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A Framework for Uplink Power Control in
Cellular Radio Systems

Roy D. Yates, Member, IEEE

Abstract—In cellular wireless communication systems, trans-
mitted power is regulated to provide each user an acceptable
connection by limiting the interference caused by other users.
Several models have been considered including: (1) fixed base
station assignment where the assignment of users to base stations
is fixed, (2) minimum power assignment where a user is iteratively
assigned to the base station at which its signal to interference
ratio is highest, and (3) diversity reception where a user’s signal
is combined from several or perhaps all base stations.

For the above models, the uplink power control problem
can be reduced to finding a vector p of users’ transmitter
powers satisfying p > I(p) where the jth constraint p; > I,(p)
describes the interference that user j must overcome to achieve an
acceptable connection. This work unifies results found for these
systems by identifying common properties of the interference
constraints. It is also shown that systems in which transmitter
powers are subject to maximum power limitations share these
common properties. These properties permit a general proof of
the synchronous and totally asynchronous convergence of the
iteration p(f + 1) = I(p(t)) to a unique fixed point at which
total transmitted power is minimized.

I. INTRODUCTION

N WIRELESS communication systems, mobile users adapt

to a time varying radio channel by regulating transmitter
powers. This power control is intended to provide each user an
acceptable connection by eliminating unnecessary interference.
This work intends to unify and extend convergence results
for cellular radio systems employing iterative power control
methods. For a variety of systems, we show that interference
constraints derived from the users’ signal to interference ratio
(SIR) requirements share certain simple properties. These
properties imply that an iterative power control algorithm con-
verges not only synchronously but also totally asynchronously
[1] when users perform power adjustments with outdated or
incorrect interference measurements.

This emphasis on meeting SIR constraints would appear to
be particularly appropriate for the uplink of a CDMA system
in which unsynchronized signals of other users can be mod-
eled as interfering noise signals. Previous analyses of power
control algorithms have assumed users’ locations and radio
channel characteristics are fixed. However, proposed iterative
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algorithms have been designed for distributed implementation
in dynamic systems with time varying radio channels.

Power control has been shown to increase the call carrying
capacity of cellular systems for channelized systems [2]-[4]
as well as single channel CDMA systems [5]-[7]. In [4], [5],
[8]-[12], analytical approaches to attaining a common signal
to interference ratio (SIR) or maximizing the minimum SIR
are considered. In these works, the assignment of users to base
stations is fixed or specified by outside means. In [13]-[16],
an integrated approach to power control and base station
assignment is analyzed. Power control under the assumption
that all users are received by all base stations is studied in [17].

For the most part, analytical methods have derived conver-
gence results for iterative power control algorithms that meet
an SIR requirement for each user. In this work, we will see
that for a broad class of power controlled systems, the users’
SIR requirements can be described by a vector inequality of
interference constraints of the form

p > I(p). (H

In this case, p = (p1,- - -, pn) where p; denotes the transmitter
power of user j and I(p) = (Ii(p),---,In(p)) where I;(p)
denotes the effective interference of other users that user j
must overcome. We will say that a power vector p > 0 is
a feasible solution if p satisfies the constraints 1 and that
an interference function I(p) is feasible if (1) has a feasible
solution. In addition, if under power vector p, p; > I;(p), then
we say user j has an acceptable connection.

For a system with interference constraints (1), we will
examine the iterative power control algorithm

p(t+1) = I(p(t)). @

We will speak interchangeably of a system with interference
constraints (1) or power control algorithm (2). We will show
that synchronous and totally asynchronous convergence of the
iteration (2) can be proven when I(p) satisfies three simple
properties.

In Section II, we express the interference constraints of
five systems in the form of (1) and we identify the three
properties common to these systems. In Sections III and IV,
we derive the synchronous and asynchronous convergence
of the iteration (2). Section V shows how this framework
permits a number of extensions. In particular, we will
show how to incorporate maximum and minimum power
constraints, hybrid interference functions, and a general form
of the active link protection in [18].
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II. GENERAL INTERFERENCE CONSTRAINTS

We assume .V users, M base stations and a common radio
channel. The transmitted power of user j is p;. Let hy; denote
the gain of user j to base k. At base k, the received signal
power of user j is hy;p; while the interference seen by user j
at base & is Zi#j hrip; + or, where o denotes the receiver
noise power at base station k. Hence, under power vector p,
the SIR of user j at base station k is p;uk;(p) where

h‘k‘j

T 3
P) S b 0w 3)

/U\'J(

We now express the interference constraints of a number of
systems in the form of (1).

* Fived Assignment: We will denote by a; the assigned base
of user j. which we assume to be fixed or specified by
outside means such as the received signal strength of base
station pilot tone signals. The SIR requirement of user j
at its assigned base a; can be written pju, ;j(p) > ;-
That is, we can write

i
p; 2 ) = —

= —. 4
/"ajj(p) @

Under fixed assignment, [8], [5], [11] have considered
the maxmin SIR problem in which v; =~ for all ; and
the objective is to maximize ~ subject to p > w~ (p).
In this work. the desired common SIR ~ is embedded
in the interference function I™(p). For a fixed SIR
target and fixed base station assignment, Grandhi er al.
{19]. Zander {20}, and Foschini and Miljanic [12] use
p(t +1) = I™(p(t)) to solve the subproblem of finding
a feasible power vector p. In [21], Mitra proves geometric
convergence for an asynchronous implementation of Fos-
chini’s algorithm. These methods find the unique power
vector p = IT3(p).

o Minimum Power Assignment (MPA): At each step of this
iterative procedure, user j is assigned to the base station at
which its SIR is maximized. The convergence of the MPA
iteration has been analyzed by Yates and Huang [14], [15]
and Hanly [13] for continuous power adjustments, and by
Stolyar [16] for discrete power adjustments. MPA can also
be considered a generalization of soft handoff: see [22].

The SIR constraint of user j is maxy pjjik;(P) = Vj»
which can be written
pj > IJ‘.\IPA(p) = min (5)

ko pei(p)

An example of the MPA interference constraints are
depicted in Fig. 1. In the MPA iteration p(t + 1) =
I‘\IP‘A‘(p(t)), user j is assigned to the base station k
where minimum power is needed to attain the target SIR
~;» under the assumption that the other users hold their
powers fixed.

* Macro Diversity: In [17], Hanly considers the combining
of the received signals of user j at all base stations k.
Under the assumption that the interfering signals at base
stations & and &’ appear to user j as independent noises,
maximal ratio combining of the received signals for user
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Fig. 1. The interference constraints under MPA. The shaded region denotes
the set of feasible power vectors under MPA for a system of two users and
two base stations. The breakpoints of the constraints occur when the base
station assignment changes. We observe that the set of feasible power vectors
is nonconvex.

j at all base stations yields an SIR constraint for user j

of the form
Pi Y ki) > 6)
k
In this case we have
A v
p; > LP(p) = = ©)
Te ot (P)

o Limited Diversity: We can also consider a strategy in
which the received signal of user j is combined from
d; base stations. We define K (p) to be the d; element
set with the property that for all k € K;(p). k" € K;(p),
e (P) > pue;(p). That is, K,(p) consists the d; base
stations at which user j has highest SIR. When d; =1
for all j. we have the ordinary MPA. When d; = M for
all j, we have the macro diversity model. By using base
stations k € K;(p) to receive the signal of user j, we can
write the SIR constraint of user j as

Vi

o> LD - J
p; 2 Fi (P) Zkng ® ch](P)

(8)

« Multiple Connection Reception: In this approach, user
j is required to maintain an acceptable SIR «; at d;
distinct base stations. To describe this method, we adopt
the notation that (n)max; ax and (n)ming aj equal the
nth largest and nth smallest elements of the set {ay}.
Using this notation, the SIR requirement of user j can be
written (d;)maxg pjpr; > ;. We can also express this
constraint as

\C : i
p; > I~ (p) = (d;)min . 9)
J J ( < J) k Mk;(P)
For an arbitrary interference function I(p) =

(I (p).---.Ix(p)). we make the following definition.
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Definition: Interference function I(p) is standard if for all
p > 0 the following properties are satisfied.

* Positivity I(p) > 0

* Monotonicity If p > p/, then I(p) > I(p').

* Scalability For all a > 1, al(p) > I(ap).

We adopt the convention that the vector inequality p >
P’ is a strict inequality in all components. The positivity
property is implied by a nonzero background receiver noise.
The scalability property implies that if p; > I;(p) then
ap; > alj(p) > I;j(ap) for @ > 1. That is, if user j has
an acceptable connection under power vector p, then user j
will have a more than acceptable connection when all powers
are scaled up uniformly. Note that positivity and convexity of
Ii(p) for all j implies scalability; however, the converse does
not hold.

We note that 14 (p) satisfies
(29

ki (@) < pij(p") (10)

pr;(ap) > (>1) an

pi; (P)
e
From (10) and (11), it is easily verified that the interference

functions I7*, MPA pMD yLD apd ™€ are standard.

III. SYNCHRONOUS ITERATIVE POWER CONTROL

When I(p) is a standard interference function, the iteration
(2) will be called the standard power control algorithm. In this
section, we examine the convergence properties of standard
power control under the assumption that I(p) is feasible.
When we consider maximum power constraints in Section V,
we shall see that that feasibility of I(p) is not a significant
restriction. Moreover, when I(p) is infeasible, we have a
call admission problem [23], [24], [18] in finding a subset
of users that can obtain acceptable connections. In addition,
the feasibility of I(p) is highly dependent on the underlying
wireless system implementation while this work emphasizes
the common properties of interference based systems.

Starting from an initial power vector p, n iterations of the
standard power control algorithm produces the power vector
I"(p). We now present convergence results for the sequence
I'(p).

Theorem 1: If the standard power control algorithm has a
fixed point, then that fixed point is unique.

Proof: Suppose p and p’ are distinct fixed points. Since
I(p) > 0 for all p, we must have p; > 0 and p; > 0 for all j.
Without loss of generality, we can assume there exists j such
that p; < p;. Hence, there exists a > 1 such that ap > p’ and
that for some j, ap; = p/;. The monotonicity and scalability
properties imply

7

p; = Ii(p') < Ij(ap) < ali(p) = op;. (12)

Since p; = ap;, we have found a contradiction, implying the
fixed point must be unique. O
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Lemma 1: If p is a feasible power vector, then I"(p) is a
monotone decreasing sequence of feasible power vectors that
converges to a unique fixed point p*.

Proof: Let p(0) = p and p(n) = I™(p). Feasibility
of p implies that p(0) > p(1). Suppose p(n — 1) > p(n).
‘Monotonicity implies I(p(n — 1)) > I(p(n)). That is, p(n) >
I(p(n)) = p(n + 1). Hence p(n) is a decreasing sequence
of feasible power vectors. Since the sequence p(n) is bounded
below by zero, Theorem 1 implies the sequence must converge
to a unique fixed point p*. 0O

Lemma 1 implies p > p* for any feasible vector p. That is,
the fixed point p* is the solution of p > I(p) corresponding
to minimum total transmitted power. For the uplink in cellular
radio systems, this is particularly desirable in that users may
have limited battery power.

Lemma 2: If I(p) is feasible, then starting from z, the all
zero vector, the standard power control algorithm produces
a monotone increasing sequence of power vectors I"(z) that
converges to the fixed point p*.

Proof: Let z(n) = I"(z). We observe that z(0) < p* and
that 2(1) = I(z) > z. Suppose z < z(1) < --- < z(n) < p*,
monotonicity implies

p =1(p") 2 I(z(n)) 2 I(z(n — 1)) = z(n).  (13)
That is, p* > z(n +1) > z(n). Hence the sequence of z(n) is
nondecreasing and bounded above by p*. Theorem 1 implies
z(n) must converge to p*. O

Theorem 2: 1If I(p) is feasible, then for any initial power
vector p, the standard power control algorithm converges to a
unique fixed point p*.

Proof: Feasibility of I(p) implies the existence of the
unique fixed point p*. Since p} > 0 for all j, for any initial p,
we can find o > 1 such that ap* > p. By the scalability
property, ap* must be feasible. Since z < p < ap*, the
monotonicity property implies

I'(z) < I'(p) < I"(ap”). 14

Lemmas 1 and 2 imply lim, oo I" (ap*) = lim, oo I"(2) =
p" and the claim follows. O

We have shown that for any initial power vector p, the
standard power control algorithm converges to a unique fixed

point whenever a feasible solution exists.

IV. ASYNCHRONOUS POWER CONTROL

In this section, we examine an asynchronous version of
the standard power control algorithm using the totally asyn-
chronous algorithm model of Bertsekas and Tsitsiklis [1]. The
asynchronous iteration allows some users to perform power
adjustments faster and execute more iterations than others. In
addition, the asynchronous iteration allows users to perform
these updates using outdated information on the interference
caused by other users.

Let p;(t) denote the transmitted power of user ; at time ¢ so
that the power vector at time ¢ is p(t) = (p1(¢), -, pn(1)).
We assume that user j may not have access to the most recent
values of the components of p(¢). This occurs when user j
has outdated information about the received power at certain
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bases. At time t, let 77(t) denote the most recent time for
which p; is known to user j. Note that 0 < 77 (t) < t. If user
j adjusts its transmitter power at time ¢, that adjustment is
performed using the power vector

p(r (1)) = (p1(r] (1)), p2(T (1)), - PN (TR (2))-  (15)

We assume a set of times T = {0,1,2,...} at which one
or more components p;(t) of p(t) are updated. Let T/ be
the set of times at which p;(t) is updated. At times ¢t ¢ T7,
p;(t) is left unchanged. Given the sets T4, - - -, Ty, the totally
asynchronous standard power control algorithm is defined by

pi(t+1) = {Ij(I;,(jT(igt)))

We assume the sets T? are infinite and given any time %o, there
exists ¢; such that 7{(t) > to for all ¢ > t,. Convergence of
the totally asynchronous standard power control algorithm will
be proven by the Asynchronous Convergence Theorem from
[1] as stated below in Theorem 3. We note that = and f(z) in
the statement of 3 represent the power vector p and iteration
function I(p) in the context of this work.

Theorem 3: (Asynchronous Convergence Theorem) If there
is a sequence of nonempty sets {X(n)} with X(n +1) C X(n)
for all n satisfying the following two conditions:

1) Synchronous Convergence Condition: For all n and z €

X(n), f(z) € X(n +1). If {y"} is a sequence such that
y"* € X(n) for all n, then every limit point of {y"} is a
fixed point of f.
2) Box Condition: For every n, there exists sets X;(n) € X,
such that X(n) = X;(n) x Xz(n) x --- x Xn(n).
and the initial solution estimate z(0) belongs to the set X (0),
then every limit point of {z(t)} is a fixed point of f.

Theorem 4: 1If I(p) is feasible, then from any initial power
vector p, the asynchronous standard power control algorithm
converges to p*.

Proof: Let z denote the all zero vector. Feasibility im-
plies the existence of the fixed point p*. Given an initial power
vector p, we can choose a > 1 such that ap™ > p. We define

X(n) = {pll"(z) <p < I"(ap™)}-

teTi

otherwise (16)

an

For all n, the set X(n) satisfies the box condition. Lemmas 1
and 2 imply X(n+1) C X(n) for all n and lim,, oo I"(2) =
limp—oo I"(ap*) = p*. Hence any sequence {p(n)} such
that p(n) € X(n) for all n must converge to p*. Since the
initial power vector p satisfies p € X(0), the asynchronous
convergence theorem implies convergence to the fixed point
P 0O

V. EXTENSIONS TO THE FRAMEWORK

In this section, we describe a number of extensions of the
basic framework. Based on standard interference functions, it
is possible to generalize a number of iterative power control
enhancements.

A. Interference Alternatives

Suppose user j is given a choice between two standard
interference functions I;(p) and I(p). For example, I;(p)
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and I}(p) may describe the powers required for user j to
commumcate with bases k and k' at SIR requirements ~y;
and 'y respectively. In this case, user j can choose between
altematlve bases and SIR targets. We will use this notion
of interference alternatives to derive some useful structural
properties of standard interference functions.

Suppose each user always makes the minimum power
choice between I(p) and I'(p). That is, we define I min (p) by

I (p) = ), Ii(p) }

We can also consider the case in which user j makes the less
desirable choice. We define I™**(p) by

[]‘.“""(p) = max {Ij(P)ﬂ I;(p)}

The trivial verification of the positivity, monotonicity and scal-
ability properties of I™"(p) and I"™**(p) yields the following
claim.

Theorem 5: If I(p) and I'(p) are standard, then ™" (p) and
™ (p) are standard.

It is perhaps not so surprising that I min (p) is standard since
under the iteration of I™", each user always chooses the more
desirable minimum power alternative. Our interest in I™**(p)
is that it allows users to choose the less desirable maximum
power alternative among I(p) and I'(p) and permits some
consideration of systems in which each user is not required to
minimize transmitted power.

min {I;(p (18)

19

B. Maximum and Minimum Power Constraints

In real systems, transmitters may be subject to either maxi-
mum or minimum power constraints. In this section, we verify
the convergence of power constrained iterations that are based
on standard interference functions.

Before proceeding, we consider the trivial constant power
control in which each user j maintains a fixed power level
g; > 0. We define I9(p) such that for all p > 0, 19 (p) = ¢q.
Although the convergence of p(t +1) =1 (Q)( (t)) is obvious,
we will make use of the following simple observation.

Theorem 6: I'?(p) is a standard interference function.

Given a standard interference function I(p) and a maximum
power vector g, we can define the constrained interference

) ; 7
function I (p) = (I§q)(1’)7"'u[1(\?)(?)) by
19 (p) = min {g;, I;(p)}- (20)
We define the standard constrained power control iteration as
X ~(q) n
p(t+1)=1"(p(t))- @n

Under the iteration 21, user j transmits with maximum power
g; whenever its SIR requirement calls for transmitter power
exceeding g;. The convergence of (21) has been considered
in [25] under fixed base station assignment and 1n [15] under
the minimum power assignment. We note that I (p) is not
truly an interference function in the sense that satisfying

p>1 i@ (p) does not imply that each user has an acceptable
connectlon. However, we can verify the convergence of (21)
by the following result.
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Theorem 7: If I(p) is standard, then i Q)(p) is standard.
Proof: We observe that fJ(.Q)(p) = min {Ij(p),lj(-q)(p)}
is the minimum of two standard interference functions. Hence,
the claim follows from Theorem 5. o
We note that p > I'*(p) always has the trivial feasible
solution p = q. Hence, Theorems 2 and 7 imply the following
corollary.

Corollary 1: From any initial power vector p, the standard
constrained power control iteration always converges to a unique
fixed point.

We observe that the fixed point p* of (21) will satisfy
p* > I(p*) iff p > I(p) has a feasible solution p that is
bounded above by g. When this is not the case, p* has the
property that if user j is transmitting at power P; < g, then
user j will have its desired SIR ~;,.

Minimum power requirements can be incorporated in a
similar way. Let € denote a minimum power vector such that
user j must transmit with power p; > ¢;. For a standard

interference function I(p), we define I E)(p) by

I9(p) = max {¢;. I,(p)}. (22)
In this case, the convergence of
=€)
p(t+1) =T (p(t) (23)

is verified by the following theorem.
Theorem 8: If I(p) is standard, then I d(p) is standard.
Proof: Since fj(s)(p) = max i[;e)(p), I]—(p)} is the max-
imum of two standard interference functions, the claim follows
from 5. 0O

C. Active Link Protection

In [18], Bambos er al. describe a fixed base station assign-
ment power control algorithm called DPC-ALP (Distributed
Power Control with Active Link Protection). In DPC-ALP,
a user with an acceptable SIR is called active. In [18], it
is shown that under DPC-ALP, active users are guaranteed
to remain active while each inactive user steadily raises its
transmitted power in an effort to become active. In this work,
we generalize DPC-ALP to standard interference functions.

We assume the SIR requirements v;,---, vy of the users
are described by a standard interference function I(p). We
express the standard ALP iteration as

p(t+ 1) = I*™P(p(t)) 4

where for a constant & > 1 and a constant vector € =
(e1.--+.ex) > 0,

]J'T\Lp(p) = min {6pj + (6 - I)Cj, 61](P+ f)}

In the definition of DPC-ALP in [18], the constant vector €
was taken to be zero. Here € is assumed to be a very small
positive vector whose sole purpose is to prevent p = 0 from
being a fixed point of the ALP iteration; otherwise, € has no
practical significance.

We say that user j is active at time ¢ if p;(t) > I;(p(t) +e¢).
That is, an active user j achieves its required SIR +y;. During

(25)
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an ALP iteration, an inactive user j' increases its power from
Py to pjr +(6—1)e;r. At the same time, an active user j aims
for an SIR target of ¢vy; in order to ensure that an SIR of v; is
maintained. The synchronous and asynchronous convergence
of (24) are verified by the following claim.

Theorem 9: If I(p) is standard, then I*"" (p) is standard.
. Proof: Note that I'(p) = 6p+(6—I)e and §I(p-+e€) both
satisfy the requirements of a standard interference function.
Since I*'F(p) = min {I}(p),51;(p+¢)}, the claim follows
from (5). 0
If the ALP iteration (24) converges, then it must converge
to p = 8I(p + ¢). In this case, user j will have SIR 6v;,
exceeding the nominal required SIR v; of the underlying
standard interference function.
- We now verify that an active link always stays active under
the synchronous ALP iteration.

Theorem 10: If p;(t) > I;(p(t) + €), then p;(t + 1) >

Proof: First, we observe that (25) implies p(t + 1) <

op(t) + (6 — 1)e. Hence, p(t + 1) + € < §(p(t) + €). Second,
if user j is active, scalability and monotonicity of I(p) imply

pi(t+1) = 8L;(p(t) +¢) (26)
> Ii{5(p(t) +€)) 7)

2 Li(p(t+1) +e). 28

O

We note that these results will also hold when we place
maximum power constraints on either A" or the underlying
I(p). In these cases, convergence is guaranteed but the active
link protection property is fictitious in that a user transmitting
at maximum power trivially satisfies the requirements of the
constrained interference function although that user’s actual
SIR requirement is not necessarily being met. Furthermore,
although the ALP iteration (24) is guaranteed to converge
asynchronously, the active link protection property holds only
for the synchronous iteration.

D. Interference Averaging

To reduce fluctuations in users’ transmitter powers possibly
due to inaccurate power measurements, it may be desirable to
average a user’s current power p; with the needed power I;(p).
Given a standard I(p) and a constant 0 < 8 < 1, we define
the standard interference averaging power control iteration as

p(t+1) =I(p(t)) = Bp(t) + (1 - B)I(p(t)). (29
We call this approach interference averaging because p(¢)
is based on previous interference measurements. Note that
p; and I;(p) may differ by several orders of magnitude.
In this case, it may be more appropriate to average logp,
and log I;(p). Hence, we define the logarithmic interference

averaging function as I B(p) where
[%(p) = exp (BInp; + (1= H)InL(p).  (30)

From (29) and (30), the following claim is readily verified.
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Theorem 11: 1f I(p) is standard, then I(p) and I' ]B(p) are
standard interference functions with a fixed point p* satisfying
p = I(p").

E. Hybrid Interference Functions

Suppose that the interference constraints faced by user j are
described by p; > IJ(»S’)(p) where the superscript s; indicates
whether user j has a fixed assignment, or is using the minimum
power assignment, or has some form of diversity reception.
From the definition of standard interference functions, we
make the following claim.

Theorem 12: If (Il(s’)(p),--l,lfi")(p)) is  standard
for all j, then the hybrid interference function I(p) =
(I'*(p),---,I*~)(p)) is standard.

VI. DISCUSSION

When it is possible to provide each user an acceptable
connection, as defined by the interference function of the
system, the synchronous and asynchronous standard power
control algorithms will find the minimum power solution.
When I(p) is infeasible, then the constrained power control
iteration of (21) is guaranteed to converge, permitting the
system to detect the infeasibility.

The asynchronous convergence results give an indication
of the robustness of the standard power control iteration. In
addition, we observe that p;(p) can be expressed as

_— 31
Ri(p) — he;jp; GD

Hkj (P) =
where Ri(p) = Zj hijp; + o denotes the total received
power at base k. Hence, the power controlled systems de-
scribed in Section II can be implemented by each user knowing
only its own uplink gains and the total received power at each
base station. It is not necessary to know all uplink gains or
transmitted powers of the other mobiles. This suggests that
these standard power control algorithms may be suitable for
distributed asynchronous implementation in real systems in
which users must perform updates with wrong or outdated
interference measurements.

We believe that the properties of the standard interference
function should hold for the uplink of any single channel
interference based power controlled system. In addition, this
framework is also valid under fixed base station assignment for
the downlink power control problem. However, we must em-
phasize that the standard interference function approach does
have certain limitations. The monotonicity property implies
that whenever a user can reduce its transmitted power, all other
users will benefit from that power reduction. This property
does not hold for all cases of interest. For example, in a
multichannel system, a power reduction associated with user j
changing from channel ¢ to ¢’ would create greater interference
for mobiles currently using channel ¢’. For a second example,
on the downlink of a system in which one base station must
be chosen to transmit to each mobile, the power reduction
associated with changing the base station assignment of user j
from k to k£’ may create greater interference for those mobiles
near base k’.
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We observe that this framework permits simple system
comparisons to be made on the basis of interference functions.
In particular, we observe that for all power vectors p,

MCp) > M (p) > I'P(p) > IMP(p).  (32)

Hence, if we denote by IT = {p > O|p > I(p)} the set of
feasible power vectors under interference function I(p), then
we have

HMC - IIMPA C IILD c HMD. (33)

As expected, increasing diversity increases the space of feasi-
ble power vectors. However, it remains unclear whether these
capacity improvements are significant in actual systems in
which the interactions between user mobility, channel fading
and power control must be considered.

We hope this work provides a framework for understanding
the convergence of common power control algorithms. As
more sophisticated power control methods are developed,
standard interference functions may be an aid in verifying the
convergence properties of these methods.
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