
1

Ανάκληση Πληροφορίας

Διδάσκων –
Δημήτριος Κατσαρός

Διάλεξη 19η: 30/05/2014

2

Web crawlers

Ερπυστές στον Παγκόσμιο Ιστό

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 3

Basic crawler architecture

•Frontier data structure

•HTTP Fetcher

•Link Extractor

•URL Distributor

•Custom URL Filter

•Duplicate URL Eliminator

•URL Prioritizer

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 4

Crawl order model

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 5

Taxonomy of crawl ordering techniques

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 6

Index page refresh policy: The problem

Polling

Web page Web index

QueryUpdate

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 7

Change metrics

• Freshness
• Freshness of a local page ei at time t is

F(ei ; t) = 1 if ei is up-to-date at time t
0 otherwise

Freshness of the database S at time t is

F(S ; t) = F(ei ; t)

(Assume “equal importance” of pages)

ΣN

1 N

i=1

ei ei

......

web database

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 8

Change Metrics

• Age
• Age of element ei at time t is

A(ei ; t) = 0 if ei is up-to-date at time t
t-(modification time of ei) otherwise

ei ei

......

web databaseAge of the database S at time t is

A(S ; t) = A(ei ; t)

(Assume “equal importance” of pages)

ΣN

1 N

i=1

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 9

Change Metrics

F(ei)

A(ei)

0

0

1

time

time

update refresh

Time averages:

0

1() lim (;)
t

i it
F e F e t dt

t→∞
= ∫

0

1() lim (;)
t

t
F S F S t dt

t→∞
= ∫

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 10

Relation between F(S) and F(ei)

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 11

Evolution of Web pages
fr

ac
tio

n
of

 c
ha

ng
es

 w
ith

 g
iv

en
 in

te
rv

al for pages that
change every

10 days on average

interval in days

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 12

Probabilistic evolution of a Web page
• We assume that each element ei is modified by a Poisson process

with change rate λi, That is, each element ei changes at its own
average rate λi, and this rate may differ from element to element

• Under the Poisson process model, we can analyze the freshness
and the age of the element ei over time. More precisely, let us
compute the expected value of the freshness and the age of ei at
time t

• We assume that we synchronize ei at t=0 and at t=I
• Since the time to the next event follows an exponential

distribution under a Poisson process, we can obtain the
probability that ei changes in the interval (0, t] by the following
integration:

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 13

Probabilistic evolution of a Web page

• Because ei is not synchronized in the interval (0, I), the
local element ei may get out-of-date with probability
Pr{T ≤ t} = 1−e−λit at time t ∈ (0, I)

• Hence, the expected freshness is

• Note that the expected freshness is 1 at time t=0 and that
the expected freshness approaches 0 as time passes

• Basic Statistics

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 14

Probabilistic evolution of a Web page
• We can obtain the expected value of age of ei similarly
• If ei is modified at time s∈(0, I), the age of ei at time t∈(s,I) is

(t − s)
• ei changes at time s with probability λi e−λis, so the expected

age at time t ∈ (0, I) is

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 15

Symbols used and their meanings

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 16

Synchronization policies
• We discussed how the real-world database changes over

time
• We now study how the local copy can be refreshed
• There are several dimensions to this synchronization

process
1. Synchronization frequency: We first need to decide how

frequently we synchronize the local database. Obviously, as we
synchronize the database more often, we can maintain the local
database fresher. In our analysis, we assume that we
synchronize N elements per I time-units. By varying the value of
I, we can adjust how often we synchronize the database

2. Resource allocation: Even after we decide how many elements
we synchronize per unit interval, we still need to decide how
frequently we synchronize each individual element. We
illustrate this issue by the following example:

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 17

Synchronization policies
• A database consists of three elements, e1, e2 and e3. It

is known that the elements change at the rates λ1=4,
λ2=3, and λ3=2 (times/day). We have decided to
synchronize the database at the total rate of 9
elements/day. In deciding how frequently we
synchronize each element, we consider the following
options:
• Synchronize all elements uniformly at the same rate. That is,

synchronize e1, e2 and e3 at the same rate of 3 (times/day)
• Synchronize an element proportionally more often when it

changes more often. In other words, synchronize the elements
at the rates of f1 = 4, f2 = 3, f3 = 2 (times/day) for e1, e2 and e3,
respectively

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 18

Synchronization policies

Based on how fixed synchronization resources are allocated to
individual elements, we can classify synchronization
policies as follows:

• (a) Uniform-allocation policy: We synchronize all
elements at the same rate, regardless of how often they
change. That is, each element ei is synchronized at the
fixed frequency f. In the previous example, the first option
corresponds to this policy

• (b) Non-uniform-allocation policy: We synchronize
elements at different rates. In particular, with a
proportional-allocation policy we synchronize element ei
with a frequency fi that is proportional to its change
frequency λi. Thus, the frequency ratio λi/fi, is the same for
any i under the proportional-allocation policy. In the previous
example, the second option corresponds to this policy

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 19

Synchronization policies

3. Synchronization order: Now we need to decide in what
order we synchronize the elements in the database

Example. We maintain a local database of 10,000Web pages from
site A. In order to maintain the local copy up-to-date, we
continuously update our local database by revisiting the pages
in the site. In performing the update, we may adopt one of the
following options:
• We maintain an explicit list of all URLs in the site, and we visit

the URLs repeatedly in the same order. Notice that if we update
our local database at a fixed rate, say 10,000 pages/day, then we
synchronize a page, say p1, at the fixed interval of one day

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 20

Synchronization policies
• We only maintain the URL of the root page of the site, and

whenever we crawl the site, we start from the root page, following
links. Since the link structure (and the order) at a particular
crawl determines the page visit order, the synchronization order
may change from one crawl to the next. Notice that under this
policy, we synchronize a page, say p1, at variable intervals. For
instance, if we visit p1 at the end of one crawl and at the
beginning of the next crawl, the interval is close to zero, while in
the opposite case it is close to two days

• Instead of actively synchronizing pages, we synchronize pages on
demand, as they are requested by a user. Since we do not know
which page the user will request next, the synchronization order
may appear random. Under this policy, the synchronization
interval of p1 is not bound by any value. It may range from zero to
infinity

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 21

Synchronization policies
We can summarize the above options as follows:
• (a) Fixed order: We synchronize all elements in the database

in the same order repeatedly. Therefore, a particular element
is synchronized at a fixed interval under this policy. This policy
corresponds to the first option of the above example

• (b) Random order: We synchronize all elements repeatedly,
but the synchronization order may be different in each
iteration. This policy corresponds to the second option in the
example

• (c) Purely random: At each synchronization point, we select
a random element from the database and synchronize it.
Therefore, an element is synchronized at intervals of
arbitrary length. This policy corresponds to the last option in the
example

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 22

Synchronization policies
4. Synchronization points: In some cases, we may need to

synchronize the database only in a limited time window. For
instance, if a Web site is heavily accessed during daytime, it
might be desirable to crawl the site only in the night, when it is
less frequently visited. We illustrate several options for dealing
with this constraint by an example

We assume that we synchronize a database uniformly over time. Since
crawlers cannot guess the best time to visit each site, they typically visit
sites at a uniform rate that is convenient to the crawler.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 23

Synchronization-order policies
• Clearly, we can increase the database freshness by

synchronizing more often
• But exactly how often should we synchronize, for the

freshness to be, say, 0.8?
• Conversely, how much freshness do we get if we

synchronize 100 elements per second?
• We will now address these questions by analyzing

synchronization-order policies
• Through the analysis, we will also learn which

synchronization-order policy is the best in terms of
freshness and age

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 24

Synchronization-order policies
• We assume that all real-world elements are modified at

the same average rate λ
• That is, we adopt the uniform change-frequency model
• When the elements change at the same rate, it does not

make sense to synchronize the elements at different
rates, so we also assume uniform-allocation policy

• These assumptions significantly simplify our analysis,
while giving us solid understanding on the issues that we
address

• Based on these assumptions, we analyze different
synchronization-order policies in the subsequent
subsections

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 25

Fixed-order policy
• Under the fixed-order policy, we synchronize the local elements in the

same order repeatedly
• Now we compute the freshness of the database S. Since we can compute

the freshness of S from freshness of its elements, we first study how a
random element ei evolves over time

• Assuming that it takes I seconds to synchronize all elements in S, the
expected freshness of ei will evolve as in Figure. In the graph, we assumed
that we synchronize ei initially at t=0

• Note that E[F(ei; t)] recovers to 1 every I seconds, when we synchronize it.
Intuitively, ei goes through exactly the same process every I seconds, so
we can expect that we can learn anything about ei by studying how ei
evolves in the interval (0, I)

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 26

Fixed-order policy

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 27

Fixed-order policy

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 28

Fixed-order policy
• We assumed that all elements change at the same

frequency λ and that they are synchronized at the same
interval I, so the above equation holds for any element ei

• Therefore, the freshness of database S is

• We can analyze the age of S similarly, and we get

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 29

Random-order policy
• Under the random-order policy, the synchronization order

of elements might be different from one crawl to the next
• Obviously, the random-order policy is more complex to

analyze than the fixed-order policy. Since we may
synchronize ei at any point during interval I, the
synchronization interval of ei is not fixed any more. In one
extreme case, it may be almost 2I, when ei is synchronized
at the beginning of the first iteration and at the end of the
second iteration.

• In the opposite case, it may be close to 0, when ei is
synchronized at the end of the first iteration and at the
beginning of second iteration Therefore, the
synchronization interval of ei, W, is not a fixed number any
more, but follows a certain distribution fW(t). Therefore the
equation of Theorem 5.2 should be modified accordingly:

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 30

Random-order policy

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 31

Random-order policy

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 32

Random-order policy

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 33

Random-order policy
• Based on the Lemma 5.1 and Equation 5.3, we can

compute the freshness of the random-order policy, and the
result is

• Since the above analysis is valid for any element ei, the
freshness of S becomes

• We can compute A¯(S) similarly

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 34

Purely-random policy
• The analysis of purely-random policy is similar to that of

random-order policy. Here again, the time between
synchronizations of ei, W, is a random variable with a
probability density function fW(t), and the freshness of ei
becomes:

• We can prove (from the law of rare events) that fW(t) is:

and we get:

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 35

Synchronization-order policies: Summary

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 36

Synchronization-order policies: Summary

r = λ / f = average change frequency / average visit frequency

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 37

Synchronization-order policies: Summary

= Age / time to refresh all N elements

r = λ / f = average change frequency / average visit frequency

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 38

Resource allocation policies

• Previously, we addressed various questions assuming that
all elements in the database change at the same rate

• But what can we do if the elements change at different
rates and we know how often each element changes?

• Is it better to synchronize an element more often when it
changes more often?

• We address this question by analyzing different resource-
allocation policies

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 39

Resource allocation policies
• For the analysis, we model the real-world database by the

non-uniform change-frequency model, and we assume the
fixed-order policy for the synchronization-order policy,
because the fixed-order policy is the best synchronization-
order policy

• In other words, we assume that the element ei changes at
the frequency λi (λi’s may be different from element to
element), and we synchronize ei at the fixed interval
Ii(=1/fi, where fi is synchronization frequency of ei)

• Remember that we synchronize N elements in I(= 1/f) time
units. Therefore, the average synchronization frequency
(1/N * Σi=1

N fi) should be equal to f

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 40

Resource allocation policies
• We first assume that the change frequencies of real-world

elements follow the gamma distribution, and compare how
effective the proportional and the uniform policies are

• The gamma distribution is often used to model a random
variable whose domain is non-negative numbers

• Also, the distribution is known to cover a wide array of
distributions
• For instance, the exponential and the chi-square distributions are

special instances of the gamma distribution, and the gamma
distribution is close to the normal distribution when the variance is
small. This mathematical property and versatility makes the
gamma distribution a desirable one for describing the distribution
of change frequencies

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 41

Resource allocation policies

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 42

Resource allocation policies: Uniform

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 43

Resource allocation policies: Uniform

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 44

Resource allocation policies: Proportional

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 45

Resource allocation policies: Summary

• In the table, r represents the frequency ratio λ/f, where λ is
the average rate at which elements change (the mean of
the gamma distribution), and f is the average rate at
which we synchronize them (1/I)

• Also, δ represents the standard deviation of change
frequencies (more precisely, δ2 =(variance)/(mean)2 of the
gamma distribution)

• Note that the uniform policy is better than the
proportional one if F¯(S)p < F¯(S)u and A¯(S)u < A¯(S)p

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 46

Resource allocation policies: Summary

• Surprisingly, we can clearly see that the ratios are below 1
for any r and δ values: The uniform policy is always
better than the proportional policy!

• In fact, the uniform policy gets more effective as the
elements change at more different frequencies

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 47

Uniform vs. Proportional
• When the variance of change frequencies is zero (δ=0), all

elements change at the same frequency, the two policies
give the same result

• We can observe that the age ratio does not change much as
r increases, while the freshness ratio heavily depends on
the r value

• While we showed that the uniform policy is better than the
proportional one only for the gamma-distribution
assumption, it is in fact a very general conclusion: we can
prove that the uniform policy is always better than the
proportional policy under any distribution

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 48

Uniform vs. Proportional: A two page Web

• Two page database
• e1 changes 9 times/day
• e2 changes once/day
• Can synchronize only one page per day
• We do not know exactly when the

element changes in one interval
• How should we visit pages?

• e1 e2 e1 e2 e1 e2 e1 e2... [uniform]
• e1 e1 e1 e1 e1 e1 e1 e2 e1 e1 … [proportional]
• e1 e1 e1 e1 e1 e1 ...
• e2 e2 e2 e2 e2 e2 ...
• ?

e1

e2

e1

e2
webdatabase

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 49

Uniform vs. Proportional: A two page Web
• To answer this question, we need to compare how the

freshness changes if we pick one element over the other
• If the element e2 changes in the middle of the day and if

we synchronize e2 right after it changed, it will remain up-
to-date for the remaining half of the day

• Therefore, by synchronizing element e2 we get 1/2 day
“benefit”(or freshness increase)

• However, the probability that e2 changes before the
middle of the day is 1/2, so the “expected benefit” of
synchronizing e2 is 1/2 × 1/2 day = 1/4 day

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 50

Uniform vs. Proportional: A two page Web
• By the same reasoning, if we synchronize e1 in the middle

of an interval, e1 will remain up-to-date for the remaining
half of the interval (1/18 of the day) with probability ½

• Therefore, the expected benefit is 1/2×1/18 day = 1/36 day

• From this crude estimation, we can see that it is more
effective to select e2 for synchronization!

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 51

Uniform vs. Proportional: A two page Web
• The table shows the expected benefits for several other scenarios
• The second column shows the total synchronization frequencies (f1+f2) and the

third column shows how much of the synchronization is allocated to f1 and f2
• In the fourth column we estimate the expected benefit, and in the last column

we show the f1 and f2 values that give the highest expected benefit
• Note that since λ1 = 9 and λ2 = 1, row (h) corresponds to the proportional policy

(f1 = 9, f2 = 1), and row (j) corresponds to the uniform policy (f1=f2=5)

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 52

Uniform vs. Proportional: A two page Web
• From the table, we can observe the following

interesting trends:
1. Rows (a)-(e): When the synchronization frequency (f1

+ f2) is much smaller than the change frequency
(λ1+λ2), it is better to give up synchronizing the
elements that change too fast. In other words, when it
is not possible to keep up with everything, it is better
to focus on what we can track.

2. Rows (h)-(j): Even if the synchronization frequency is
relatively large (f1 + f2 = 10), the uniform allocation
policy (row (j)) is more effective than the proportional
allocation policy (row (h)). The optimal point (row (i)) is
located somewhere between the proportional policy and
the uniform policy

53

Auxiliary slides on crawling

Web Crawling

Christopher Olston and Marc Najork

Slides created by Aécio Solano Rodrigues Santos and Nivio Ziviani
based on the survey Web Crawling from Foundations and Trends in Information Retrieval (2010).

1

Summary

Introduction

Crawler Architecture

Crawl Ordering Problem

Batch Crawl Ordering

Incremental Crawl Ordering

Avoiding Problematic and Undesirable Content

Deep Web Crawling

2

Summary

Introduction

Crawler Architecture

Crawl Ordering Problem

Batch Crawl Ordering

Incremental Crawl Ordering

Avoiding Problematic and Undesirable Content

Deep Web Crawling

3

Introduction
I A web crawler (also known as a robot or a spider) is a

system for the bulk downloading of web pages.
I They are used for a variety of purposes:

I Web Search Engines

I Web Archiving

I Web Data Mining

I Web Monitoring

4

Introduction
I The web is not a centrally managed repository of

information, but rather consists of hundreds of millions of
independent web content providers.

I Content aggregators (such as search engines or web data
miners) have two choices:

I Adopt a pull model where they will proactively scour the web
for new or updated information

I Try to establish a convention and a set of protocols enabling
content providers to push content of interest to the
aggregators.

I One of the earliest search services, adopted the push
model. However, this approach did not succeed, and
virtually all content aggregators adopted the pull aproach.

5

Introduction
I The basic algorithm is simple. Given a set of seed URLs:

1. downloads all the web pages addressed by the URLs;

2. extracts the hyperlinks contained in the pages;

3. iteratively downloads the web pages addressed by these
hyperlinks.

I Despite the apparent simplicity of this basic algorithm, web
crawling has many inherent challenges.

6

Challenges
I Scale

I The web is very large and continually evolving.

I Crawlers that seek broad coverage and good freshness
must achieve extremely high throughput, which poses many
difficult engineering problems.

I Content selection tradeoffs
I Crawlers do not purport to crawl the whole web, or keep up

with all the changes.

I The goals are to acquire high-value content quickly, ensure
eventual coverage of all reasonable content, and bypass
low-quality, irrelevant, redundant, and malicious content.

I The crawler must balance competing objectives such as
coverage and freshness, while obeying constraints such as
per-site rate limitations.

7

Challenges
I Social obligations

I Crawlers should not impose too much of a burden on the
web sites they crawl.

I Without the right safety mechanisms a high-throughput
crawler can inadvertently carry out a denial-of-service attack.

I Adversaries
I Some content providers seek to inject useless or misleading

content into the corpus assembled by the crawler.

I Such behavior is often motivated by financial incentives, for
example (mis)directing traffic to commercial web sites.

8

Summary

Introduction

Crawler Architecture

Crawl Ordering Problem

Batch Crawl Ordering

Incremental Crawl Ordering

Avoiding Problematic and Undesirable Content

Deep Web Crawling

9

Chonology
I In the spring of 1993, Matthew Gray implemented the World

Wide Web Wanderer
I The pages crawled by the Wanderer were compiled into an

index (the “Wandex”), thus giving rise to the first search
engine on the Web.

I It was used until 1996 to collect statistics about the
evolution of the Web.

I In December 1993, three more crawler-based Internet
Search engines became available:

I Jump-Station

I World Wide Web Worm [90]

I RBSE spider [57]

10

Chonology
I WebCrawler [108] joined the field in April 1994
I MOMspider [61] was drescribed in the same year
I This first generation of crawlers identified some of the

defining issues in web crawler design.
I MOMspider considered politeness policies:

I it limited the rate of requests to each site

I it allowed web sites to exclude themselves from purview
through the nascent robots exclusion protocol [83]

I it provided a “black-list” mechanism that allowed the crawl
operator to exclude sites.

11

Chonology
I However, the design of these early crawlers did not focus

on scalability.
I Several of them (RBSE spider and WebCrawler) used

general-purpose database management systems to store
the state of the crawl.

I The following few years saw the arrival of several
commercial search engines:

I Lycos, Infoseek, Excite, AltaVista, and HotBot

I All of which used crawlers to index tens of millions of pages;
however, the design of these crawlers remains
undocumented.

12

Chonology
I Brin and Page’s 1998 paper outlining the architecture of the

first generation Google [25] system contains a short
description of their crawler.

I With the Mercator web crawler, Heydon and Najork
presented a “blueprint design” for web crawlers [75, 94].

I The second Mercator paper gave statistics of a 17-day,
four-machine crawl that covered 891 million pages.

I Shkapenyuk and Suel’s Polybot web crawler [111]
represents another “blueprint design”.

I Polybot is a distributed system, consisting of a crawl
manager process, multiple downloader processes, and a
DNS resolver process.

I Polybot was able to download 120 million pages over 18
days using four machines.

13

Chonology
I The IBM WebFountain crawler [56] represented another

industrial-strength design.
I The WebFountain crawler was fully distributed.
I The three major components were:

I Multi-threaded crawling processes (“Ants”).
I Processes responsible for identifying downloaded pages with

near-duplicate content.
I A central controller.

I UbiCrawler [21] is another scalable distributed web crawler.
I It uses consistent hashing to partition URLs according to

their host component across crawling machines, leading to
graceful performance degradation in the event of the failure
of a crawling machine.

I UbiCrawler was able to download about 10 million pages per
day using five crawling machines.

14

Chonology
I Recently, Yan et al. described IRLbot [84]:

I A single-process web crawler that is able to scale to
extremely large web collections without performance
degradation.

I The paper describes a crawl that ran over two months and
downloaded about 6.4 billion web pages.

I Finally, there are a number of open-source crawlers, two of
which deserve special mention:

I Heritrix [78, 93] is the crawler used by the Internet Archive. It
is written in Java and highly componentized, and its design
is quite similar to that of Mercator.

I The Nutch crawler [62, 81] is written in Java as well. It
supports distributed operation and should therefore be
suitablefor very large crawls.

15

Architecture Overview
I The crawler consists of multiple processes running on

different machines connected by a high-speed network.
I Each crawling process consists of multiple worker threads.
I Each worker thread performs repeated work cycles.
I At the beginning of each work cycle, a worker obtains a

URL from the Frontier data structure, which dispenses
URLs according to their priority and to politeness policies.

I The worker thread then invokes the HTTP fetcher.
I The fetcher first calls a DNS sub-module to resolve the host

component of the URL into the IP address of the
corresponding web server (using cached results of prior
resolutions if possible)

I Then connects to the web server and checks for any robots
exclusion rules (which typically are cached as well) and
attempts to download the web page.

16

Architecture Overview
I If the download succeeds, the web page may or may not be

stored in a repository of harvested web pages (not shown).
I The page is passed to the Link extractor, which parses the

page’s HTML content and extracts hyperlinks contained
therein.

I The corresponding URLs are then passed to a URL
distributor, which assigns each URL to a crawling process.

I This assignment is typically made by hashing the URLs
host component, its domain, or its IP address (the latter
requires additional DNS resolutions).

I Since most hyperlinks refer to pages on the same web site,
assignment to the local crawling process is the common
case.

17

Architecture Overview
I Next, the URL passes through the two following modules:

I Custom URL filter, to exclude URLs belonging to
“black-listed” sites and URLs with particular file extensions
that are not of interest

I Duplicate URL eliminator, which maintains the set of all
URLs discovered so far and passes on only
never-before-seen URLs.

I Finally, the URL prioritizer selects a position for the URL in
the Frontier, based on factors such as estimated page
importance or rate of change.

18

19

Key Design Points
I Any web crawler needs to keep track both of the URLs that

are to be downloaded, as well as those that have already
been downloaded.

I The required state is a set of URLs, each associated with a
flag indicating whether the page has been downloaded.

I The operations that must be supported are:
I Adding a new URL
I Retrieving a URL
I Marking a URL as downloaded
I Testing whether the set contains a URL

I However, in-memory data structures that support these
operations (e.g., trees or sorted lists) does not scale to web
corpus sizes that exceed the amount of memory available
on a single machine.

20

Key Design Points
I To scale beyond this limitation, one could either maintain

the data structure (e.g., the tree or sorted list) on disk, or
use an off-the-shelf database management system.

I However, the cost of accessing items in the set (particularly
for the purpose of set membership test) typically involves a
disk seek, making it a fairly expensive operation.

I To achieve high performance, a more specialized approach
is needed.

I Virtually every modern web crawler splits the crawl state
into two major data structures:

I URL-seen test or Duplicate URL eliminator, which
maintains the set of URLs that have been discovered
(whether downloaded or not)

I Frontier, which maintains the set of URLs that have yet to
be downloaded.

21

Frontier Data Structure and Politeness
I A straightforward implementation of the frontier data

structure is a First-in-First-out (FIFO) queue.
I Such an implementation results in a breadth-first traversal

of the web graph.
I However, this simple approach has drawbacks:

I Most hyperlinks on the web refer to another page on the
same web server, resulting in the crawler issuing many
consecutive HTTP requests to that server.

I A barrage of requests in short order is considered “impolite”,
and may be construed as a denial-of-service attack.

I On the other hand, it would be wasteful for the web crawler
to space out requests to the same server without doing other
useful work in the meantime.

22

Frontier Data Structure and Politeness
I This problem is compounded in a multithreaded or

distributed crawler that issues many HTTP requests in
parallel.

I Most web crawlers obey a policy of not issuing multiple
overlapping requests to the same server.

I An easy way to realize this is to maintain a mapping from
web servers to crawling threads, e.g., by hashing the host
component of each URL.

I In this design, each crawling thread has a separate FIFO
queue, and downloads only URLs obtained from that queue.

23

Frontier Data Structure and Politeness
I A more conservative politeness policy is to space out

requests to each web server according to that server’s
capabilities.

I E.g., delay subsequent requests by a multiple (say 10×) of
the time it took to download the last page from that server.

I This policy ensures that:
I The crawler consumes a bounded fraction of the web

server’s resources.

I Fewer pages will be downloaded from slow or poorly
connected web servers than from fast, responsive web
servers.

I In other words, this crawling policy is biased toward
well-provisioned web sites.

24

Frontier Data Structure and Politeness
I Such a policy is well-suited to the objectives of search

engines, since large and popular web sites tend also to be
well-provisioned.

I In addition, web crawlers may also want to prioritize the
URLs in the frontier.

I For example, it may be desirable to prioritize pages
according to their estimated usefulness, based for example
on:

I PageRank

I Traffic they receive

I Reputation of the web site

I Rate at which the page has been updated in the past

25

URL Seen Test
I The second major data structure in any modern crawler is

sometimes called URL-seen test (UST) or the duplicate
URL eliminator (DUE)

I It keeps track of the set of URLs that have been previously
discovered and added to frontier.

I UST needs to support:
I Insertion

I Set membership testing

I In a continuous crawling setting, it must also support
deletion, in order to cope with URLs that no longer point to
a valid page.

26

URL Seen Test
I There are multiple straightforward in-memory

implementations of a UST
I e.g., a hash table or Bloom filter.

I In-memory implementations do not scale to arbitrarily large
web corpora.

I However, they scale much further than in-memory
implementations of the frontier, since each URL can be
compressed to a much smaller token.

I e.g., a 10-byte hash value.

I Commercial search engines employ distributed crawlers,
and a hash table realizing the UST can be partitioned
across the machines in the crawling cluster, further
increasing the limit of how far such an in-memory
implementation can be scaled out.

27

URL Seen Test
I In a disk-based hash table, each lookup requires a disk

seek, severely limiting the throughput.
I Caching popular URLs can increase the throughput by

about an order of magnitude [27] to a few thousand lookups
per second.

I But given that the average web page contains on the order
of a hundred links and that each link needs to be tested for
novelty, the crawling rate would still be limited to tens of
pages per second under such an implementation.

I While latency of disk seeks is poor (a few hundred seeks
per second), the bandwidth of disk reads and writes is quite
high.

I So, implementations performing random file accesses
perform poorly, but those that perform streaming sequential
reads or writes can achieve reasonable throughput.

28

URL Seen Test
I The Mercator crawler leveraged this observation by:

I Aggregating many set lookup and insertion operations into a
single large batch.

I Processing this batch by sequentially reading a set of sorted
URL hashes from disk and writing them (plus the hashes of
previously undiscovered URLs) out to a new file [94].

I This approach implies that:
I The set membership is delayed: we only know whether a

URL is new after the batch containing the URL has been
merged with the disk file.

I Adding URLs to the frontier in a delayed fashion also means
that there is a lower bound on how soon they can be
crawled; however, given that the frontier is usually far larger
than a DUE batch, this delay is imperceptible except for the
most high-priority URLs.

29

URL Seen Test
I The IRLbot crawler [84] uses a refinement of the Mercator

scheme.
I Batch of URLs arriving at the DUE is also written to disk,

distributed over multiple files keyed by the prefix of each
hash.

I Once the size of the largest file exceeds a certain threshold,
the files that together hold the batch are read back into
memory one by one and merge-sorted into the main URL
hash file on disk.

I Because IRLbot stores the batch on disk, the size of a
single batch can be much larger than Mercator’s in-memory
batches, so the cost of the merge-sort with the main URL
hash file is amortized over a much larger set of URLs.

30

Auxiliary Data Structures
I Web crawlers maintain various auxiliary data structures. we

discuss two: The robots exclusion rule cache and the DNS
cache.

I The Robots Exclusion Protocol [83], is a convention that
allows a web site administrator to bar web crawlers from
crawling their site, or some pages within the site.

I This is done by providing a file at URL /robots.txt

containing rules that specify which pages the crawler is
allowed to download.

I Before attempting to crawl a site, a crawler should check
whether the site supplies a /robots.txt file, and if so,
adhere to its rules.

I To avoid repeatedly requesting /robots.txt, crawlers
typically cache the results of previous requests of that file.

31

Auxiliary Data Structures
I URLs contain a host component (e.g., www.yahoo.com),

which is “resolved” using the Domain Name Service (DNS)
protocol.

I DNS requests can take quite a long time due to the request-
forwarding nature of the protocol.

I Therefore, crawlers often maintain their own DNS caches.
I As with the robots exclusion rule cache, entries are expired

according to both a standard eviction policy (such as
least-recently used), and to expiration directives.

32

Distributed Crawling
I Web crawlers can be distributed over multiple machines to

increase their throughput.
I This is done by partitioning the URL space, such that each

crawler machine or node is responsible for a subset of the
URLs on the web.

I Partitioning the URL space across site boundaries makes it
easy to obey politeness policies, since each crawling
process can schedule downloads without having to
communicate with other crawler nodes.

I Moreover, all the major data structures can easily be
partitioned across site boundaries.

33

Distributed Crawling
I Thanks to the prevalence of relative links on the web, they

will be themselves responsible for the large majority of
extracted URLs.

I When a process extracts a URL u that falls under the
responsibility of another crawler node, it forwards u to that
node.

I The amount of communication with other crawler nodes can
be reduced by maintaining a cache of popular URLs, used
to avoid repeat forwardings [27].

34

Incremental Web Crawling
I Web crawlers can be used to:

I Assemble one or more static snapshots of a web corpus
(batch crawling)

I Perform incremental or continuous crawling, where the
resources of the crawler are divided between downloading
newly discovered pages and re-downloading previously
crawled pages.

I Efficient incremental crawling requires a few changes to the
major data structures of the crawler.

I The DUE should support the deletion of URLs that are no
longer valid (e.g., that result in a 404 HTTP return code).

I URLs are retrieved from the frontier and downloaded as in
batch crawling, but they are subsequently reentered into the
frontier.

35

Incremental Web Crawling
I The priority of a previously downloaded URL should be

dependent on a model of the page’s temporal behavior
based on past observations.

I In addition to content evolution, other factors such as page
quality are also often taken into account.

I Indeed there are many fast-changing “spam” web pages.

36

Summary

Introduction

Crawler Architecture

Crawl Ordering Problem

Batch Crawl Ordering

Incremental Crawl Ordering

Avoiding Problematic and Undesirable Content

Deep Web Crawling

37

Crawl Ordering Problem
I Aside from the intra-site politeness considerations, a

crawler is free to visit URLs in any order.
I The crawl order is extremely significant, because for the

purpose of crawling the web can be considered infinite
I due to the growth rate of new content

I due to dynamically generated content [8]

I Next sections survey work on selecting a good crawler
order, with a focus on two basic considerations:

I Coverage. The fraction of desired pages that the crawler
acquires successfully.

I Freshness. The degree to which the acquired page
snapshots remain up-to-date, relative to the current “live”
web copies.

38

Model
I Most work on crawl ordering abstracts away the

architectural details of a crawler, and assumes that URLs in
the frontier data structure can be reordered freely.

I The resulting simplified crawl ordering model is depicted in
figure.

39

Model
I At a given point in time, some historical crawl order has

already been executed (P1, P2, P3, P4, P5 in the diagram).
I Some future crawl order has been planned

(P6, P7, P4, P8, ...).

40

Model
I Pages downloaded by the crawler are stored in a repository.
I The future crawl order is determined, at least in part, by

analyzing the repository.
I For example, breadth-first search, extracts hyperlinks from

pages entering the repository, identifies linked-to pages that
are not already part of the (historical or planned) crawl
order, and adds them to the end of the planned crawl order.

I The content of a web page is subject to change over time.
I It is sometimes desirable to re-download a page that has

already been downloaded, to obtain a more recent
snapshot of its content.

41

Model
I Two approaches exist for managing repeated downloads.
I Batch crawling:

I The crawl order does not contain duplicate occurrences of
any page

I The entire crawling process is periodically halted and
restarted as a way to obtain more recent snapshots of
previously crawled pages.

I Incremental crawling:
I Pages may appear multiple times in the crawl order.
I Crawling is a continuous process that conceptually never

terminates.

I It is believed that most modern commercial crawlers
perform incremental crawling, which is more powerful
because it allows re-visitation of pages at different rates.

42

Limitations
I This model has led to a good deal of research with practical

implications.
I However, as with all models, it simplifies reality.
I Some real-world considerations that fall outside the model.
I A large-scale crawler maintains its frontier data structure on

disk, which limits opportunities for reordering.
I Some pages (or even versions of a page) take longer to

download than others, due to differences in size and
network latency.

I Crawlers take special care to space out downloads of
pages from the same server, to obey politeness constraints.

43

Limitations
I Modern commercial crawlers utilize many simultaneous

page downloader threads, running on many independent
machines. Hence rather than a single totally ordered list of
pages to download, it is more accurate to think of a set of
parallel lists, encoding a partial order.

I Special care must be taken to avoid crawling redundant and
malicious content.

I If the page repository runs out of space, and expanding it is
not considered worthwhile, is becomes necessary to retire
some of the pages stored there (although it may make
sense to retain some metadata about the page, to avoid
recrawling it).

44

Web Characteristics
I Before proceeding, we describe some structural and

evolutionary properties of the web that are relevant to the
crawl ordering question.

I Several studies of the structure of the web graph have been
conducted.

I One notable study is by Broder et al. [26], which uncovered
a “bowtie” structure consisting of:

I a central strongly connected component (the core).
I a component that can reach the core but cannot be reached

from the core.
I a component that can be reached from the core but cannot

reach the core.

I In addition, there are a number of small, irregular structures
such as disconnected components and long “tendrils”.

45

Web Characteristics
I Hence there exist many ordered pairs of pages (P1, P2)

such that there is no way to reach P2 by starting at P1 and
repeatedly following hyperlinks.

I The implications for crawling are:
1. One cannot simply crawl to depth N , for a reasonable value

of N like N = 20, and be assured of covering the entire web
graph;

2. crawling “seeds” (the pages at which a crawler commences)
should be selected carefully, and multiple seeds may be
necessary to ensure good coverage.

46

Web Characteristics
I In an earlier study, Broder et al. [28] showed that there is an

abundance of near-duplicate content of the web.
I Using a corpus of 30 million web pages collected by the

AltaVista crawler, they found that:
I 29% of the pages were more than 50% similar to other

pages in the corpus

I 11% of the pages were exact duplicates of other pages.

I Sources of near-duplication include mirroring of sites (or
portions of sites) and URL synonymy.

47

Web Characteristics
I Chang et al. [35] studied the “deep web”, i.e., web sites

whose content is not reachable via hyperlinks and instead
can only be retrieved by submitting HTML forms.

I The findings include:
1. there are over one million deep web sites;

2. more deep web sites have structured (multi-field) query
interfaces than unstructured (single-field) ones;

3. most query interfaces are located within a few links of the
root of a web site, and are thus easy to find by shallow
crawling from the root page.

48

Temporal Characteristics
I It is important to understand the temporal characteristics of

the web, both in terms of:
I Site-level evolution: the appearance and disappearance of

pages on a site.

I Page-level evolution: changing content within a page.

I Dasgupta et al. [48] and Ntoulas et al. [96] studied creation
and retirement of pages and links inside a number of web
sites, and found the following characteristics.

49

Temporal Characteristics
I Site-Level Evolution

I New pages are created at a rate of 8% per week.

I Pages are retired at a rapid pace, such that during the
course of one year 80% of pages disappear.

I New links are created at the rate of 25% per week, which is
significantly faster than the rate of new page creation.

I Links are retired at about the same pace as pages, with 80%
disappearing in the span of a year.

I It is possible to discover 90% of new pages by monitoring
links spawned from a small, well-chosen set of old pages

I for most sites, five or fewer pages suffice.

I However, discovering the remaining 10% requires
substantially more effort.

I for some sites hundreds of pages must be monitored.

50

Temporal Characteristics
I Page-Level Evolution

I Page change events are governed by a Poisson process,
which means that changes occur randomly and
independently, at least in the case of pages that change less
frequently than once a day [39].

I Page change frequencies span multiple orders of magnitude
I sub-hourly, hourly, daily, weekly, monthly, annually

I Each order of magnitude includes a substantial fraction of
pages on the web [2, 39]. This finding motivates the study of
non-uniform page revisitation schedules.

I Change frequency is correlated with visitation frequency,
URL depth, domain and topic [2], as well as page length [60].

I A page’s change frequency tends to remain stationary over
time, such that past change frequency is a fairly good pre-
dictor of future change frequency [60].

51

Temporal Characteristics
I Pages with high change frequency tend to exhibit less

cumulative change than pages with moderate change
frequency.

I The amount of content that changed on a page in the past
is a fairly good predictor of the amount of content that will
change in the future.

I The degree of predictability varies from web site to web site
[60, 96].

I Many changes are confined to a small, contiguous region of
a web page [60, 85], and/or only affect transient words that
do not characterize the core, time-invariant theme of the
page [2].

52

Temporal Characteristics
I The temporal behavior of (regions of) web pages can be

divided into three categories:
I Static: no changes
I Churn: new content supplants old content.

I e.g., quote of the day.
I Scroll : new content is appended to old content.

I e.g., blog entries.

I Most web pages include at least some static content,
resulting in an upper bound on the divergence between an
old snapshot of a page and the live copy.

I One simple way to characterize a page is by:
1. the divergence upper bound (i.e., the amount of non-static

content), under some divergence measure;

2. the amount of time it takes to reach the upper bound (i.e.,
the time taken for all non-static content to change) [2].

53

Taxonomy of Crawl Ordering Policies
I Next figure presents a high-level taxonomy of published

crawl ordering techniques.
I The first group of techniques focuses exclusively on

ordering pages for first-time downloading, which affects
coverage.

I Can be applied either in the batch crawling scenario, or in
the incremental crawling scenario in conjunction with a
separate policy of the second group.

I The second group of techniques governs re-downloading of
pages to maintain freshness.

I Techniques in the third group consider the combined
problem of interleaving first-time downloads with
re-downloads, to balance coverage and freshness.

54

Taxonomy of Crawl Ordering Policies

55

Summary

Introduction

Crawler Architecture

Crawl Ordering Problem

Batch Crawl Ordering

Incremental Crawl Ordering

Avoiding Problematic and Undesirable Content

Deep Web Crawling

56

Batch Crawl Ordering
I A batch crawler traverses links outward from an initial seed

set of URLs.
I The seed set may be selected algorithmically, or by hand,

based on criteria such as importance, outdegree, or other
structural features of the web graph [120].

I A common, simple approach is to use the root page of a
web directory site such as OpenDirectory, which links to
many important sites across a broad range of topics.

I After the seed set has been visited and links have been
extracted from the seed set pages, the crawl ordering policy
takes over.

57

Batch Crawl Ordering
I The goal of the crawl ordering policy is to maximize the

weighted coverage (WC) achieved over time:

WC(t) =
∑

p∈C(t)

w(p)

where,
I t denotes the time elapsed since the crawl began.

I C(t) denotes the set of pages crawled up to time t
(under the fixed crawl rate assumption, |C(t)| ∝ t).

I w(p) denotes a numeric weight associated with page p.

I The weight function w(p) is chosen to reflect the purpose of
the crawl.

58

Batch Crawl Ordering
I Figure shows some hypothetical WC curves. Typically,
w(p) ≥ 0, and hence WC(t) is monotonic in t.

59

Batch Crawl Ordering
I Under a random crawl ordering policy, WC(t) is roughly

linear in t;
I This line serves as a baseline upon which other policies

strive to improve.

60

Batch Crawl Ordering
I An omniscient policy, which downloads pages in

descending order of w(p) yields a theoretical upper-bound
curve.

61

Batch Crawl Ordering
I Policies A and B fall in-between the random and omniscient

cases, with A performing better in the early stages of the
crawl, but B performing better toward the end.

I The choice between A and B depends on how long the
crawl is allowed to run before being stopped.

62

Batch Crawl Ordering
I The above framework can be applied to:

I comprehensive batch crawling, in which the goal is to
achieve broad coverage of all types of content.

I scoped batch crawling, where the crawler restricts its
attention to a relatively narrow slice of the webscoped.

63

Comprehensive Crawling
I When the goal is to cover high-quality content of all

varieties, a popular choice of weight function is

w(p) = PR(p)

where PR(p) is p’s importance score as measured by
PageRank [101].

I In view of maximizing coverage weighted by PageRank or
some variant, three main types of crawl ordering policies
have been examined in the literature.

64

Comprehensive Crawling
I Breadth-first search

I Pages are downloaded in the order in which they are first
discovered.

I Prioritize by indegree
I The page with the highest number of incoming hyperlinks

from previously downloaded pages, is downloaded next.

I Prioritize by PageRank (variant/estimate)
I Pages are downloaded in descending order of PageRank (or

some variant), as estimated based on the pages and links
acquired so far by the crawler.

65

Comprehensive Crawling
I Straightforward application of Prioritize by PageRank

involves:
I Recomputing PageRank scores after each download, or

updating the PageRank scores incrementally [38].

I To recompute PageRank scores only periodically, and rely
on an approximation scheme between recomputations.

I Lastly, Abiteboul et al. [1] gave an efficient online method of
estimating a variant of PageRank that does not include
random jumps, designed for use in conjunction with a
crawler.

66

Comprehensive Crawling
I Three published empirical studies evaluated the above

policies over real web data.
I Starting from high-PageRank seeds, breadth-first crawling

performs well early in the crawl (low t), but not as well as
the other policies later in the crawl (medium to high t).

I The shortcut of only recomputing PageRank periodically
leads to poor performance, but the online approximation
scheme by Abiteboul et al. [1] performs well.

I Furthermore, in the context of repeated batch crawls, it is
beneficial to use PageRank values from previous iterations
to drive the current iteration.

67

Comprehensive Crawling
I There is no consensus on prioritization by indegree

I One study (Cho et al. [43]) found that it worked fairly well
(almost as well as prioritization by PageRank).

I Another study (Baeza-Yates et al. [9]) found that it performed
very poorly.

I In addition, Baeza-Yates et al. [9] proposed a crawl policy
that gives priority to sites containing a large number of
discovered but uncrawled URLs.

I Their empirical study imposed per-site politeness constraints
I Toward the end of the crawl (high t) the proposed policy

outperforms policies based on breadth-first search,
indegree, and PageRank.

I The reason is that it avoids the problem of being left with a
few very large sites at the end, which can cause a politeness
bottleneck.

68

Search Relevance as the Crawling Objective
I Fetterly et al. [58] and Pandey and Olston [104] argued that

when the purpose of crawling is to supply content to a
search engine, PageRank weighted coverage may not be
the most appropriate objective.

I It instead makes sense to crawl pages that would be viewed
or clicked by search engine users, if present in the search
index.

I Fetterly et al. [58] evaluated four crawl ordering policies
under two relevance metrics:

I MaxNDCG: The total Normalized Distributed Cumulative
Gain (NDCG) [79] score of a set of queries evaluated over
the crawled pages, assuming optimal ranking.

I Click count: The total number of clicks the crawled pages
attracted via a commercial search engine in some time
period.

69

Search Relevance as the Crawling Objective
I The main findings were:

I prioritization by PageRank is the most reliable and effective
method on these metrics;

I Imposing per-domain page limits boosts effectiveness.

I Pandey and Olston [104] proposed a technique for explicitly
ordering pages by expected relevance impact, under the
objective of maximizing coverage weighted by the number
of times a page appears among the top N results of a user
query.

I The relatively high computational overhead of the technique
is mitigated by concentrating on queries whose results are
likely to be improved by crawling additional pages (deemed
needy queries).

I Relevance of frontier pages to needy queries is estimated
from cues found in URLs and referring anchortext.

70

Scoped Crawling
I A scoped crawler strives to limit crawling activities to pages

that fall within a particular category or scope,
I It acquires in-scope content much faster and more cheaply

than via a comprehensive crawl.
I Scope may be defined according to:

I topic (e.g., pages about aviation)

I geography (e.g., pages about locations in and around
Oldenburg, Germany [6])

I format (e.g., images and multimedia)

I genre (e.g., course syllabi [51])

I language (e.g., pages in Portuguese [65])

I other aspects.

71

Scoped Crawling
I The mathematical objective typically associated with

scoped crawling is maximization of weighted coverage

WC(t) =
∑

p∈C(t)

w(p)

I In scoped crawling, the weight function w(p) reflects the
degree to which page p falls within the intended scope.

I In the simplest case, w(p) ∈ {0, 1}, where
I 0 denotes that p is outside the scope.

I 1 denotes that p is in-scope.

I Measures the fraction of crawled pages that are in-scope.
I Analogous to the precision metric used in IR.

72

Scoped Crawling
I Typically the in-scope pages form a finite set, hence it

makes sense to measure recall in addition to precision.
I Two recall-oriented evaluation techniques have been

proposed:
1. designate a few representative in-scope pages by hand, and

measure what fraction of them are discovered by the crawler
[92].

2. measure the overlap among independent crawls initiated
from different seeds, to see whether they converge on the
same set of pages [34].

I Topical crawling (also known as “focused crawling”), in
which in-scope pages are ones that are relevant to a
particular topic or set of topics, is by far the most
extensively studied form of scoped crawling.

73

Topical Crawling
I The basic observation exploited by topical crawlers is that

relevant pages tend to link to other relevant pages, either
directly or via short chains of links.

I The first crawl ordering technique to exploit this observation
was fish search [53]:

I It categorized each crawled page p as either relevant or
irrelevant.

I Explored the neighborhood of each relevant page up to
depth d looking for additional relevant pages.

74

Topical Crawling
I A second generation of topical crawlers [43, 74, 108]

explored the neighborhoods of relevant pages in a
non-uniform fashion.

I The most promising links are traversed first.
I The link traversal order was governed by individual

relevance estimates assigned to each linked-to page.
I If a crawled page p links to an uncrawled page q, the

relevance estimate for q is computed via analysis of
I The text surrounding p’s link to q

I i.e., the anchortext and text near the anchortext

I The URL of page q

75

Topical Crawling
I A third-generation approach based on machine learning

and link structure analysis was introduced by Chakrabarti
et al. [33, 34].

I The approach leverages pre-existing topic taxonomies such
as the Open Directory and Yahoo!’s web directory, which
supply examples of web pages matching each topic.

I These example pages are used to train a classifier to map
newly encountered pages into the topic taxonomy.

I The user selects a subset of taxonomy nodes (topics) of
interest to crawl.

I The crawler preferentially follows links from pages that the
classifier deems most relevant to the topics of interest.

76

Topical Crawling
I In addition, an attempt is made to identify pages with a

collection of links to topical pages (hub pages) using the
HITS link analysis algorithm [82].

I Links from hub pages are followed with higher priority than
other links.

I The empirical findings of Chakrabarti et al. [34] established
topical crawling as a viable and effective paradigm:

I A general web crawler seeded with topical pages quickly
becomes mired in irrelevant regions of the web, yielding very
poor weighted coverage. In contrast, a topical crawler
successfully stays within scope, and explores a steadily
growing population of topical pages over time.

I Two topical crawler instances, started from disparate seeds,
converge on substantially overlapping sets of pages.

77

Greediness
I Paths between pairs of relevant pages sometimes pass

through one or more irrelevant pages.
I A topical crawler that is too greedy will stop when it reaches

an irrelevant page, and never discovers subsequent
relevant page(s).

I The question of how greedily to crawl is an instance of the
explore versus exploit tradeoff observed in many contexts.

I In this context, the question is:
I How should the crawler balance exploitation of direct links to

(apparently) relevant pages, with exploration of other links
that may, eventually, lead to relevant pages?

78

Adaptivity
I In most topical crawling approaches the page ordering

strategy is fixed for the duration of the crawl.
I Some have studied ways for a crawler to adapt its strategy

over time, in response to observations made while the crawl
is in flight.

I Agarwal et al. [5] proposed a method to learn on the fly how
best to combine relevance signals found into a single
relevance estimate on which to base the crawl order.

I Evolutionary algorithms (e.g., genetic algorithms) have
been explored as a means to adapt crawl behavior over
time [37, 80, 91].

79

Summary

Introduction

Crawler Architecture

Crawl Ordering Problem

Batch Crawl Ordering

Incremental Crawl Ordering

Avoiding Problematic and Undesirable Content

Deep Web Crawling

80

Incremental Crawl Ordering
I In contrast to a batch crawler, a continuous or incremental

crawler never “starts over”.
I An incremental crawler interleaves revisitation of previously

crawled pages with first-time visitation of new pages.
I The aim is to achieve good freshness and coverage

simultaneously.
I Coverage is measured according to the same weighted

coverage.
I An analogous weighted freshness metric is as follows:

WF (t) =
∑

p∈C(t)

w(p) · f(p, t)

where f(p, t) is page p’s freshness level at time t.

81

Incremental Crawl Ordering
I One is typically interested in the steady-state average of

WT:

WT = lim
t→∞

1

t

∫ 1

0

WF (t)dt

I At each step, an incremental crawler faces a choice
between two basic actions:

1. Download a new page.
I May improve coverage.

I May supply new links, which can lead to discovery of new
pages.

2. Re-download an old page.
I May improve freshness.

I May supply new links or reveal the removal of links.

82

Incremental Crawl Ordering
I In the presence of dynamic pages and finite crawling

resources, there is a tradeoff between coverage and
freshness.

I There is no consensus about the best way to balance the
two.

I Some contend that balancing coverage and freshness
should be left as a business decision

I Do we prefer broad coverage of content that may be
somewhat out-of-date?

I Or do we prefer narrower coverage with fresher content?

I Others have proposed specific schemes for combining the
two objectives into a single framework.

I Most published work on crawling focuses either uniquely on
coverage or uniquely on freshness.

83

Maximizing Freshness
I To simplify the study of this problem, it is standard practice

to assume that:
I The set of crawled pages is fixed (i.e., C(t) is static, so we

drop the dependence on t)
I Each page p ∈ C exhibits a stationary stochastic pattern of

content changes over time.
I Freshness maximization divides into three relatively distinct

sub-problems:
I Model estimation. Construct a model for the temporal

behavior of each page p ∈ C.
I Resource allocation. Given a maximum crawl rate r, assign

to each page p ∈ C a revisitation frequency r(p) such that∑
p∈C r(p) = r.

I Scheduling. Produce a crawl order that adheres to the
target revisitation frequencies as closely as possible.

84

Maximizing Freshness
I Resource allocation is generally viewed as the central

aspect of freshness maximization.
I We divide work on resource allocation into two categories,

according to the freshness model adopted:
I Binary Freshness Model

I Continuous Freshness Models

85

Binary Freshness Model
I Binary freshness model is also known as obsolescence.
I In the binary freshness model, f(p, t) ∈ {0, 1}.
I If the cached copy of p is identical to the live copy then:

I f(p, t) = 1

I p is said to be “fresh”.

I Otherwise,
I f(p, t) = 0

I p is termed “stale”.

86

Binary Freshness Model
I The first to study the freshness maximization problem were

Coffman et al. [46] who postulated a Poisson model of web
page change.

I A page p undergoes discrete change events, which cause
the copy cached by the crawler to become stale.

I The occurrence of change events is governed by a Poisson
process with rate parameter λ(p)

I This means that changes occur randomly and
independently, with an average rate of λ(p) changes per
time unit.

I In the case of uniform page weights (i.e., all w(p) values are
equal), revisitation frequencies in proportion to page
change rates, i.e., r(p) ∝ λ(p) (called proportional resource
allocation), can be suboptimal.

87

Binary Freshness Model
I Cho and Garcı́a-Molina [41] continued the work of Coffman

et al. [46], and derived a famously counterintuitive result:
I In the uniform weights case, a uniform resource allocation

policy, in which r(p) = r/|C| for all p, achieves higher
average binary freshness than proportional allocation.

I The superiority of the uniform policy to the proportional one
holds under any distribution of change rates (λ(p) values).

I The optimal resource allocation policy for binary freshness,
also given by Cho and Garcı́a-Molina [41], exhibits the
following intriguing property:

I Pages with a very fast rate of change (i.e., λ(p) very high
relative to r/|C|) ought never to be revised by the crawler,
i.e., r(p) = 0.

88

Binary Freshness Model
I A page p1 that changes once per second, and is revisited

once per second by the crawler, is on average only half
synchronized (f(p1) = 0.5).

I A page p2 that changes once per day, and is revisited once
per hour by the crawler, has much better average freshness
(f(p2) = 24/25 under randomized scheduling, according to
the formula given by Cho and Garcı́a-Molina [41]).

I The crawling resources required to keep p1 weakly
synchronized can be put to better use keeping several
slow-changing pages like p2 tightly synchronized, assuming
equal page weights.

I In terms of average binary freshness, it is best for the
crawler to “give up on” fast-changing pages, and put its
energy into synchronizing moderate and slow-changing
ones.

89

Binary Freshness Model
I Under a Poison model, the crawler cannot time its visits to

coincide with page change events. The following
approaches relax the independence assumption.

I Wolf et al. [115] studied incremental crawling under a
quasi-deterministic page change model in which:

I page change events are non-uniform in time;
I the distribution of likely change times is known a priori.

I This work also introduced a search-centric page weighting
scheme (embarrassment level) in which w(p) ∝ c(p)

I c(p) denotes the probability that a user will click on p after
issuing a search query, as estimated from historical search
engine usage logs.

I The aim is to revisit frequently clicked pages preferentially,
thereby minimizing “embarrassing” incidents in which a
search result contains a stale page.

90

Continuous Freshness Models
I In a real crawling scenario, some pages may be “fresher”

than others.
I There is no consensus about the best way to measure

freshness.
I Cho and Garcı́a-Molina [41] introduced a temporal

freshness metric, in which f(p, t) ∝ −age(p, t):

age(p, t) =

{
0, if the cached copy of p is identical to the live copy
a, otherwise

where a denotes the amount of time the copies have
differed.

I The longer a cached page remains unsynchronized, the
more their content tends to drift apart.

91

Continuous Freshness Models
I The optimal resource allocation policy under this age-based

freshness metric, assuming a Poisson model of page
change, is given by Cho and Garcı́a-Molina [41].

I Unlike in the binary freshness case, the revisitation
frequency r(p) increases monotonically with the page
change rate λ(p).

I Since age increases without bound, the crawler cannot
afford to “give up on” any page.

92

Continuous Freshness Models
I Olston and Pandey [99] introduced an approach in which,

the idea is to measure changes in page content directly.
I A page is divided into a set of content fragments
f1, f2, ..., fn.

I A corresponding weight w(fi) captures the fragment’s
importance and/or relevance.

I Freshness is measured as the (weighted) fraction of
fragments in common between the cached and live page
snapshots, using the Jaccard set similarity measure.

93

Continuous Freshness Models
I They also characterize the longevity of newly updated

content.
I Long-lived content (e.g., today’s blog entry, which will

remain in the blog indefinitely) is more valuable to crawl
than ephemeral content (e.g., today’s “quote of the day,”
which will be overwritten tomorrow).

I In separate work, Pandey and Olston [103] proposed a
search-centric method of assigning weights to changes.

I Weights are assigned based on the degree to which a
change is expected to impact search ranking.

I Even if a page undergoes periodic changes, if the search
engine’s treatment of the page is unaffected by these
changes, there is no need for the crawler to revisit it.

94

Summary

Introduction

Crawler Architecture

Crawl Ordering Problem

Batch Crawl Ordering

Incremental Crawl Ordering

Avoiding Problematic and Undesirable Content

Deep Web Crawling

95

Redundant Content
I There is a prevalence of duplicate and near-duplicate

content on the web.
I Some duplication stems from the fact that:

I many web sites allow multiple URLs to refer to the same
content;

I content that is identical modulo ever-changing elements
such as rotating banner ads, evolving comments by readers,
and timestamps.

96

Redundant Content
I Schonfeld et al. proposed the “duplicate URL with similar

text” (DUST) algorithm [12] to detect this form of aliasing,
and to infer rules for normalizing URLs into a canonical
form.

I Rules inferred using these algorithms can be used by a web
crawler to normalize URLs after extracting them from
downloaded pages and before passing them through the
duplicate URL eliminator and into the frontier.

97

Redundant Content
I Another source of duplication is mirroring [18, 19, 52]:

I Providing all or parts of the same web site on different hosts.

I Mirrored web sites can be divided into two groups:
I Sites that are mirrored by the same organization

- having one web server serving multiple domains with the
same content;

- having multiple web servers provide synchronized content.

I Content that is mirrored by multiple organizations
- schools providing Unix man pages on the web;

- web sites republishing Wikipedia content, often somewhat
reformatted.

98

Redundant Content
I Detecting mirrored content differs from detecting DUST in

two ways:
I The duplication occurs across multiple sites, so mirror

detection algorithms have to consider the entire corpus.

I Entire trees of URLs are mirrored, so detection algorithms
can use URL trees as a feature to detect mirror candidates,
and then compare the content of candidate subtrees.

99

Crawler Traps
I Another phenomenon that inflates the corpus without

adding utility is crawler traps:
I Web sites that populate a large, possibly infinite URL space

on that site with mechanically generated content.

I Some crawler traps are nom-malicious.
I e.g., calendaring tools with a hyperlink from each month to

the next (and previous) month, thereby forming an
unbounded chain of dynamically generated pages.

I Other crawler traps are malicious.
I Often set up by “spammers” to inject large amounts of their

content into a search engine, in the hope of:
I having their content show up high in search result pages;

I providing many hyperlinks to their “landing page,” thus
biasing link-based ranking algorithms such as PageRank.

100

Web Spam
I Web spam may be defined as: “web pages that are crafted

for the sole purpose of increasing the ranking of these or
some affiliated pages, without improving the utility to the
viewer” [97].

I Web spam is motivated by the monetary value of achieving
a prominent position in search-engine result pages.

I There is a multi-billion dollar industry devoted to search
engine optimization (SEO), most of it being legitimate but
some of it misleading.

101

Web Spam
I Web spam can be broadly classified into three categories

[69]:
I Keyword stuffing, populating pages with highly searched or

highly monetizable terms;

I Link spam, creating cliques of tightly inter-linked web pages
with the goal of biasing link-based ranking algorithms such
as PageRank [101];

I Cloaking, serving substantially different content to web
crawlers than to human visitors (to get search referrals for
queries on a topic not covered by the page).

102

Web Spam
I The problem of identifying web spam can be framed as a

classification problem.
I The main challenge is to identify features that are predictive

of web spam and can thus be used as inputs to the
classifier.

I Many such features have been proposed, including:
I hyperlink features [16, 17, 50, 116];

I term and phrase frequency [97];

I DNS lookup statistics [59];

I HTML markup structure [114].

I Web spam detection is a constant arms race, with both
spammers and search engines evolving their techniques in
response to each other’s actions.

103

Cloaked Content
I Cloaking refers to the practice of serving different content to

web crawlers than to human viewers of a site [73].
I Not all cloaking is malicious:

I Many web sites with interactive content rely heavily on
JavaScript;

I But most web crawlers do not execute JavaScript;
I It is reasonable for such a site to deliver alternative,

script-free versions of its pages to a search engine’s crawler
to enable the engine to index and expose the content.

I Web sites distinguish mechanical crawlers from human
visitors either based on:

I User-Agent field (an HTTP header that is used to distinguish
different web browsers, and by convention is used by
crawlers to identify themselves);

I Crawler’s IP address.
104

Cloaked Content
I A variant of cloaking is called redirection spam.
I A web server utilizing redirection spam serves the same

content both to crawlers and to human-facing browser
software.

I However, the content will cause a browser to immediately
load a new page presenting different content.

I Redirection spam is facilitated either through:
I HTML META REFRESH tag (whose presence is easy to detect)
I JavaScript, which most browsers execute but most crawlers

do not.

I Chellapilla and Maykov argued for the use of lightweight
JavaScript parsers and execution engines in the
crawling/indexing pipeline to evaluate scripts to determine
whether redirection occurs.

105

Summary

Introduction

Crawler Architecture

Crawl Ordering Problem

Batch Crawl Ordering

Incremental Crawl Ordering

Avoiding Problematic and Undesirable Content

Deep Web Crawling

106

Deep Web Crawling
I Some content is accessible only by filling in HTML forms.
I This kind of content cannot be reached via conventional

crawlers that just follow hyperlinks.
I Crawlers that automatically fill in forms to reach the content

behind them are called hidden web or deep web crawlers.
I Types of Deep Web Sites:

I Content is either:
- unstructured (e.g., free-form text);

- or structured (e.g., data records with typed fields).

I The form interface used to query the content is either:
- unstructured (i.e., a single query box that accepts a free-form

query string)

- or structured (i.e., multiple query boxes that pertain to
different aspects of the content).

107

Types of Deep Web Sites

Unstructured Structured
Content Content

Unstructured News archive Product review site
query interface (simple search)

Structured News archive Online bookstore
query interface (advanced search)

I For simplicity most work focuses on either the upper-left
quadrant (which we henceforth call the unstructured case),
or the lower-right quadrant (structured case).

108

Deep Web Crawling
I Deep web crawling has three steps:

1. Locate deep web content sources. A human or crawler
must identify web sites containing form interfaces that lead
to deep web content.

2. Select relevant sources. For a scoped deep web crawling
task (e.g., crawling medical articles), one must select a
relevant subset of the available content sources. In the
unstructured case this problem is known as database or
resource selection [32, 66].

3. Extract underlying content. Finally, a crawler must extract
the content lying behind the form interfaces of the selected
content sources.

I Step 3 (content extraction) is the core problem in deep web
crawling.

109

Content Extraction
I The main approach to extracting content from a deep web

site proceeds in four steps (the first two steps apply only to
the structured case):

1. Select a subset of form elements to populate, or perhaps
multiple such subsets.

2. If possible, decipher the role of each of the targeted form
elements (e.g., book author versus publication date), or at
least understand their domains (proper nouns versus dates).

3. Create an initial database of valid data values (e.g., “Ernest
Hemingway” and 1940 in the structured case; English words
in the unstructured case).

4. Use the database to issue queries to the deep web site (e.g.,
publisher = “Scribner”), parse the result and extract new data
values to insert into the database (e.g., author = “Ernest
Hemingway”), and repeat.

110

References
[1] S. Abiteboul, M. Preda, and G. Cobena, “Adaptive on-line page importance computation,” in
Proceedings of the 12th International World Wide Web Conference, 2003.

[2] E. Adar, J. Teevan, S. T. Dumais, and J. L. Elsas, “The web changes everything:
Understanding the dynamics of web content,” in Proceedings of the 2nd International
Conference on Web Search and Data Mining, 2009.

[3] Advanced Triage (medical term), http://en.wikipedia.org/wiki/Triage# Advanced triage.

[4] A. Agarwal, H. S. Koppula, K. P. Leela, K. P. Chitrapura, S. Garg, P. K. GM, C. Haty, A. Roy,
and A. Sasturkar, “URL normalization for de-duplication of web pages,” in Proceedings of the
18th Conference on Information and Knowledge Management, 2009.

[5] C. C. Aggarwal, F. Al-Garawi, and P. S. Yu, “Intelligent crawling on the world wide web with
arbitrary predicates,” in Proceedings of the 10th International World Wide Web Conference,
2001.

[6] D. Ahlers and S. Boll, “Adaptive geospatially focused crawling,” in Proceedings of the 18th
Conference on Information and Knowledge Management, 2009.

[7] Attributor. http://www.attributor.com.

[8] R. Baeza-Yates and C. Castillo, “Crawling the infinite web,” Journal of Web Engineering, vol.
6, no. 1, pp. 49–72, 2007.

111

References
[9] R. Baeza-Yates, C. Castillo, M. Marin, and A. Rodriguez, “Crawling a country: Better
strategies than breadth-first for web page ordering,” in Proceedings of the 14th International
World Wide Web Conference, 2005.

[10] B. Bamba, L. Liu, J. Caverlee, V. Padliya, M. Srivatsa, T. Bansal, M. Palekar, J. Patrao, S. Li,
and A. Singh, “DSphere: A source-centric approach to crawling, indexing and searching the
world wide web,” in Proceedings of the 23rd International Conference on Data Engineering,
2007.

[11] Z. Bar-Yossef and M. Gurevich, “Random sampling from a search engine’s index,” in
Proceedings of the 15th International World Wide Web Conference, 2006.

[12] Z. Bar-Yossef, I. Keidar, and U. Schonfeld, “Do not crawl in the DUST: Different URLs with
similar text,” in Proceedings of the 16th International World Wide Web Conference, 2007.

[13] L. Barbosa and J. Freire, “Siphoning hidden-web data through keyword-based interfaces,” in
Proceedings of the 19th Brazilian Symposium on Databases SBBD, 2004.

[14] L. Barbosa and J. Freire, “An adaptive crawler for locating hidden-web entry points,” in
Proceedings of the 16th International World Wide Web Conference, 2007.

[15] L. Barbosa, A. C. Salgado, F. de Carvalho, J. Robin, and J. Freire, “Looking at both the
present and the past to efficiently update replicas of web content,” in Proceedings of the ACM
International Workshop on Web Information and Data Management, 2005.

112

References
[16] L. Becchetti, C. Castillo, D. Donato, S. Leonardi, and R. Baeza-Yates, “Link- based
characterization and detection of web spam,” in Proceedings of the 2nd International Workshop
on Adversarial Information Retrieval on the Web, 2006.

[17] A. Benczúr, K. Csalogány, T. Sarlós, and M. Uher, “Spamrank — fully automatic link spam
detection,” in Proceedings of the 1st International Workshop on Adversarial Information Retrieval
on the Web, 2005.

[18] K. Bharat and A. Broder, “Mirror, mirror on the web: A study of host pairs with replicated
content,” in Proceedings of the 8th International World Wide Web Conference, 1999.

[19] K. Bharat, A. Broder, J. Dean, and M. Henzinger, “A comparison of techniques to find
mirrored hosts on the WWW,” Journal of the American Society for Information Science, vol. 51,
no. 12, pp. 1114–1122, 2000.

[20] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Communications
of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[21] P. Boldi, B. Codenotti, , M. Santini, and S. Vigna, “UbiCrawler: A scalable fully distributed
web crawler,” Software — Practice & Experience, vol. 34, no. 8, pp. 711–726, 2004.

[22] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Structural properties of the African web,” in
Poster Proceedings of the 11th International World Wide Web Conference, 2002.

[23] P. Boldi, M. Santini, and S. Vigna, “Paradoxical effects in pagerank incremental
computations,” Internet Mathematics, vol. 2, no. 3, pp. 387–404, 2005.

113

References
[24] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz, “The Harvest
information discovery and access system,” in Proceedings of the 2nd International World Wide
Web Conference, 1994.

[25] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,” in
Proceedings of the 7th International World Wide Web Conference, 1998.

[26] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J.
Wiener, “Graph structure in the web,” in Proceedings of the 9th International World Wide Web
Conference, 2000.

[27] A. Broder, M. Najork, and J. Wiener, “Efficient URL caching for World Wide Web crawling,” in
Proceedings of the 12th International World Wide Web Conference, 2003.

[28] A. Z. Broder, S. C. Glassman, and M. S. Manasse, “Syntactic clustering of the web,” in
Proceedings of the 6th International World Wide Web Conference, 1997.

[29] M. Burner, “Crawling towards eternity: Building an archive of the world wide web,” Web
Techniques Magazine, vol. 2, no. 5, pp. 37–40, 1997.

[30] J. Callan, “Distributed information retrieval,” in Advances in Information Retrieval, (W. B.
Croft, ed.), pp. 127–150, Kluwer Academic Publishers, 2000.

[31] J. Callan and M. Connell, “Query-based sampling of text databases,” ACM Transactions on
Information Systems, vol. 19, no. 2, pp. 97–130, 2001.

114

References
[32] J. P. Callan, Z. Lu, and W. B. Croft, “Searching distributed collections with inference
networks,” in Proceedings of the 18th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, 1995.

[33] S. Chakrabarti, B. Dom, P. Raghavan, S. Rajagopalan, D. Gibson, and J. Kleinberg,
“Automatic resource compilation by analyzing hyperlink structure and associated text,” in
Proceedings of the 7th International World Wide Web Conference, 1998.

[34] S. Chakrabarti, M. van den Berg, and B. Dom, “Focused crawling: A new approach to
topic-specific web resource discovery,” in Proceedings of the 8th International World Wide Web
Conference, 1999.

[35] K. C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang, “Structured databases on the web:
Observations and implications,” ACM SIGMOD Record, vol. 33, no. 3, pp. 61–70, 2004.

[36] K. Chellapilla and A. Maykov, “A taxonomy of JavaScript redirection spam,” in Proceedings
of the 16th International World Wide Web Conference, 2007.

[37] H. Chen, M. Ramsey, and C. Yang, “A smart itsy bitsy spider for the web,” Journal of the
American Society for Information Science, vol. 49, no. 7, pp. 604–618, 1998.

[38] S. Chien, C. Dwork, R. Kumar, D. R. Simon, and D. Sivakumar, “Link evolution: Analysis and
algorithms,” Internet Mathematics, vol. 1, no. 3, pp. 277–304, 2003.

[39] J. Cho and H. Garcı́a-Molina, “The evolution of the web and implications for an incremental
crawler,” in Proceedings of the 26th International Conference on Very Large Data Bases, 2000.

115

References
[40] J. Cho and H. Garcı́a-Molina, “Parallel crawlers,” in Proceedings of the 11th International
World Wide Web Conference, 2002.

[41] J. Cho and H. Garcı́a-Molina, “Effective page refresh policies for web crawlers,” ACM
Transactions on Database Systems, vol. 28, no. 4, pp. 390–426, 2003.

[42] J. Cho and H. Garcı́a-Molina, “Estimating frequency of change,” ACM Transactions on
Internet Technology, vol. 3, no. 3, pp. 256–290, 2003.

[43] J. Cho, J. Garcı́ıa-Molina, and L. Page, “Efficient crawling through URL ordering,” in
Proceedings of the 7th International World Wide Web Conference, 1998.

[44] J. Cho and A. Ntoulas, “Effective change detection using sampling,” in Proceedings of the
28th International Conference on Very Large Data Bases, 2002.

[45] J. Cho and U. Schonfeld, “RankMass crawler: A crawler with high personalized PageRank
coverage guarantee,” in Proceedings of the 33rd International Conference on Very Large Data
Bases, 2007.

[46] E. G. Coffman, Z. Liu, and R. R. Weber, “Optimal robot scheduling for web search engines,”
Journal of Scheduling, vol. 1, no. 1, 1998.

[47] CrawlTrack, “List of spiders and crawlers,” http://www.crawltrack.net/ crawlerlist.php.

[48] A. Dasgupta, A. Ghosh, R. Kumar, C. Olston, S. Pandey, and A. Tomkins, “The
discoverability of the web,” in Proceedings of the 16th International World Wide Web Conference,
2007.

116

References
[49] A. Dasgupta, R. Kumar, and A. Sasturkar, “De-duping URLs via rewrite rules,” in
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2008.

[50] B. Davison, “Recognizing nepotistic links on the web,” in Proceedings of the AAAI-2000
Workshop on Artificial Intelligence for Web Search, 2000.

[51] G. T. de Assis, A. H. F. Laender, M. A. Gonçalves, and A. S. da Silva, “A genre-aware
approach to focused crawling,” World Wide Web, vol. 12, no. 3, pp. 285–319, 2009.

[52] J. Dean and M. Henzinger, “Finding related pages in the world wide web,” in Proceedings of
the 8th International World Wide Web Conference, 1999.

[53] P. DeBra and R. Post, “Information retrieval in the world wide web: Making client-based
searching feasible,” in Proceedings of the 1st International World Wide Web Conference, 1994.

[54] M. Diligenti, F. M. Coetzee, S. Lawrence, C. L. Giles, and M. Gori, “Focused crawling using
context graphs,” in Proceedings of the 26th International Conference on Very Large Data Bases,
2000.

[55] C. Duda, G. Frey, D. Kossmann, and C. Zhou, “AJAXSearch: Crawling, indexing and
searching web 2.0 applications,” in Proceedings of the 34th International Conference on Very
Large Data Bases, 2008.

[56] J. Edwards, K. S. McCurley, and J. A. Tomlin, “An adaptive model for optimizing
performance of an incremental web crawler,” in Proceedings of the 10th International World Wide
Web Conference, 2001.

117

References
[57] D. Eichmann, “The RBSE spider — Balancing effective search against web load,” in
Proceedings of the 1st International World Wide Web Conference, 1994.

[58] D. Fetterly, N. Craswell, and V. Vinay, “The impact of crawl policy on web search
effectiveness,” in Proceedings of the 32nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2009.

[59] D. Fetterly, M. Manasse, and M. Najork, “Spam, damn spam, and statistics: Using statistical
analysis to locate spam web pages,” in Proceedings of the 7th International Workshop on the
Web and Databases, 2004.

[60] D. Fetterly, M. Manasse, M. Najork, and J. L. Wiener, “A large-scale study of the evolution of
web pages,” in Proceedings of the 12th International World Wide Web Conference, 2003.

[61] R. Fielding, “Maintaining distributed hypertext infostructures: Welcome to MOMspider’s
web,” in Proceedings of the 1st International World Wide Web Conference, 1994.

[62] A. S. Foundation, “Welcome to Nutch!,” http://lucene.apache.org/nutch/.

[63] W. Gao, H. C. Lee, and Y. Miao, “Geographically focused collaborative crawling,” in
Proceedings of the 15th International World Wide Web Conference, 2006.

[64] GigaAlert, http://www.gigaalert.com.

[65] D. Gomes and M. J. Silva, “Characterizing a national community web,” ACM Transactions on
Internet Technology, vol. 5, no. 3, pp. 508–531, 2005.

118

References
[66] L. Gravano, H. Garcı́a-Molina, and A. Tomasic, “The effectiveness of GlOSS for the text
database discovery problem,” in Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data, 1994.

[67] M. Gray, “Internet growth and statistics: Credits and background,”
http://www.mit.edu/people/mkgray/net/background.html.

[68] D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pattanayak, A. Tomkins, and J. Zien, “How to
build a WebFountain: An architecture for very large-scale text analytics,” IBM Systems Journal,
vol. 43, no. 1, pp. 64–77, 2004.

[69] Z. Gyöngyi and H. Garcı́a-Molina, “Web Spam Taxonomy,” in Proceedings of the 1st
International Workshop on Adversarial Information Retrieval, 2005.

[70] Y. Hafri and C. Djeraba, “High performance crawling system,” in Proceedings of the 6th ACM
SIGMM International Workshop on Multimedia Information Retrieval, 2004.

[71] M. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork, “Measuring index quality using
random walks on the web,” in Proceedings of the 8th International World Wide Web Conference,
1999.

[72] M. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork, “On near- uniform URL
sampling,” in Proceedings of the 9th International World Wide Web Conference, 2000.

[73] M. R. Henzinger, R. Motwani, and C. Silverstein, “Challenges in web search engines,” SIGIR
Forum, vol. 36, no. 2, pp. 11–22, 2002.

119

References
[74] M. Hersovici, M. Jacovi, Y. S. Maarek, D. Pelleg, M. Shtalhaim, and S. Ur, “The shark-search
algorithm — An application: Tailored web site mapping,” in Proceedings of the 7th International
World Wide Web Conference, 1998.

[75] A. Heydon and M. Najork, “Mercator: A scalable, extensible web crawler,” World Wide Web,
vol. 2, no. 4, pp. 219–229, 1999.

[76] International Workshop Series on Adversarial Information Retrieval on the Web, 2005.

[77] Internet Archive, http://archive.org/.

[78] Internet Archive, “Heritrix home page,” http://crawler.archive.org/.

[79] K. Jarvelin and J. Kekalainen, “Cumulated gain-based evaluation of IR techniques,” ACM
Transactions on Information Systems, vol. 20, no. 4, pp. 422–446, 2002.

[80] J. Johnson, K. Tsioutsiouliklis, and C. L. Giles, “Evolving strategies for focused web
crawling,” in Proceedings of the 20th International Conference on Machine Learning, 2003.

[81] R. Khare, D. Cutting, K. Sitakar, and A. Rifkin, “Nutch: A flexible and scalable open-source
web search engine,” Technical Report, CommerceNet Labs, 2004.

[82] J. Kleinberg, “Authoritative sources in a hyperlinked environment,” Journal of the ACM, vol.
46, no. 5, pp. 604–632, 1999.

[83] M. Koster, “A standard for robot exclusion,” http://www.robotstxt.org/ orig.html, 1994.

120

References
[84] H.-T. Lee, D. Leonard, X. Wang, and D. Loguinov, “IRLbot: Scaling to 6 billion pages and
beyond,” in Proceedings of the 17th International World Wide Web Conference, 2008.

[85] L. Lim, M. Wang, S. Padmanabhan, J. S. Vitter, and R. C. Agarwal, “Characterizing web
document change,” in Proceedings of the International Conference on Advances in Web-Age
Information Management, 2001.

[86] L. Liu, C. Pu, W. Tang, and W. Han, “CONQUER: A continual query system for update
monitoring in the WWW,” International Journal of Computer Systems, Science and Engineering,
vol. 14, no. 2, 1999.

[87] B. T. Loo, O. Cooper, and S. Krishnamurthy, “Distributed web crawling over DHTs,” UC
Berkeley Technical Report CSD-04-1305, 2004.

[88] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and A. Halevy, “Google’s
deep-web crawl,” in Proceedings of the 34th International Conference on Very Large Data
Bases, 2008.

[89] M. Mauldin, “Lycos: Design choices in an internet search service,” IEEE Expert, vol. 12, no.
1, pp. 8–11, 1997.

[90] O. A. McBryan, “GENVL and WWWW: Tools for taming the web,” in Proceedings of the 1st
International World Wide Web Conference, 1994.

[91] F. Menczer and R. K. Belew, “Adaptive retrieval agents: Internalizing local context and
scaling up to the web,” Machine Learning, vol. 39, pp. 203–242, 2000.

121

References
[92] F. Menczer, G. Pant, and P. Srinivasan, “Topical web crawlers: Evaluating adaptive
algorithms,” ACM Transactions on Internet Technology, vol. 4, no. 4, pp. 378–419, 2004.

[93] G. Mohr, M. Stack, I. Ranitovic, D. Avery, and M. Kimpton, “An introduction to Heritrix, an
open source archival quality web crawler,” in Proceedings of the 4th International Web Archiving
Workshop, 2004.

[94] M. Najork and A. Heydon, “High-performance web crawling,” Technical report, Compaq SRC
Research Report 173, 2001.

[95] M. Najork and J. L. Wiener, “Breadth-first search crawling yields high-quality pages,” in
Proceedings of the 10th International World Wide Web Conference, 2001.

[96] A. Ntoulas, J. Cho, and C. Olston, “What’s new on the web? The evolution of the web from a
search engine perspective,” in Proceedings of the 13th International World Wide Web
Conference, 2004.

[97] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly, “Detecting spam web pages through
content analysis,” in Proceedings of the 15th International World Wide Web Conference, 2006.

[98] A. Ntoulas, P. Zerfos, and J. Cho, “Downloading textual hidden web content through keyword
queries,” in Proceedings of the ACM/IEEE Joint Conference on Digital Libraries, 2005.

[99] C. Olston and S. Pandey, “Recrawl scheduling based on information longevity,” in
Proceedings of the 17th International World Wide Web Conference, 2008.

122

References
[100] V. J. Padliya and L. Liu, “Peercrawl: A decentralized peer-to-peer architecture for crawling
the world wide web,” Georgia Institute of Technology Technical Report, 2006.

[101] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation ranking: Bringing
order to the web,” Technical Report, Stanford University, 1998.

[102] S. Pandey, K. Dhamdhere, and C. Olston, “WIC: A general-purpose algorithm for
monitoring web information sources,” in Proceedings of the 30th International Conference on
Very Large Data Bases, 2004.

[103] S. Pandey and C. Olston, “User-centric web crawling,” in Proceedings of the 14th
International World Wide Web Conference, 2005.

[104] S. Pandey and C. Olston, “Crawl ordering by search impact,” in Proceedings of the 1st
International Conference on Web Search and Data Mining, 2008.

[105] S. Pandey, K. Ramamritham, and S. Chakrabarti, “Monitoring the dynamic web to respond
to continuous queries,” in Proceedings of the 12th International World Wide Web Conference,
2003.

[106] G. Pant and P. Srinivasan, “Learning to crawl: Comparing classification schemes,” ACM
Transactions on Information Systems, vol. 23, no. 4, pp. 430–462, 2005.

[107] G. Pant and P. Srinivasan, “Link contexts in classifier-guided topical crawlers,” IEEE
Transactions on Knowledge and Data Engineering, vol. 18, no. 1, pp. 107–122, 2006.

[108] B. Pinkerton, “Finding what people want: Experiences with the WebCrawler,” in
Proceedings of the 2nd International World Wide Web Conference, 1994.

123

References
[109] S. Raghavan and H. Garcı́a-Molina, “Crawling the hidden web,” in Proceedings of the 27th
International Conference on Very Large Data Bases, 2001.

[110] U. Schonfeld and N. Shivakumar, “Sitemaps: Above and beyond the crawl of duty,” in
Proceedings of the 18th International World Wide Web Conference, 2009.

[111] V. Shkapenyuk and T. Suel, “Design and implementation of a high- performance distributed
web crawler,” in Proceedings of the 18th International Conference on Data Engineering, 2002.

[112] A. Singh, M. Srivatsa, L. Liu, and T. Miller, “Apoidea: A decentralized peer- to-peer
architecture for crawling the world wide web,” in SIGIR Workshop on Distributed Information
Retrieval, 2003.

[113] Q. Tan, Z. Zhuang, P. Mitra, and C. L. Giles, “A clustering-based sampling approach for
refreshing search engine’s database,” in Proceedings of the 10th International Workshop on the
Web and Databases, 2007.

[114] T. Urvoy, T. Lavergne, and P. Filoche, “Tracking web spam with hidden style similarity,” in
Proceedings of the 2nd International Workshop on Adversarial Information Retrieval on the Web,
2006.

[115] J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman, and L. Ozsen, “Optimal crawling
strategies for web search engines,” in Proceedings of the 11th International World Wide Web
Conference, 2002.

[116] B. Wu and B. Davison, “Identifying link farm spam pages,” in Proceedings of the 14th
International World Wide Web Conference, 2005.

124

References
[117] P. Wu, J.-R. Wen, H. Liu, and W.-Y. Ma, “Query selection techniques for efficient crawling of
structured web sources,” in Proceedings of the 22nd International Conference on Data
Engineering, 2006.

[118] Yahoo! Research Barcelona, “Datasets for web spam detection,”
http://www.yr-bcn.es/webspam/datasets.

[119] J.-M. Yang, R. Cai, C. Wang, H. Huang, L. Zhang, and W.-Y. Ma, “Incorporating site-level
knowledge for incremental crawling of web forums: A list-wise strategy,” in Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009.

[120] S. Zheng, P. Dmitriev, and C. L. Giles, “Graph-based seed selection for web- scale
crawlers,” in Proceedings of the 18th Conference on Information and Knowledge Management,
2009.

[121] K. Zhu, Z. Xu, X. Wang, and Y. Zhao, “A full distributed web crawler based on structured
network,” in Asia Information Retrieval Symposium, 2008.

125

	ir_spring14_lec19.pdf
	SLIDES_FaTinIR_4_3_2010_Web_crawling.pdf

