
1

Ανάκληση Πληροφορίας

Information Retrieval

Διδάσκων –
Δημήτριος Κατσαρός

Διάλεξη 4η: 24/02/2014

2

Faster postings merges:
Skip pointers

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 3

Recall basic merge
• Walk through the two postings simultaneously, in

time linear in the total number of postings entries

128

31

2 4 8 16 32 64

1 2 3 5 8 17 21

Brutus

Caesar2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes, if index isn’t changing too fast.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 4

Augment postings with skip pointers
(at indexing time)

• Why?
• To skip postings that will not figure in the search

results.
• How?
• Where do we place skip pointers?

1282 4 8 16 32 64

311 2 3 5 8 17 21
318

16 128

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 5

Query processing with skip pointers

1282 4 8 16 32 64

311 2 3 5 8 17 21
318

16 128

Suppose we’ve stepped through the lists until we
process 8 on each list.

When we get to 16 on the top list, we see that its
successor is 32.

But the skip successor of 8 on the lower list is 31, so
we can skip ahead past the intervening postings.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 6

Where do we place skips?
• Tradeoff:

• More skips → shorter skip spans ⇒ more likely to skip.
But lots of comparisons to skip pointers.

• Fewer skips → few pointer comparison, but then long
skip spans ⇒ few successful skips.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 7

Placing skips
• Simple heuristic: for postings of length L, use √L

evenly-spaced skip pointers.
• This ignores the distribution of query terms.
• Easy if the index is relatively static; harder if L

keeps changing because of updates.

• This definitely used to help; with modern
hardware it may not (Bahle et al. 2002)
• The cost of loading a bigger postings list outweighs the

gain from quicker in memory merging

