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Abstract— Mobile Adhoc Networks (MANET) provide a
relative new paradigm of wireless networking, which poses
several formidable challenges for control, monitoring and
management, due to the basically “infrastructureless” na-
ture of these networks. Security is viewed in this paper as
part of the control-operations-management functionality of
MANET. An important and critical part of security is trust
establishment and maintenance. We provide a description of
distributed trust within the MANET framework that consists
of two major components: (a) trust document distribution; and
(b) distributed trust computation. Within (a) we summarize
our earlier work on swarm-intelligence based trust document
distribution schemes, including their major advantages as
compared to other schemes as well as their performance.
This paper is primarily addressing our new results within (b).
Here we show that under a variety of schemes for distributed
trust computation and establishment we have established
strong connections with various components of the theory of
random graphs. In this context we demonstrate how phase
transitions (in this case they mean node transitions from non-
trusted to trusted) can appear within a MANET. We link the
existence and analysis of such phase transitions to dynamic
cooperative games. We demonstrate that dynamic cooperative
games provide a natural framework for analyzing several
problems for MANET. We also demonstrate the fundamental
influence of the topology of the MANET on these phase
transitions. Finally we conclude with a preliminary description
of results that describe the effects of mobility and topology
change on these trust establishment schemes.

I. INTRODUCTION

Due to the absence of infrastructure, vulnerability of
wireless links and changes in topology, MANET poses sev-
eral formidable challenges for network control, monitoring
and management. Securing such a network as part of the
control-operations-management functionality is much more
difficult than in traditional hierarchical architectures, but
crucial in both military and commercial applications.

An important and critical part of security is trust estab-
lishment and maintenance, which is foundation for later-
on securing mechanisms, such as key management and
secure transmission. In MANET, existence of CA or KDC
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could not be assumed, so any notion of authentication or
trust certificates issued by trusted third party(TTP), which
is widely used in nowaday Internet and cellular networks,
is no more suitable. Thus we consider local information
exchangeand distributed computation as the essential
and unique characteristics of trust management in this new
paradigm of wireless networking, as opposed to traditional
centralized approaches.

Several models have been proposed in the literature for
trust computation in large-scale open systems, such as [1],
[2], [3], [4] and [5]. Previous research results avoided
dependence on any centralized servers and provided trust
computation mechanisms in a distributed way. However,
almost all the methods assume the existence of certain trust
relationships between communicating nodes. In distributed
and autonomous systems, obtaining evidence for these trust
relationships is not an easy job. One of the previous works
([6]) on trust evidence distribution is based on a P2P File-
sharing system – Freenet [7]. The problem in distributed
P2P systems is that mobility is not taken into account.
Therefore the Freenet-based scheme is not able to easily
handle transmission failures and routing table updates. In
our previous work [8], we proposed a new approach: ant-
based evidence distribution (ABED), which preserves all
the advantages of P2P file-sharing systems and in addition
is suitable for mobile environments.

In ABED, interacting with each other using information
- “pheromone” deposited - in nodes they pass, mobile arti-
ficial agents, called “ants”, are able to find the optimal path
toward their food, i.e. trust evidence in the present context.
The pheromone regulation process, especially reinforcement
mechanism, enables the exploration of new paths, which
makes it particularly suitable for dynamically changing
environments, such as MANET.

We simulated ABED using ns-2. We compared ABED
with the Freenet based scheme proposed in [6]. The results
show that ABED outperforms Freenet based schemes in all
the metrics including hopcount needed to retrieve trust ev-
idence, rate of successfully obtaining evidence and request
delay. Especially, ABED shows fast convergence properties
at the beginning of the process, which is highly desired for
mobile wireless networks.

The main topic of this paper will focus on the second
part of our scheme: distributed trust computation. Our goal
is to build a trust computation model based only on local
interactions, and we investigate the global effects of these
interactions both by simulation and theoretical analysis. Our



focus is the analysis of dynamic and emergent behaviors
from local inference in terms of trust computation.

II. GRAPHS, COOPERATIVE GAMES AND PHASE

TRANSITIONS

A. Graph model

In this paper, the wireless MANET is modeled as an
undirected graph G(V, E). Notice that edges of G represent
coonections in the context of trust information exchange,
which do not necessarily require two end nodes to be
neighbors in geometrical distance. In other words, we are
primarily interested in the logical model of the network
that models the logical relation of trust rather than the
spatial graph. We distinguish two different types of links:
links between neighboring nodes (nodes within wireless
communication range) and links between pre-trusted nodes
(nodes trust each other from the very beginning). Both types
of links are bound to certain cryptographic keys, thus au-
thentication, integrity and confidentiality are considered to
be guaranteed. Those keys are established either by secure
physical channels (for neighboring nodes) or offline key
exchanges (for pre-trusted nodes). Let N i = {nodej|eij ∈
E} be the ’trust’ neighborhood of vertex i.

We will investigate the behavior of our trust computation
model on different logical graph topologies. In particular,
we will investigate three kinds of graph:

• Physical graph: with only links between neighboring
nodes.

• Random graph: with only links between pre-trusted
nodes. We assume pre-trusted nodes are randomly
chosen from nodes pairs and they are independent of
node positions, therefore it forms a random graph. The
theory of random graphs was founded by Paul Erdös
and Alfréd Rényi [9].

• Small-world graph: a set of models that lie between
the aforementioned physical graph and random graph.
Small-world phenomena were first theoretically mod-
eled and studied by Watts and Strogatz in their ground-
breaking paper [10], where shortcuts are created by
rewiring links in a regular lattice. The most prominent
properties of the small-world graph model are short
average path length and large clustering coeffiecient,
given a very small number of shortcuts. We will
demonstrate the advantages offered by these properites
in trust establishment.

We will elaborately describe and define the three models in
Section IV.

B. Cooperative games

As we discussed in Section I, trust computation is
distributed and restricted to only local interactions in a
MANET. Each node, as an autonomous agent, makes the
decision on trust evaluation individually. The decision is
based on information it has obtained by itself or from
its neighbors. Those aspects are analogous to situations
in statistical mechanics of complex systems with game

theoretic interactions. Game theory and more specifically
the theory of evolutionary games provides the framework
for modeling individual interactions. We first probe into two
basic cooperative game models and their relation to our
approach to trust computation.

1) Ising model : One of the simplest local interaction
models is the Ising model, that describes the interaction of
magnetic moments or spins, where some spins seek to align
with one another (ferromagnetism), while others try to anti-
align (antiferromagnetism). The Ising spin model consists of
n spins. Each spin is either in position “up” or “down”. Any
configuration of spins is denoted as s = {s1, s2, . . . , sn},
where si = 1 or − 1 indicating spin i is up or down
respectively. A Hamiltonian, or energy, for a configuration
s is given by

H(s) = − 1
T

∑
∀i∈V,j∈Ni

Jijsisj − mH

T

∑
i

si. (1)

where T is the temperature. The first term represents the
interaction between spins. The second term represents the
effect of the external (applied) magnetic field.

The problem of computing the ground states (global
minimum of energy) for the Ising model is an NP-hard
problem. There are 2n possible configurations for the
model, the computation becomes infeasible when n gets
large. So we must use heuristic methods to find low energy
configurations. As proposed in [11], we could imagine that
the spins try to reduce their own frustration (or energy)
individually, and come up with an interesting cooperative
game. In game theoretic terms, the payoff for node i when
the graph has a configuration s = {s1, s2, . . . , sn} is

πi =
∑
j∈Ni

Jijsisj (2)

When Jij = 1, the agents are rewarded for aligning their
states; when Jij = −1 they want to take on opposite states
in order to maximize their payoffs. Agents interact in order
to maximize their own payoffs.

This model provides the inspiration for our approach, as
it can be directly used for distributed trust computation.
Let si be the trust value assigned to node i, where s i ∈
{−1, 1}. Node i will be assigned a trust value according
to the opinion of the majority of its neighbors. We set
Jij = 1, ∀j ∈ Ni. Then the payoff of i is πi = si

∑
j∈Ni

sj .
In order to maximize πi, i will set si with the same
sign as

∑
j∈Ni

sj , which is actually the same value as
neighbor majority. Simulations using Simulated Annealing
(SA) show that the average payoff of the whole network is
a function of the temperature T in the Ising model. High
temperatures, in the trust computation context, mean that the
agents are very conservative and not willing to change their
trust values, the payoffs are near 0, which is the expected
payoff for a random set si from {−1, 1}. While, as the
temperature decreases (aggressive agents), the algorithm
becomes greedier and payoffs increase, most of the nodes
will reach agreement.



2) Evolutionary prisoner’s dilemma game:Another ex-
ample of cooperative games is the prisoner’s dilemma (PD)
games. It provides a frustrated two-party interaction and has
been extensively studied by physicists, economists, biolo-
gists and mathematicians. Evolutionary prisoner’s dilemma
(PD) games were introduced by Axelrod [12] to study the
emergence of cooperation rather than exploitation among
selfish individuals. Some recent works, such as [13] and
[14], studied the stationary states of evolutionary PD games
on square lattices and random graphs. The most interesting
problem here is to find the payoff matrix that leads agents
to cooperate instead of defecting. The payoff in trust com-
putation will be the benefit of being trusted and of trusting
neighbors. In our future work, we plan to find the conditions
for the payoff matrix that force all agents to cooperate even
with existing malicious nodes.

C. Phase transition

In the Ising model (section II-B.1), an important charac-
teristic is phase transition phenomena. It is observed that
when the temperature is high, all the spins behave nearly
independently (no long-range correlation), whereas when
temperature is below a critical temperaturec0, all the spins
tend to stay the same (i.e., cooperative performance). Phase
transitions are also studied in evolutionary PD games, such
as in [13].

Phase transition is a common phenomenon that takes
place in any combinatorial structure, where a large com-
binatorial structure can be modeled as a system consisting
of many locally interacting components. A phase transition
corresponds to a change in some global (macroscopic)
parameter of the system as the local parameters are varied.
Distributed trust computation is essentially a cooperative
game where nodes interact with their neighbors locally.
In the following section, we discuss a trust computation
model based on local interactions and node cooperation. We
will analyze the global parameters, especially emphasizing
analogs of phase transition phenomena.

III. DISTRIBUTED TRUST COMPUTATION MODEL

A. Model specification

Our distributed trust computation model is based on
elementary voting methods. Only nodes in a node’s neigh-
borhood have the right to vote. For security concerns, nodes
with key-identity binding certificates, which are signed by
off-line authentication servers, are qualified to vote. Votes
have to be digitally signed using voters’ private keys and
are sent to the owners of the votes with voters’ certificates.
Verification takes place when the owner of the votes wants
to prove the trustworthiness of itself. The specification of
our model is provided below.

• Distribution of voters : The distribution of valid voters
depends on the application. Here we simply assume
voters are uniformly distributed among nodes in the
network, i.e. initially each node is qualified as a voter
with probability Pv .

• Voting rule : Whether a voter votes or not depends on
several conditions, such as the decision rule of voters,
the accuracy of information, etc. However, in order
to have a simple and general model, we assume that
each voter votes for all its neighbors with the same
probabilities. Pp is the probability that nodes provide
a positive vote and they provide a negative one with
probability Pn.

• Decision rule: Suppose node i gets Vp,i positive votes
and Vn,i negative votes, the effective number of votes
will count as Vi = Vp,i − Vn,i. Obviously, the more
positive votes, the more the node is trusted. Let η be
the threshold that determines the trustworthiness of a
node. If Vi ≥ η · |Ni|, node i is trusted, otherwise node
i is not trusted.

B. Model analysis

Given any j ∈ Ni, the probability that j provides a
positive vote is P+ = PvPp and the probability of a negative
vote is P− = PvPn. Let the number of neighbors of node i
be Ki = |Ni|, which is actually the degree of node i in the
graph G. Let’s order the elements in the set Ni, where Nij

is the jth element in Ni. Let Tij , j = 1, 2, . . . , Ki be the
vote Nij provides. Tij ∈ {−1, 0, 1}, where −1 represents
negative votes, 1 represents positive votes, 0 is the rest.
Then the probability distribution of T ij is:

P (T ) =




P− if T = −1
1 − P+ − P− if T = 0

P+ if T = 1
(3)

Then the effective number of votes V i =
∑Ki

j=1 Tij .
Let PiT be the probability that node i is voted as trusted.

Then

PiT = Pr{Vi ≥ η · Ki} = Pr{
Ki∑
j=1

Tij ≥ η · Ki} (4)

According to our voter model, voters are independent from
each other and also their votes, Tij , ∀j ∈ {1, 2, . . . , Ki} are
independent from each other. Thus we have,

PiT =
∑

Vi≥�η·Ki�

Ki∑
i=1

P (Tij) (5)

Note that even though the votes Tij are independent, the
trustworthiness of nodes are not independent. A simple
example: suppose node i and node j share a common
neighbor node k. Consider the extreme case, where a node
is trusted only if all its neighbors vote positively for it.
Then given that node i is trusted, which means its neighbor
k is a voter with probability 1, the probability that node
k votes for trusting j is Pp, instead of the a priori PvPp.
However, in most of the present paper we assume that they
are independent, which as will be shown later, under certain
conditions, is a rather good approximation.

We are going to analyze the effects of local voting
interactions on global features and dynamics of the entire



network. A main goal of trust establishment in MANET is
to investigate if the network is securelyconnected, meaning
if any pair of nodes can find at least one secure path between
themselves in the netowrk [15]. A secure pathin our context
is a path consisting only of trusted nodes. We denote by θ
the number of pairs of trusted nodes between which there
exists a path in the network. Similarly, we define θs as
the number of pairs of trusted nodes between which there
exists a secure path in the network. Then the probability
(percentage) for the existence of at least one secure path
between trusted pairs Psp is Psp = θs

θ . Other metrics we
considered include the percentage of trusted nodes in the
network and the time taken to converge to a steady-state
system.

Let VT be the set of all trusted nodes in G(V, T ), i.e.,
VT = {i|i ∈ V and Vi ≥ η}. Then we get a new
graph GT (VT , ET ) which is the induced subgraph of G
by VT . We call GT (VT , ET ) the trust graph and ET =
{e|e ∈ E and both ends of e are in VT }. Therefore, we
have Ntrust = |VT | and NPsecure is the number of (path)
connected pairs in GT . The probability of the existence
of secure paths Psp is dependent on the cluster size and
connectivity of GT .

IV. TOPOLOGY EFFECTS

In this section we further investigate our distributed trust
computation model on different network topologies: random
graphs, physical graphs and small-world graph models.
We’ll show the significant influences of network topology
on the dynamics of trust models.

A. Random Graphs

We take the random graph model defined by Erdös and
Rényi in their classic article on random graphs [9]: every
pair of nodes is connected with probability p. Such a
random graph is denoted by G(n, p), where n = |V | is the
total number of nodes, which is also called as the binomial
model.

We say that the random graph G(n, p) evolvesas p
increases from 0 to 1 [9]. The random graph starts with a set
of n isolated vertices, eventually becomes a fully connected
graph, with the maximum number of edges n(n−1)

2 for
p → 1. According to random graph theory, p(n) satisfies
the Zero One Law– at certain p(n), a particular property
of a graph most likely arises, and surprisingly appears quite
suddenly. For instance, p = 1

n is the famous “double jump”
of Erdös and Rényi, after which a giant component has
emerged and connectivity is achieved at p = ln n

n .
Now let us return to our trust model. Assume that ’trust-

worthinesses’ of nodes are independent. Then we could let
PT = PiT , ∀i ∈ V , which is a function of P+, η and Ki.
Therefore given the trust graph GT (VT , ET ), the probability
of obtaining GT is

P [GT ] = P
|VT |
T (1 − PT )|V/VT |, (6)

where V/VT = {j|j ∈ V and j /∈ VT }.

Consider the limiting properties of random graphs, i.e.
for n large enough,

|VT | ≈ PT · |V |. (7)

If η � 1, i.e. few nodes are needed to prove trustworthiness,

|VT | = O(|V |) = O(n). (8)

Then according to the Zero One Law, at p = O( 1
n ), a giant

cluster emerges in the trust graph GT , thus the probability
of the existence of at least one secure path between trusted
pairs Psp starts to become significantly greater than 0.
Once p reaches O( ln n

n ), GV is connected, i.e. Psp → 1.
Therefore, for O( 1

n ) ≤ p ≤ O( ln n
n ), the value of Psp ranges

from approximately 0 to 1. Increasing the threshold η results
in decreasing PT . By Eqn. (7), |VT | decreases accordingly.
Therefore the number of trusted nodes is smaller, which
means increasing the threshold η will reduce the percentage
of secure path Psp.

We simulate the trust computation models according to
the algorithm in section III-A. The simulation parameters
are listed in Table I below. Our numerical results support
the above analysis. In Fig. 1, the x axis is the threshold
value η, the y axis is Psp and each curve corresponds to a
different value of p. Notice that when η is small, specifically
η ≤ 0.4, all curves are relatively flat, where random graph
properties dominate the trust graph GT . As η grows, Psp

decreases. Especially, at around η = 0.5, phase transition is
continuous and sharp.

TABLE I

SIMULATION PARAMETERS

Number of nodes n 100
Edge existing probability p simulation variable

Probability of voters in the graph Pv 0.5
Probability voters provide positive votes Pp 0.9
Probability voters provide negative votes Pn 0

Trustworthiness threshold η simulation variable
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Fig. 1. Psp vs. η in random graphs, each curve is with different edge
probability p

Let’s further investigate the Zero One Lawfor a given
threshold. In our simulations, we fix η = 0.3 which is



considered to be fairly small according to Fig. 1 and with
variable p changing. We can easily observe that the phase
transition phenomenon happens when p ∈ [0.01, 0.1], which
is exactly the phase transition interval [O( 1

n ), O( ln n
n )] of

n = 100 derived in the theoretical analysis. Though the
accurate equality in Fig 2 is a coincidence, the interval order
justifies our analysis.
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Fig. 2. Psp vs. p in random graphs with η fixed at 0.3

B. Physical graph

For simplicity, our physical graph is modeled as a 2-D
L×L lattice with periodic boundary, so the degree of each
node is fixed to 4. Our trust path in a 2-D lattice is similar to
“site percolation” in statistical mechanics, in which all the
links are present and the nodes of the lattice are occupied
with probability p . According to the results of percolation
theory, especially of site percolation, for the 2-D lattice with
probability p, there exists a critical probability pc = 0.5927
as L → ∞. Since trusted nodes are decided with probability
PT , as defined in subsection IV-A, PT is actually the site
presence probability p in GT .

We could derive the accurate value of PT for 2-D lattices.
Referring to the parameters in Table I, using Eqn. (5), we
have for η1 = (0.25, 0.5], P

(1)
T = 0.609. Similarly, for

η2 ∈ (0, 0.25], PT,2 = 0.1914. Thus PT (2) < pc < PT (1),
therefore phase transition happens as η = 0.25 + ε, where
ε is a small positive number. This is actually what we
observed from numerical analysis as shown in Fig. 3.

C. Small-world graphs

The small-world model has its roots in social systems
where most people are friends with their immediate neigh-
bors. On the other hand, everybody has one or two friends
who are far from him/her, which are represented by the
long-range shortcuts. The first experiment on small-world
networks was studied in [16], where mails were delivered
using acquaintances. This experiments resulted in ”six de-
gree of separation”. In the past five years, there has been
substantial research on the small-world model in various
complex networks, such as social networks, Internet and
biological systems. As a social concept, distributed trust
networks exhibit small-world properties too. In [17], it was
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Fig. 3. Psp vs. η in a 2-D lattice

shown that the PGP certificate graph is a small-world model.
Therefore, to understand real trust systems in MANET, it is
interesting to understand their behavior when the topology
is small-world topology.

Several small-world models have been proposed so as
to resemble actual networks. Scale-free networks in [18]
present the growth and preferential attachments that appear
to be the fundamental organizing principle for many com-
plex networks. Most of the scale-free networks are small-
world. Small-world concepts in the context of wireless ad
hoc networks have also been discussed. Clustering in ad
hoc networks generates naturally a small-work network,
where clustering heads or hubs serve as nodes attaching
with shortcuts. In another example, [19] creates a small
world in large-scale wireless networks based on defining
contacts for network nodes during resource discovery. In
this paper, we use the first small-world model by Watts
and Stragatz in [10](WS model), because it is relatively
simple but retains the fundamental properties of practical
networks.In the WS model, we start from a ring lattice with
n vertices and k = 4 degree per vertex. Then each edge
is rewired at random with probability prw, thus shortcuts
are created. This construction models the graph between
regularity (prw = 0) and chaos (prw = 1).

Our simulation results are shown in Fig. 4, where dif-
ferent curves represent different rewiring probabilities p rw.
We observe the obvious transition from regular lattices
to random graphs in the simulations. In the middle of
the transition, as prw ≈ 0.01 both the property of high
clustering in lattices and the property of short path in
random graphs are present.

D. Trust Computation Continued ...

Our voting scheme can be performed for one or several
rounds. Nodes, that have been voted as trusted nodes,
become legitimate voters and vote for their neighbors along
with other legitimate voters in following rounds. This dy-
namic voting process stops when the trust establishment
reaches steady state, i.e., the trustworthiness of all nodes is
not changing any more via voting. Thus the procedure starts
from a small portion of pre-validated trusted nodes. Through
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Fig. 4. Psp vs. η in a WS small-world network

the iterations of local voting, the set of trusted nodes will
grow from separated ”trusted” isles to a connected trust
graph throughout the network.

Figure 5 illustrates simuation results after several rounds
of iterated voting on the same small-world model as in
Figure 4. Comparing Figure 4 and 5, we could easily see
the trust spreading process; for the same thereshold η, the
latter has higher Psp for all models. Figure 5 also shows
that higher prw gives better performance (more secure
paths). On the other hand, when the thereshold η is high,
low prw value tends to resist deterioration, because trusted
nodes are clustered together. The most significant curve
is the one with prw = 0.1, which is a traditional small-
world graph according to [10]. It not only achieves almost
the same performance as a random graph, but also resists
deterioration in high η. Apparently, with a relatively small
portion of shortcuts, small-world networks facilitate the
formation of secure paths.
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Fig. 5. Psp vs. η in a WS small-world network at steady state

V. CONCLUSIONS AND FUTURE WORK

In this paper, we provided a description of our dis-
tributed trust scheme within the MANET framework, that
consists of two major components. One is trust evidence
distribution. We summarize our earlier work on swarm-
intelligence based trust evidence distribution schemes. We

show that our schemes are especially suitable for distributed
mobile networks, and provide better performance compared
to previous methods. The other component, which is the
main contribution of this paper, is distributed trust compu-
tation based on local interactions. We have demonstrated
the connections of our model to random graph theory
and cooperative game theory. We explain phase transition
phenomena that appear in our trust computation model and
describe the effect of topology on our scheme. Overall, our
work is based on purely distributed mechanisms, which is
desired in the context of MANET.

Our future work will combine the two components of our
distributed trust management mechanism to find optimum
and efficient solutions, theoretically analyze the iterated
scheme on graphs, especially on small-world networks, and
further investigate cooperative game theory for dynamic
analysis of the computation part.
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