1Qx∗ = λ∗Px∗ ⇒ Qx∗ = λ∗Px∗ ⇒ x∗T Qx∗ = λ∗x∗T Px∗ ⇒ λ∗ =

x∗T Qx∗ where λ∗ is the Lagrange multiplier at the optimal solution.

Note that λ∗ must be one of the n eigenvalues of P−1Q, which are λ1 < λ2 < ... < λn).

In particular, λ∗ is the maximum eigenvalue of matrix P−1Q and the optimal solution x∗ is the

eigenvector which corresponds to the maximum eigenvalue λ∗ of P−1Q.

Example 4: Solve the problem

min cTx, (13)

subject to:
n∑

i=1

xi = 0 and
n∑

i=1

x2
i = 1 (14)

Solution:

x∗i =
ci + λ∗

µ∗
, (15)

with

λ∗ = − 1
n

n∑

i=1

ci, and µ∗ = ±1
2
n2

√√√√ 1
n

n∑

i=1

c2
i −

1
n

(−nλ∗)2 (16)

7

Advanced Topics in Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 22 : Example : Beamforming - 11/12/06

Notes by : George Noutsis and George Xatziparaskevas

1 Lecture outline

• Example : Beamforming

2 Example

We continue on the topic of Non-linear programming problems with equality constraints and we will

solve the problem:

minxT
Ax

s.t. cTx = 1

where x = (x1, . . . , xn), c = (c1, . . . , cn) and A is a matrix of dimension n×n. Let λ be the Lagrange

multiplier associated with the constraint of the problem. Thus the Lagrangian is,

L(x, λ) = xT
Ax + λ(cTx − 1) (1)

We use the conditions ∇xL(x, λ) = 0 ⇔
∂L

∂xi
= 0 and we have:

∇xL(x, λ) = 0 ⇒ 2Ax + λc = 0 ⇒ x∗
= −

1

2
λA

−1c.

Now, we use the constraint cTx = 1 to find the value of the Lagrange multiplier λ.

cTx = 1 ⇔ −
1

2
λcT

A
−1c = 1 ⇔ λ =

−2

cT
A

−1c

1

Figure 1: Different shapes of the antenna array radiation diagram as a result of controlling the

electric current phases and amplitudes.

Thus, the optimal soluton is

x∗
=

A
−1c

cT
A

−1c
(2)

As an application of this optimization problem, we will study the fundamental problem that arises

in the case of beam-forming.

3 Beamforming

In the case that we do not have a single omni-directional antenna but an array of omni-directional

antennas, we can adapt the radiation diagram by changing the amplitudes and phases of the alternate

electric currents that feed the antenna. Thus, for example, for an antenna array of M elements, the

radiation diagram (namely the width and length of the main lobe and the angle of the lobe) is a

function of of the complex numbers {Iie
jφi}

M

i=1
, where Ii is the amplitude and φi is the phase of the

alternate current which stimulate the antenna element i. Thus, we can control the radiation diagram

and dynamically change the shape and form and make diagrams like the ones depicted in figure 1.

Note that in the radiation diagram, most of the transmission power is concentrated towards a given

direction, that of the main lobe. There also exist several side lobes as well.

An antenna array of controllable radiation diagram is called adaptive antenna array or smart

antenna and the control of the radiation diagram is called beam-forming. Clearly, the radiation

diagram can be controlled either in order to transmit or to receive a signal. A smart antenna can

adapt its radiation diagram according e.g. to the instantaneous position of the user. The following

advantages exist for an adaptive antenna array:

1. Minimization of interference. Beam-forming can take place either in the reception or in trans-

2

 Filter
Matched

Matched
 Filter

Matched
 Filter

Adaptive

Beamforming

Array response
to the direction

of interest

Weights
Beamformer

W*

W*

W*K

1

0

S

t=nT

Figure 2: Block diagram of a receiver with an adaptive antenna array and a beamformer.

mission. We can shape the diagram in such a way that we can transmit or receive from a certain

direction, that specified by the main lobe. For reception, the antenna array can receive signals

only emitted from certain directions and attenuate signals emitted from other directions. The

same holds for transmission.

2. Capacity increase. A transmitter can transmit at the same conventional channel (frequency or

timeslot) to more than one users. Also, the same holds for the case of reception. In that case,

a different radiation diagram is formed for each user. Clearly, there exists a M -fold increase

in system capacity if the antenna array can serve at the same channel M users simultaneously

(in the same frequency and time slot).

If we have M antenna elements in the antenna array, there can be k ≤ M radiation diagrams, one

for each user. For simplicity assume that M = 2 here. The antenna can form at most two radiation

diagrams and each diagram corresponds to a complex vector w1 = (w11, w12) where w11 = I1e
jφ1

and w12 = I2e
jφ2 , and w2 = (w21, w22), defined similarly. The two vectors define the two radiation

diagrams (basically the main lobes) and each radiation diagram can serve one user (if w1 and w2

are linearly independent, the antenna array can serve simultaneously both users). Each radiation

diagram corresponds to a vector with dimension equal to the number of antenna elements.

We will now assume that the vectors are real numbers and we will not further worry about

complex numbers. Still, the theory can be extended to cover the complex number case. We will also

3

Desired
signal

Interference

Interference

Interference

Interference

Multipath

Figure 3: Example of an antenna array radiation diagram.

concentrate on the case where the signal of several users is received at a base station and the base

station will attempt to discriminate the signal of only one user (the one of interest) by computing

the beam-forming vector w.

The main signal processing segment at the receiver is the adaptive beamformer (Figure 2. The

adaptive beamformer finds vector w. Its task is to find M numbers (w1, . . . , wM) = w. The signal

yi that has reached the i-th antenna is multiplied by wi. Then we have to sum the above products

to find the interior product wTy = w1y1 + . . . wMyM as the total outcome of combining all received

signals at antennas by an appropriate number. That is, the output from each array element i is

weighted by a weight wi and added. The objective is to search for the wi’s such that the Signal-

to-Noise Ratio (SNR) of the signal of the user of interest is maximized. The SNR is taken at the

output, after the summation in figure 2.

We define the antenna array response vector to the direction of arrival θ as v(θ) = (vi(θ), . . . , vM (θ))

that shows how each antenna receives a signal coming from an angle θ. The received signal (vector

signal) at the M antennas at some frozen time t is

y(t) =

K
∑

j=1

√

PjGj

L
∑

ℓ=1

ajvj(θℓ)sj(t − τj) + n(t)

where:

K: number of users.

Pj : transmission power of the user j

4

Gj : path gain (denoting the distance loss) between user j and the BS. It is given by Gj =
1

d
γ
j

, where

dj is the distance from user j to the BS and γ is a constant that depends on the environment.

L: The number of paths of the multi-path (assume each user has its signal arriving through L paths).

Each of these (user j) paths has:

α
ℓ

j
: Attenuation factor of path ℓ of user j because of shadowing (this is a random number, usually

log-normally distributed).

θℓ: angle of arrival of ℓ-th path.

vj(θℓ): Response vector of the antenna to a signal which is sent from user j and comes from path

angle θℓ.

sj : the transmitted signal of user j.

τj : Signal delay for the signal of user j.

n(t): A vector that indicates noise at the receiver in each antenna.

Each user j can be completely specified by a vector called spatial signature of user j,

aj =

L
∑

ℓ=1

α
ℓ

j
vj(θℓ). (3)

As we can see, the spatial signature depends on

• position of user i,

• number of paths,

• direction of arrival (DoA) of each path,

• shadowing coefficient of each path.

Thus, we have:

y(t) =

k
∑

j=1

√

PjGjajsj(t − τj) + n(t)

Let the transmitted signal sj by user j be represented as:

sj(t) =

∑

n

bj(n)g(t − nT)

where,

g(·): pulse shaping filter function, specifying the shape of the pulse on which the bits will be carried.

5

T : The symbol time.

{bj(n)}, n = 1, . . . ,: the sequence of bits.

At the receiver, we have the matched filter receiver (matched to the pulse shaping filter function

of the transmitter) that is given by g(t) = g
∗
(−t). The output of the matched filter is sampled at

discrete times t = nT (once in a symbol time) and we have the received discrete-time signal at the

output of the matched filter as

y(n) = y(t) ∗ g
∗
(−t)|t=nT

Convolution of the received signal with the matched filter and sampling at t = nT, n = 1, . . . is

equivalent to operation
∫

nT

(n−1)T

∑

n

b(n)g(t − nT)g
∗
dt = b(n)

The receiver calculates the above integral in each symbol time interval. Thus, the signal from

continuous-time becomes discrete-time:

y(n) =

K
∑

j=1

√

PjGjajbj(n) + n(n)

The expected power of the output signal after the beamforming and the multiplication with factors

wi is,

E[e
2
] = E

[

|wTy|
2
]

= E
[

wTyyTw
]

= wT
E[yyT

︸︷︷︸

A

]w

Matrix A is of dimension M × M and each element Aij = E[yiyj] shows the correlation between

received signals at antennas i and j. We can see from the relation above that

A =

K
∑

j=1

PjGjaja
T

j + σ
2
I

under the assumptions that user signals are zero-mean (E[|bi(n)|] = 0), different user signals are

uncorrelated (E[bi(n)bj(n)] = 0, for i 6= j), user signals are unit-power (E[|b2

i
(n)|] = 1). Also each

random variable representing noise at each antenna is Gaussian with zero mean and variance σ
2
, and

the noise variables at different antennas are uncorrelated:

E[ninj] =







0 ,if i 6= j

σ
2

, if i = j

The base station receives data from all K users and needs to calculate the beam-forming vector

w to distinguish the signal of a user i. We can write the matrix A as consisting of two parts,

6

one concerning the user of interest i and another concerning all other users (which is essentially

interference),

A = PiGiaia
T

i
︸ ︷︷ ︸

Ai

+

∑

j 6=i

PjGjaja
T

j + σ
2
I

︸ ︷︷ ︸

A
int

Thus, we have:

E[wT
Aw] = wT

(PiGiaia
T

i +Aint)w = wT
Aintw+PiGi‖w

Tai‖
2
⇒ E[e

2
] = PiGi‖w

Tai‖
2
+wT

Aintw

The expected signal power at the output comprises the signal power that originates from user i and

the power that originates from all other users. Thus, we have for the signal-to-interference and noise

ratio:

SINRi =
PjGj‖w

Tai‖
2

wT
Aintw

,

The receiver wants to find the vector w to maximize SINRi, so it faces the problem:

max
w

SINRi = min
w

wT
Aintw

PjGj‖wTai‖
2

This is equivalent to maintaining wTai = 1 (fixed) at the direction of the user of interest and trying

to minimize interference. Thus, the problem becomes:

min
w

wT
Aintw

subject to: wTai = 1

From the solution of the problem in the beginning of the lecture, we find that the optimal beam-

forming vector w∗
is:

w∗
=

A
−1

int
ai

aT

i
A

−1

int
ai

7

Advanced Topics in Networking - Fall 2006

Instructor Iordanis Koutsopoulos

Lecture 23 : NLP problems with inequality constraints - 12/12/06

Notes by : Anastasia Narou and Maria Papadopoulou

1 Lecture outline

• Karush-Kuhn-Tucker theorem

• Necessary and sufficient conditions for local minimum in problems with inequality constraints

2 Definitions

In previous lectures, we studied non-linear programming problems with equality constraints. We

will now generalize the theory to problems which also have inequality constraints. Namely, we will

consider problems of the form:

min f(x) (1)

subject to:

hi(x) = 0, i = 1, ..., m, and gj(x) ≤ 0, j = 1, ..., p. (2)

A point x0 is called feasible if it satisfies all constraints, namely it is hi(x0) = 0, i = 1, ..., m

and gj(x0) ≤ 0, j = 1, ..., p.

An inequality constraint gj(·) is called active at point x0 if it is satisfied with equality, namely

it is gj(x0) = 0, otherwise it is called inactive.

Let J (x0) be set of indices of inequality constraints that are active at point x0. A point x0

is called regular point of the constraints if the vectors ∇hi(x0), for i = 1, . . . , m and ∇gj(x0)(for

j ∈ J (x0) are linearly independent.

1

3 First-order Necessary Conditions for existence of local minimum

Define the Lagrangian function at point x, as

L(x,λ, µ) = f(x) +
m∑

i=1

λihi(x) +
p∑

j=1

µjgj(x) (3)

where λi, i = 1, . . . ,m are the Lagrange multipliers corresponding to the equality constraints and µj ,

j = 1, . . . , p are the Karush-Kuhn-Tucker (KKT) multipliers corresponding to inequality constraints

gj(x) ≤ 0.

3.1 Karush-Kuhn-Tucker (KKT) theorem

Suppose that x∗ is a regular point of constraints hi(x) = 0, i = 1, ..., m and gj(x) ≤ 0, j = 1, ..., p. If

x∗ is a local minimum of f(x) subject to the constraints hi(x) = 0, i = 1, ...,m and gj(x) ≤ 0, j =

1, ..., p, then there exist vectors λ ∈ Rm and µ ≥ 0, µεRp such that:

•
∇L(x, λ, µ) = ∇f(x∗) +

m∑

i=1

λi∇hi(x∗) +
p∑

j=1

µj∇gj(x∗) = 0 (4)

•
p∑

i=1

µjgj(x∗) = 0 (5)

Note that in the second equation above, since µj ≥ 0 and g(x∗) ≤ 0, the fact that
∑p

i=1 µjgj(x∗) = 0

means that each term of the summation, µjgj(x∗) = 0. This further means the following: if the j-th

KKT multiplier is µj > 0, then the corresponding constraint gj(x∗) = 0, i.e it is met with equality at

the optimal solution x∗. Also, if a constraint is satisfied with strict inequality at the optimal solution,

i.e, gj(x∗) < 0 then the corresponding KKT multiplier µj = 0. These conditions are reminiscent of

complementary slackness ones we saw at Linear Programming.

Example: Consider the problem

min 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2 (6)

subject to:

x2
1 + x2

2 ≤ 5, and 3x1 + x2 ≤ 6 (7)

The Lagrangian is:

L(x1, x2, µ1, µ2) = 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2 + µ1(x2
1 + x2

2 − 5) + µ2((3x1 + x2 − 6). (8)

2

From the KKT theorem, we have that if (x∗1, x
∗
2) is local minimum, then

∂L(·)
∂x1

(x∗1, x
∗
2) = 0 (9)

∂L(·)
∂x2

(x∗1, x
∗
2) = 0. (10)

So we get the equalities:

4x1 + 2x2 − 10 + 2µ1x1 + 3µ2 = 0

2x1 + 2x2 − 10 + 2µ1x2 + µ2 = 0.

Furthermore it is µ1 ≥ 0, µ2 ≥ 0 and also we have the conditions:

µ1(x2
1 + x2

2 − 5) = 0 (11)

µ2(3x1 + x2 − 6) = 0 (12)

Then if we want to find a point that satifies the necessary conditions of KKT theorem, we should start

by taking cases and try various combinations of active constraints and chack signs of the resulting

KKT multipliers.

Assume that µ2 = 0 Ã 3x1 + x2 − 6 < 0 and that µ1 > 0 Ã x2
1 + x2

2 − 5 = 0.

Then, for the conditions of the partial derivatives, we replace with µ2 = 0 and we have:

4x1 + 2x2 − 10 + 2µ1x1 = 0, and 2x1 + 2x2 − 10 + 2µ1x2 = 0. (13)

Also, since µ1 > 0, the first constraint holds with equality, x2
1 + x2

2 − 5 = 0.

We soolve the system of equations and find x∗1 = 1, x∗2 = 2, µ∗1 = 1 and this gives 3x∗1 +x∗2−6 =

−1 < 0 and thus the second constraint is satified. Similarly, we can try other cases:

µ1 > 0, µ2 > 0,

µ1 = 0, µ2 > 0

µ1 = 0, µ2 = 0.

3.2 Graphical interpretation of KKT theorem

Consider the problem of minimizing function x subject to three inequality constraints g1(x) ≤ 0,

g2(x) ≤ 0 and g3(x) ≤ 0. Each of the inequality constraints defines a subspace that is located on the

one side of the curve gj(x) = 0.

3

����

�����
�����
�����

�����
�����
�����

���
���
���
���

������
������
������
������

������
������
������
������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

������
������
������
������
������

������
������
������
������
������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��
��
��
���������
���
���

���
���
���

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

f=C

f=C

f=C

1

3

2
g () <= 0

g () <= 03

g () <= 01

2

x

x

x

x*

g (x)

g (x)

2
*

1
*

C < C < C1 2 3

f (x)*

Figure 1: Graphical representation of the KKT theorem.

Assume that at the optimal point, x∗, we have that the active constraints are the first and the

second, i.e it is g1(x∗) = 0 and g2(x∗) = 0, while the third one is inactive, g3(x∗) < 0. This case is

depicted in figure 3.1.

The KKT theorem states that if x∗ is local minimum of f(·), subject to the constraints gj(·) ≤ 0,

j = 1, 2, 3, then:

∇f(x∗) + µ1∇g1(x∗) + µ2∇g2(x∗) + µ3∇g3(x∗) = 0 (14)

Since g3(x∗) < 0 (inactive) −→ µ3 = 0 and we have

∇f(x∗) = −µ1∇g1(x∗)− µ2∇g2(x∗) (15)

that is, the gradient of f at point x∗ is linear combination of the gradients of the active constraints

at x∗.

3.3 Other forms of optimization problems

We saw that when we have the minimization problem

min f(x) (16)

subject to: hi(x) = 0, i = 1, ..., m and gj(x) ≤ 0, j = 1, ..., p then we have the condition of the

gradient of the Lagrangian being zero and also µj ≥ 0 for j = 1, . . . , p.

4

What happens now if we have the problem:

max f(x) (17)

subject to: hi(x) = 0, i = 1, ..., m and gj(x) ≤ 0, j = 1, ..., p.

Write the objective as max f(x) = −min f(x), subject to hi(x) = 0, i = 1, ..., m and gj(x) ≤
0, j = 1, ..., p.

How will the KKT change? Let us apply the KKT theorem to the minimization problem of

−f(x).

If x∗ is local maximum then

∇xL(x∗, λ,µ) = ∇(−f(x∗)) +
m∑

i=1

λi∇hi(x∗) +
p∑

j=1

µj∇gj(x∗) = 0 (18)

and also: µ ≥ 0 and µjgj(x) = 0, ∀j.
⇒ Multiplying with (-):

∇f(x∗)−
m∑

i=1

λi∇hi(x∗)−
p∑

j=1

µj∇gj(x∗) = 0 ⇒ (19)

∇f(x∗) +
m∑

i=1

λi∇hi(x∗) +
p∑

j=1

µj∇gj(x∗)) = 0, (20)

with µj ≤ 0. Thus, if x∗ is local maximum, then x∗ satisfies ∇L(x∗,λ, µ) = 0 and now it should be

µ ≤ 0. The condition µjgj(x∗) = 0 for each j = 1, . . . , p should also hold.

Now assume we have the problem: min f(x)

subject to: hi(x) = 0, i = 1, . . . , m and gj(x) ≥ 0, j = 1, . . . , p, i.e the inequalities are now reversed.

We multiply with −1, so as to bring the inequality in the usual form: −gj(x) ≤ 0

Then, the KKT theorem is: If x∗ local minimum of f , then:

∇f(x∗) +
m∑

i=1

λi∇hi(x∗) +
p∑

j=1

µj(−gj(x∗)) = 0 ⇒ (21)

∇f(x∗) +
m∑

i=1

λi∇hi(x∗)−
p∑

j=1

µj∇gj(x∗) = 0, µj ≥ 0 (22)

or

∇f(x∗) +
p∑

i=1

λi∇hi(x∗) +
p∑

j=1

µj∇gj(x∗) = 0, µj ≤ 0 (23)

There is also a fourth case that is treated similarly.

5

In conclusion, we have 4 cases:

i) min f(x), subject to: hi(x) = 0, i = 1, ...,m

gj(x) ≤ 0, j = 1, ..., p.

ii) max f(x), subject to: hi(x) = 0, i = 1, ...,m

gj(x) ≤ 0, j = 1, ..., p.

iii) min f(x), subject to: hi(x) = 0, i = 1, ..., m

gj(x) ≥ 0, j = 1, ..., p.

iv) max f(x), subject to: hi(x) = 0, i = 1, ..., m

gj(x) ≥ 0, j = 1, ..., p.

If we write the KKT condition at point x∗, for all 4 cases we get that:

∇L(x∗, λ, µ) = ∇f(x∗) +
m∑

i=1

λi∇hi(x∗) +
p∑

j=1

µj∇gj(x∗) = 0 (24)

and µjgj(x∗) = 0 for each j = 1, . . . , p. For each of the 4 cases, we have:

i) µj ≥ 0, j = 1, ..., p.

ii) µj ≤ 0, j = 1, ..., p.

iii) µj ≤ 0, j = 1, ..., p.

iv) µj ≥ 0, j = 1, ..., p.

Example: Which are the conditions of KKT theorem for the problem below:

min f(x) subject to: x ≥ 0.

Solution

∇f(x∗) ≥ 0

x∗ ≥ 0 and

∑

i

xi
∂f(x∗)

∂xi
= 0. (25)

4 Second-order necessary conditions for existence of local mini-

mum

If x∗ is a regular point of the constraints:

hi(x∗) = 0, i = 1, ..., m

gj(x∗) ≤ 0, j = 1, ..., p

6

and if x∗ is local minimum of f subject to the constraints above, then ∃ λ ∈ Rm, µ ≥ 0 (∈ Rp
+)

such that:

i) ∇L(x∗, λ, µ) = 0

ii) µjgj(x∗) = 0, j = 1, . . . , p

iii) The Hessian matrix of the Lagrangian function,

Λ(x∗,λ, µ) = F (x∗) +
m∑

i=1

λiHi(x∗) +
p∑

j=1

µjGj(x∗) (26)

where F (x∗): Hessian matrix of f(x) at x∗,

Hi(x∗): Hessian matrix of hi(x) at x∗,

Gj(x∗): Hessian matrix of gj(x) at x∗

is positive semi-definite on the tangent subspace of the active constraints at x∗.

7

Advanced Topics on Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 24 : Sufficient conditions for NLP problems, water-filling -

12/12/06

Notes by Eleni Galanou and Despina Koutsagia

1 Second Order Sufficient Conditions for existence of local mini-

mum

Consider the problem:

min f(x)

s.t. hi(x) = 0, i = 1, . . . , m,

gj(x) ≤ 0, j = 1, . . . , p.

If ∃ λ ∈ Rm, µ ∈ Rp
+, µ ≥ 0 such that:

I.

∇L(x∗, λ,µ) = ∇f(x∗) +
m∑

i=1

λi∇hi(x∗) +
p∑

j=1

µj∇gj(x∗) = 0 (1)

II. µjgj(x∗) = 0, j = 1, . . . , p,

III. The Hessian matrix of the Lagrangian function,

Λ(x∗, λ,µ) = f(x∗) +
m∑

i=1

λiHi(x∗) +
p∑

j=1

µjGj(x∗) > 0, (2)

is positive-definite on the subspace

M = {y : ∇hi(x∗)Ty = 0,∇gj(x∗)Ty = 0 for j ∈ J (x∗)}, (3)

1

with J (x∗) = {j : gj(x∗) = 0, µj > 0} the set of active constraints at point x∗. Thus, M is

the subspace that is tangent level to the surface of the active constraints

then x∗ is local optimum of function f .

Remark: Note that in our problems, unless otherwise specified, we will always assume that

M = Rm and thus we will not worry about finding an explicit characterization of M. However, we

will need to show that matrix Λ(·) is positive-definite, i.e for all y ∈ Rm it is yT Λy > 0.

2 Sensitivity analysis

Consider the problem:

min f(x)

s.t. h(x) = 0

g(x) ≤ 0

Note that we have collectively described all equality constraints and all inequality constraints

with two vectors h(·) and g(·) respectively. Now, assume we increase the right-hand side of the

constraints (resources) as follows:

h(x) = c

g(x) ≤ d

Let x(0,0) to be the optimal solution to the initial problem and let x(c,d) be the solution of the

problem formed after we increased the right-hand sides of constraints. Then by following a similar

reasoning as the one in the sensitivity analysis for problems with equality constraints, we have:

∇cf(x, (c,d)) = −λ

∇df(x, (c,d)) = −µ

and for the i-th Lagrange multiplier we have:

λi = −∂f(x(c,d))
∂ci


(c,d)=(0,0)

namely λi is the rate of change of the objective function with respect to a unit of change in the i-th

equality constraint, i.e it is the derivative of the cost function with respect to the quantity ci that

the i-th equality constraint changes.

2

For the j-th KKT multiplier we have:

µj = −∂f(x(c,d))
∂dj


(c,d)=(0,0)

namely µj is the rate of change of the objective function with respect to a unit of change in the

j-th inequality constraint, i.e it is the derivative of the cost function with respect to the quantity dj

that the j-th inequality constraint changes.

Thus, λi, µj can be interpreted as price per unit of the corresponding resource that is described by

the i-th equality or the j-th inequality constraint.

Problem: Consider the problem

minf(x1, x2) = (x1− 1)2 + x2 − 2

subject to: h(x) = x2 − x1 − 1 = 0 (λ)

g(x) = x1 + x2 − 2 ≤ 0 (µ ≥ 0)

We define one Lagrange multiplier λ for the equality constraint and one KKT multiplier µ for

the inequality constraint. We define the Lagrangian function and we consider:

∇L(x∗1, x
∗
2, λ, µ) = 0 ⇒





∂L(·)
∂x1

= 0
∂L(·)
∂x2

= 0

and also we have the condition:

µ(x1 + x2 − 2) = 0

µ ≥ 0

We have the following two cases:

a) µ > 0 ⇒ x1 + x2 − 2 = 0

Thus, using the 4 equations we compute x∗1 = 1/2, x∗2 = 3/2, λ∗ = −1, µ∗ = 0 and we confirm

whether µ > 0 is satisfied. Since µ = 0 we arrive at paradox so this is not the case, and we

proceed to the next case.

b) µ = 0 ⇒ x1 + x2 − 2 < 0

Thus, using the 3 equations we compute x∗1 = 1/2, x∗2 = 3/2, λ∗ = −1 and we confirm whether

(x∗1, x
∗
2) feasible. It turns out that this is the case, and thus (x∗1, x

∗
2) is the optimal solution to

the problem.

3

3 Second-order Sufficient Conditions for Convex Functions

Consider the problem:

min f(x)

subject to:

hi(x) = 0, i = 1, . . . , m

gj(x) ≤ 0, j = 1, . . . , p,

with functions f, hi, gj convex, i = 1, . . . ,m and j = 1, . . . , p. The second-order sufficient conditions

for existence of minimum in this case are as follows:

If ∃ x∗, λ ∈ Rm, µ ∈ Rp
+. µ ≥ 0 such that:

I.

∇L(x∗, λ,µ) = ∇f(x∗) +
m∑

i=1

λi∇hi(x∗) +
p∑

j=1

µj∇gj(x∗) = 0 (4)

II. µjgj(x∗) = 0, j = 1, . . . , p

then x∗ is global minimum of function f subject to the constraints.

4 The water-filling algorithm

As an example of an optimization problem with equality and inequality constraints, we will consider

a problem that arises in various resource allocation instances. Consider a transmitter that has at its

disposal N orthogonal channels for transmission. The transmitter has a total amount of power P ,

assume that P = 1 without loss of generality.

The transmission rate (capacity) Ci for a channel i is given by Ci = log2(1 + Pi
Ni

), where Pi is

transmission power assigned to channel i and Ni is the noise power (noise variance) of channel i,

i = 1, . . . , N .

The objective is to allocate (split) the available power across channels so as to maximize total

achieved capacity in all channels. This problem arises in OFDM systems in which the transmitter

transmits in parallel using N sub-carrier frequencies. Also, the capacity can be viewed as a special

case of a utility function U(·). The utility function U(x) measures the amount of satisfaction of a

user or consumer if an amount x of good (power, bandwidth, etc) is allocated to it. Here, obviously

4

the resource is the power and the capacity is the derived utility. The problem can be formulated as

follows:

max
N∑

i=1

log2

(
1 +

Pi

Ni

)

subject to:
N∑

i=1

Pi = 1, Pi ≥ 0, i = 1, . . . , N. (5)

Note that in the most general case of utility function, we have the optimization problem of distributing

a total amount of good W across users or consumers so as to maximize total utility

max
N∑

i=1

Ui(xi)

subject to
N∑

i=1

xi = W, and xi ≥ 0, (6)

where Ui(·) is the utility function of user i. Now, the capacity maximization problem we are dealing

with can be written equivalently as

min−
N∑

i=1

log
(

1 +
Pi

Ni

)

subject to
N∑

i=1

Pi = 1 (7)

and

−Pi ≤ 0, i = 1, . . . , N (8)

Define a Lagrange multiplier λ for the equality constraint and a KKT multiplier µi ≥ 0 for each

inequality constraint i = 1, . . . , N . Note also that in the above formulation we have omitted for

simplicity the base 2 of the logarithm.

The initial problem is actually case 4 of the four cases we considered in the previous lecture,

while the transformed one is of the form of case 1. Both are equivalent. The Lagrangian function is,

L(P, λ, µ) = −
N∑

i=1

log
(

1 +
Pi

Ni

)
+ λ

(
N∑

i=1

Pi − 1

)
+

N∑

i=1

µi(−Pi)

= −
N∑

i=1

log
(

1 +
Pi

Ni

)
+ λ

(
N∑

i=1

Pi − 1

)
−

N∑

i=1

µiPi

We apply KKT conditions to solve the problem:

5

I.

∇PL(P, λ, µ) = 0 ⇒ ∂L(P, λ,µ)
∂Pi

= 0 ⇒ − 1

1 +
Pi

Ni

1
Ni

+ λ− µi = 0 ∀ i (9)

II.

µiPi = 0, ∀ i (10)

and we also have: Pi ≥ 0,
∑N

i=1 Pi = 1 and µi ≥ 0, i = 1, . . . , N .

We solve (9) for µi:

µi = λ− 1
Pi + Ni

(11)

and substitute in µiPi = 0 to get: (
λ− 1

Pi + Ni

)
Pi = 0 (12)

We distinguish three cases:

i) Pi > 0 and
(
λ− 1

Pi+Ni

)
Pi = 0.Then,

λ =
1

Pi + Ni
⇒ Pi =

1
λ
−Ni (13)

However, since we do not know λ, we do not know the sign of 1
λ − Ni, and we can say that

if 1
λ > Ni ⇒ Pi = 1

λ −Ni, since it has to be Pi ≥ 0.

ii)
(
λ− 1

Pi+Ni

)
> 0 and Pi = 0. Then,

Pi = 0 if
1
λ

< Ni (14)

iii) 1
λ = Ni. Then, (

1
Ni

− 1
Pi + Ni

)
Pi = 0 ⇒ (15)

Pi + Ni −Ni

(Pi + Ni)Ni
Pi = 0 ⇒ Pi = 0 (16)

Thus in conclusion we have:

P ∗
i =





1
λ∗ −Ni, if

1
λ∗

> Ni

0, if 1
λ∗ ≤ Ni

or equivalently,

P ∗
i =

(
1
λ∗
−Ni

)+

= max
(

0,
1
λ∗
−Ni

)
with x+ =





x , if x > 0

0 , if x ≤ 0

6

From the form of the solution above, we can see that the quantity 1
λ∗ is common for all channels

and resembles a kind of ”water-level”. Note that the better quality the channel is (the smaller the

noise power), the more power is allocated to it. Also, the more noisy the channel, the less the power

that is allocated to it. If the channel is ”too noisy”, i.e the noise power exceeds a certain power, then

it is better from a capacity point of view not to allocate any power in the channel.

The result of water-filling can be seen in figure 1. In order to compute λ, one could argue that

the constraint
∑N

i=1 P ∗
i = 1 could be used, or

∑N
i=1

(
1
λ∗ −Ni

)+ = 1. However, it is not possible to

solve the equation with regard to λ analytically, since we do not know in advance whether in different

channels i the quantity 1
λ∗ −Ni will be positive or negative.

1 2 3 N

N1 N2 N3 NN

P1 PNP2

1

λ∗

Figure 1: Water-filling algorithm with different amount of power Pi allocated to each channel i.

Instead, we use a simple algorithm. Each column represents a channel and the height of each

column reflects the noise. There are N channels that are differentiated due to different noise level.

Also the quantity 1
λ∗ as we said is common for all channels.

We divide available power P = 1 into small quantities ε. We start allocating power in small

quantities ε to the channel i1 with the best quality (the less noise power Ni1) until we reach the

level of a channel i2 of the second best quality, i.e second smallest N . From that point, we assign

power ε to each of channels i1, i2 until we reach channel i3 with the third best quality (third smallest

N). Then we allocate power ε to these three channels. We continue in that fashion until we exhaust

the available power. The point where we exhaust the power defines the final water level 1
λ∗ . The

procedure is shown in figure 2.

7

1 2 3

N1
N2 N3

1

λ∗

4

N4

Figure 2: Successive power allocation in water-filling.

8

Advanced Topics in Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 25 : Lagrangian Duality - 18/12/06

Notes by : Charalampos Daskalakis and Constantinos Houmas

1 The Lagrangian dual function

1.1 The Lagrangian

We consider an optimization problem (P) in the form:

min f(x)

s.t. hi(x) = 0, i = 1, . . . , p

gj(x) ≤ 0, j = 1, . . . ,m

(1)

Ω =





x : hi(x) = 0, i = 1, . . . , p

gj(x) ≤ 0, j = 1, . . . ,m





with variable x ∈ Ω.

In Lagrangian duality, we start by writing the Lagrangian:

L(x, λ, µ) = f(x) +
m∑

i=1

λihi(x) +
p∑

j=1

µjgj(x) (2)

We refer to λi as the KKT multiplier associated with the ith inequality constraint fi(x) ≤ 0;

similarly we refer to µi as the Lagrange multiplier associated with the ith equality constraint hi(x) =

0. Vectors λ and µ are called the dual variable vectors associated with the problem (1). We may call

both kinds of variables Lagrangian variables.

1

1.2 The Lagrangian dual function

We define the Lagrange dual function lD as the minimum value of the Lagrangian over x. That is,

for λ ∈ Rm, µ ∈ Rp,

lD(λ, µ) = min
x∈Ω

L(x, λ, µ) = min
x∈Ω

{f(x) +
m∑

i=1

λihi(x) +
p∑

j=1

µjgj(x)} (3)

1.3 Lower bounds on optimal value

The Lagrangian dual function yields lower bounds on the optimal value f(x∗) of the problem (1):

For any λ ≥ 0 and any µ we have

lD(λ, µ) ≤ f(x∗). (4)

Suppose x0 is a feasible point for the problem (1), i.e., hi(x) = 0, gj(x) ≤ 0, and λ ≥ 0. Then

we have

m∑

i=1

λihi(x0) +
p∑

j=1

µjgj(x0) ≤ 0 (5)

since each term in the first sum is non-positive, and each term in the second sum is zero, and therefore

L(x0, λ, µ) = f(x0) +
m∑

i=1

λihi(x0) +
p∑

j=1

µjgj(x0) ≤ f(x0) (6)

Note that in the second sum, we have that each term is zero, since µj ≥ 0 and gj(x0) ≤ 0. Thus,

lD(λ, µ) = min
x∈Ω

L(x, λ, µ) ≤ L(x0, λ, µ) ≤ f(x0) (7)

So ∀ x0 which is feasible, lD(λ, µ) ≤ f(x0) ≤ f(x∗), and (4) holds.

2 Lagrangian dual problem

We saw from inequality (4), that we can get a lower bound from lD on the optimal value of the

objective function for each pair (λ, µ) with µ ≥ 0. The next natural question is to find the best

lower bound that can be obtained by the Lagrangian dual function. This brings us to the formulation

of the Lagrangian dual problem (LD), which is given as:

max lD(λ, µ)

s.t. λ ≥ 0.
(8)

2

There are two main reasons why we prefer to solve (LD) problem instead of the original one (P).

The first reason is because it may be easier to solve (LD) since it has fewer constraints, and second

and most important, because lD(λ, µ) is always concave, independently of the original (P). This last

claim can be shown by the following line of thoughts:

Consider functions of one variable for simplicity. First we need to show that if f1(x), f2(x)

are concave functions, then f(x) = min {f1(x), f2(x)} is also concave. We know that a function is

concave when: f(ϑx + (1− ϑ)y) ≥ ϑf(x) + (1− ϑ)f(y).

In our case:
f(ϑx + (1− ϑ)y) = min {f1(ϑx + (1− ϑ)y), f2(ϑx + (1− ϑ)y)} ≥

min {ϑf1(x) + (1− ϑ)f1(y), ϑf2(x) + (1− ϑ)f2(y)} ≥
ϑmin {f1(x), f2(x)} + (1− ϑ)min {f1(y), f2(y)} =

ϑf(x) + (1− ϑ)f(y)
The above result can be extended for more functions f1(x), f2(x), . . . , fn(x) and is also valid for

convex functions f1(·), f2(·), if min is substituted by max.

So from the (LD) problem we see that lD(λ, µ) = min
x
{ linear functions of λ and µ}. Since we

know that all linear functions can be considered to be concave, the proof is completed.

2.1 Week Duality

The optimal value of the Lagrangian dual problem (LD), which we denote d∗ = lD(λ∗,µ∗), is, by

definition, the best lower bound on p∗ = f(x∗), which is the optimal value of primal problem (P). In

particular, we have the important inequality:

d∗ ≤ p∗. (9)

This property is called Weak Duality Lemma and can be shown as follows:

f(x) ≥ p∗ = min
x∈Ω

f(x) ≥ min
x∈Ω

{f(x) +
m∑

i=1

λihi(x) +
p∑

j=1

µjgj(x)} = lD(λ, µ)

⇒ f(x) ≥ p∗ ≥ lD(λ, µ) ∀λ, µ

⇒ f(x) ≥ p∗ ≥ lD(λ∗, µ∗) = d∗.

The weak duality inequality (9) holds even if d∗ and p∗ are infinite. If the primal problem (P) is

unbounded from below, so that p∗ = −∞, we must have d∗ = −∞, i.e., the Lagrange dual problem

is infeasible. Conversely, if the dual problem (LD) is unbounded from above, so that d∗ = ∞, we

must have p∗ = ∞, i.e., the primal problem is infeasible.

3

We refer to the difference p∗ − d∗ as the optimal duality gap of the original problem, since it

gives the gap between the optimal value of the primal problem and the best (i.e., greatest lower

bound on it that can be obtained from the Lagrangian dual function. The optimal duality gap is

always nonnegative.

2.2 Strong Duality

If the equality

d∗ = p∗ (10)

holds, i.e., the optimal duality gap is zero, then we say that strong duality holds. This means that

the best bound that can be obtained from the Lagrange dual function is tight.

Strong duality does not, in general, hold. But if the primal problem (P) is convex, i.e., of the

form
minimize f(x)

s.t. gj(x) ≤ 0, j = 1, . . . ,m

Ax = b

(11)

with functions f(·), g1(·), . . . , gm(·) convex, we usually (but not always) have strong duality. There

are many results that establish conditions on the problem, beyond convexity, under which strong

duality holds. These conditions are called constraint qualifications.

One such simple constraint qualification is Slater’s condition: The condition says: if there exists

x ∈ Ω such that

gj(x) ≤ 0, j = 1, . . . ,m, Ax = b (12)

then we have strong duality.

3 Solving primal problem (P) using Lagrangian dual (LD)

We transform our primal problem (P) in its Lagrangian dual form

max
λ,µ≥0

lD(λ, µ) (13)

In order to find λ∗, µ∗ we start from an arbitrary λ0 and µ0 and use the gradient ascent method:

λ(t+1) = λ(t) + α∇λlD(λ, µ) (14)

4

and

µ(t+1) = µ(t) + α∇µlD(λ, µ). (15)

If µ < 0 somewhere, then we substitute with 0. In case lD(λ, µ) is not differentiable, we use the so

called super-gradient method.

Vector λ is called super-gradient of function f at x0 if and only if:

f(x)− f(x0) ≤ λT (x− x0). (16)

These topics are considered advanced and we will not elaborate in them more.

4 Saddle-point interpretation

In this section we give several interpretations of Lagrangian duality.

4.1 Max-min characterization of weak and strong duality

To simplify the discussion we assume there are no equality constraints. The results are easily extended

to cover them. First note that

max
µ≥0

L(x, µ) = max
µ≥0


f(x) +

p∑

j=1

µjgj(x)


 (17)

We can express the optimal value of the primal problem as

p∗ = min
x

max
µ≥0

L(x, µ). (18)

By definition of the dual function, we also have

d∗ = max
µ≥0

min
x

L(x, µ). (19)

Thus, weak duality can be expressed as the inequality:

max
µ≥0

min
x

L(x, µ) ≤ min
x

max
µ≥0

L(x,µ) (20)

and strong duality as the equality:

max
µ≥0

min
x

L(x, µ) = min
x

max
µ≥0

L(x,µ) (21)

5

Strong duality means that the order of the minimization over x and the maximization over

µ ≥ 0 can be switched without affecting the result.

In fact, the inequality (20) does not depend on any properties of function L(·), and therefore

we have:

max
z∈Z

min
w∈W

f(w, z) ≤ min
w∈W

max
z∈Z

f(w, z) (22)

for any f : Rn ×Rm → R (and any W ⊆ Rn and Z ⊆ Rm). This general inequality is called the

max-min inequality. When equality holds, i.e.,

max
z∈Z

min
w∈W

f(w, z) = min
w∈W

max
z∈Z

f(w, z) (23)

we say that f (and W and Z) satisfy the strong max-min property or the saddle-point property.

We refer to a pair w0 ∈ W, z0 ∈ Z as a saddle-point of function f(·) (and W and Z) if

f(w0, z) ≤ f(w0, z0) ≤ f(w, z0) (24)

for all w ∈ W and z ∈ Z.

4.2 Game theory interpretation of saddle point

We can interpret max-min inequality (20) the max-min equality (21) and the saddle-point property

in terms of a zero-sum game with two players, where each players has a continuous set of strategies.

If the first player (P1) chooses w ∈ W, and the second player (P2) selects z ∈ Z, then P1 pays an

amount f(w, z) to P2. P1 therefore wants to minimize f , while P2 wants to maximize f . In this

case there are certain connections between the saddle-point of f(·) and the so-called Nash equilibrium

point of the game. If we are at the Nash equilibrium, no player can do better by deviating his strategy

from that defined by the equilibrium.

6

Advanced Topics in Networking - Fall 2006

Instructor : Iordanis Koutsopoulos

Lecture 26 : Decomposition theory and an example from pricing

theory - 19/12/06

Notes by : Eleni Anagnostopoulou and Nena Xanthopoulou

1 Lecture outline

• Decomposition theory

• Example : Network pricing

Consider a (wired) network, represented as a directed graph G = (S, A) where S is the set of

network nodes that belong at the network (|S| is the number of nodes) and A is the set of links of

the network (|A| is the number of links). The capacity (in bits/sec) of link l ∈ A is defined by cl

and shows the maximum number of bits per second that can be carried over the link. We define the

variable xs (in bits/sec) as the information generation rate at every node (source) of the network as

well as the utility function Us(xs), which varies for every node, and is concave function of xs. Note

that every node in the network can potentially be the information source (and thus belong in set

S). The utility function Us(xs) shows the amount of satisfaction derived by node s if it is allowed to

transmit with rate xs. The utility function is a concave function of xs for each node and each node

may have a different utility function.

We have seen in previous lectures the physical meaning of a function being concave. It means

that the rate of satisfaction with regard to change in xs is a decreasing function of xs. That is, the

user (node) is satisfied with a higher rate for small values of xs and this satisfaction rate decreases as

we assign more resources xs to it. The capacity function c(P) ∼ log(P) as a function of the allocated

amount of power p is a special case of utility function.

1

Each node could be considered either as:

Source : the more information rate it sends to other nodes of the network, the more it is satisfied, or

Destination : the more information rate it receives, the more it is satisfied.

Suppose now a network consisting of many nodes. Our goal is to maximize the total utility of

all nodes in the network,

max
x

S∑

s=1

Us(xs)

by appropriately controlling the information generation rate xs. The vector of variables x is x =

(x1, x2, . . . , x|s|).

Suppose source s ∈ S uses the set of links L(s) in order to transfer the information it produces.

Define for each link l ∈ A as S(l) to be the set of sources that use link l, i.e that transfer their

information through that link. This makes obvious the first, and essentially the only constraint of

our problem which is the fact that capacity of each link should not be exceeded,

∑

s:l∈L(s)

xs ≤ cl, l = 1, . . . , |A|

Every source sends its information through specific paths. The above problem is an optimization

problem with inequality constraints, one for each link. In order to find the solution, we use the

Lagrangian function. So we define coefficient λl ≥ 0 as the KKT multipliers that correspond to link

l, l = 1, . . . , |A| and we have:

L(x, λ) =
|S|∑

s=1

Us(xs) +
|A|∑

l=1

λl(cl −
∑

s:l∈L(s)

xs)

=
|S|∑

s=1

Us(xs) +
|A|∑

l=1

λlcl −
|A|∑

l=1

λl

∑

s:l∈L(s)

xs

=
|S|∑

s=1

Us(xs)−
|S|∑

s=1

|A|∑

l=1

xsλl +
|A|∑

l=1

λlcl

=
|S|∑

s=1


Us(xs)− xs

∑

l∈L(s)

λl


 +

|A|∑

l=1

λlcl

Suppose that the values of λl are known. It is possible for the global problem to be solved by each

source individually, so that each source s finds the optimal rate as

x∗s = arg max
xs


Us(xs)− xs

∑

l∈L(s)

λl


 (1)

2

Hence, the initial global objective is decomposed in that way into separate optimization problems,

one for each source. If each source s finds the optimal rate x∗s, then we have collectively the optimal

solution x∗ for the problem.

Now define the Lagrangian dual problem,

lD(λ) = max
x

L(x, λ) =
|S|∑

s=1

max
xs


Us(xs)− xs

∑

l∈L(s)

λs




The value λl is the price paid by the source s that uses link l for each unit of flow that it sends

through link l. As we see, the initial maximization decomposes into |S| apart maximization problems,

one for each source. Each source s solves a separate problem of maximizing the net benefit, i.e the

derived utility minus the total cost of using the links in set L(s),

max
xs


Us(xs)− xs

∑

l∈L(s)

λl




Each source s can compute the optimal solution, x∗s as the root of the equation

dU(xs)
dxs

−
∑

l∈L(s)

λl = 0 ⇒ x∗s(λ)

for a given price vector λ.

The Lagrangian dual problem is:

min
λ≥0

lD(λ) = min
λ≥0



|S|∑

s=1

Us(x∗s)− x∗s(λ)
∑

l∈L(s)

λl


 (2)

In the problem setup, there is a central agent (e.g the network price controller that is ran by the

network operator) that finds the price of using each link depending on its use and popularity. Thus,

it computes different prices λl for each link l. Then, it adapts the price using the following intuitive

rule : whenever a link is over-used its price has to be increased so as to discourage users from using

it and thus reduce the link load. On the other hand, when a link is under-utilized, the price has to

be reduced so as to make it more attractive to users to transfer their information through this link.

Then, given the certain computed link price vector λ, each source solves the separate maximization

problem and finds the amount of traffic x∗s to send through each link so as to maximize the net

utility. The values of xs are then sent to the central unit, which solves the Lagrangian dual problem

in order to recalculate the prices.

3

Since the minimization problem of the Lagrangian dual cannot be solved analytically, the central

entity can perform one iteration of the gradient descent algorithm to update the link prices. Thus,

the price for link l is updated as follows:

λl(t + 1) = λl(t)− a
∂lD(λ)

λl
⇒ λl(t + 1) = max



λl(t)− a(cl −

∑

s∈S(l)

x∗s(λ(t))), 0





where a is the step size for the gradient descent algorithm and we have taken care so that λl does

not take negative values. Note that the equation above arose since

∂lD
∂λl

= cl −
∑

s:l∈L(s)

x∗s(λ(t)). (3)

It is possible that this sum could overcome the value of cl and then the central unit must increase

the value of price λl(t + 1) at the next iteration. In contrast, when a link is not used very much, the

value of λl(t + 1) decreases in order to make that link attractive and used by more sources.

The Algorithm that takes place is as follows:

1. Start with initial prices λl(0), for l = 1, . . . , |A|.

2. Each source s solves, independently from the other sources, the separate maximization problem

max
xs


Us(xs)− xs

∑

l∈L(s)

λl




and finds the optimal rate x∗s(λ). Each source sends the optimal values x∗s(λ) to the central

coordinating agent.

3. The central agent updates the price for using each link as follows:

λl(t + 1) = λl(t)− a
∂lD(λ)

λl
⇒ λl(t + 1) = max



λl(t)− a(cl −

∑

s∈S(l)

x∗s(λ)(t)), 0





and broadcasts the new link prices to all sources.

4. t ← t + 1. Go to 1. Continue until convergence.

The algorithm above can be shown to converge to the optimal rate vector x∗ = (x∗1, . . . , x
∗
|S|), such

that the total utility is maximized.

Note: We could view the price update mechanism as a form of congestion control for the reasons

explained above.

4

