Abstract
This article reviews space-time modem technology for mobile radio applications. We begin with motivations for the use of space-time modems
and then briefly discuss the challenges posed by wireless propagation. Next, we develop a signal model for the wireless environment. Channel
estimation, equalization, and filtering techniques for space-time modems in the forward and reverse links are then discussed. Finally, we review
applications of space-time modems to cellular systems and discuss industry trends.
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he goal of wireless personal
communications is to allow users to communicate reliably in any
form, at any time, and without regard to location and mobility.
The expanding range of services that can be provided by digital
transmission has led to increased air time usage and to a
greater number of subscribers. This in turn has led to an increas-
ing focus on developing new technologies that can provide a
higher grade of service at a lower cost. Current projections of
subscriber demands for wireless service put the growth rate at
about 18 percent per year, and these trends are likely to con-
tinue into the new millennium [1]. Recent overviews of wire-
less personal communications services are given in [2, 3].

A wireless system designer is faced with a number of chal-
lenges. These include a complex multipath and time-varying
propagation environment; limited availability of radio spec-
trum; limited energy storage capability of batteries in portable
units; user demand for higher data rates, better voice quality,
fewer dropped calls, enhanced in-building penetration, and
longer talk times; and operator demand for greater area cov-
erage by base stations, increased subscriber capacity, and
lower infrastructure and operating costs. A number of differ-
ent technologies have been used to meet such diverse require-
ments. These include advanced multiple access schemes such
as slow frequency-hopped time-division multiple access
(TDMA) and code-division multiple access (CDMA), band-
width-efficient source coding (CELP and VSELP), and
sophisticated signal processing techniques (diversity, adaptive
cqualization, and coding).

Current wireless modems use temporal signal processing
methods. They have limited effectiveness against co-channel
interference (CCI), which arises from cellular frequency reuse
and thus limits the quality and capacity of wireless networks.
Improved modem technology thag combats CCI can have a
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significant impact on overall network performance. Smart
antennas (or space-time processing) with multiple antennas in
receive and transmit is a promising way of mitigating CCI by -
exploiting the spatial dimension. Space-time processing (STP)
can improve network capacity, coverage, and quality by reduc-
ing CCI while also enhancing diversity and array gain.

A space-time receive modem operates simultaneously on
all the antennas, processing signals in both space and time.
This extra spatial dimension enables interference cancellation
in a way that is not.possible with single-antenna modems. The
desired signal and CCI almost always arrive at the antenna
array (even in complex multipath environments) with distinct
and often well separated spatial signatures, thus allowing the
modeém to exploit such differences to reduce CCI. Likewise,
the space-time transmit modems can use spatial selectivity to
deliver signals to the desired mobile while minimizing inter-
ference for other mobiles.

The spatial dimension can also be used to enhance other
aspects of modem performance. In the receiver, the antennas
can be used to enhance received power, improve signal-to-
thermal-noise ratio, and even suppress intersymbol interfer-
ence (ISI). In the transmitter, the spatial dimension can be
used to increase array gain through beamforming, improve
transmit diversity through precoding, and reduce delay spread
at the subscriber end (i.e., mobile):

This article presents an overview of space-time modem’
(also known as smart antenna) technology for wireless person-
al communications. Propagation issues are summatized in the
next section. The next three sections will focus on vector sig-
nal models, space-time channel estimation techniques, and
space-time modems (TDMA), respectively. We follow this
with a section on space-time modems for direct sequence
CDMA (DS-CDMA). We end with a review of applications of
STP to cellular systems and a review of industry trends. We
provide a large list of references for the interested reader to
look up the details.

Wireless Propagation

The propagation of radio signals on both the forward (base
station to mobile) and reverse (mobile to base station) links is
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affected by the physical channel in
several ways. In this section we
review these effects and develop a
model to describe channel behavior.
A signal propagating through the
wireless channel usually arrives at
the destination along a number of
different paths, referred to as multi-
path. These paths arise from scat-
tering, reflection, refraction, or
diffraction of the radiated energy
off objects in the environment. The
received signal is much weaker than
the transmitted signal due to mean
propagation loss, and long- and
short-term fading. The mean propagation loss arises from
square law spreading, absorption by foliage, and the effect of
ground-generated vertical multipath. Long-term fading, also
known as shadowing, results from signal blocking by buildings
and natural features. On the other hand, short-term fading
results from multipath in the vicinity of the mobile. Figure 1
shows a typical variation in the reccived signal level as a func-
tion of the distance from the transmitter. )
Multipath propagation results in the spreading of the sig-

W Figure 2. The thrée spreads of the wireless chanﬁel.

nal in different domains, including delay (or temporal) spread,
Doppler (or frequency) spread, and angle spread. Figure 2
shows typical channel spreads in each domain. These spreads
have significant effects on the signal. The mean path loss,
long-term fading, short-term fading, delay spread, Doppler
spread, and angle spread are the main channel effects.
Detailed models for the mean path loss are described in [4, 5].

Fading

In addition to mean path loss, the received signal exhibits
fluctuations in signal level called fading. Fading can be mod-
eled statistically with probability distributions [4-12]. In addi-
tion to a statistical description of the fading channel, we can
describe the severity of fading in the time, frequency, and spa-
tial domains. These lead to different channel characteriza-
tions, namely time-, frequency-, and space-selective channels.
These channel characterizations are not mutually exclusive.
The selectivity of a channel can be quantified in terms of the
envelope correlation function defined as [4, 13]

<np>—-<iy>xnp >

p(Af,At,AZ)= (1)

\/[< >-<n >2][<r22 >—<n >2]

where <-> denotes the ensemble average, rq is the received sig-
nal envelope measured at frequency fj, time ¢, and spatial loca-
tion z1, and with a corresponding definition for r,. The
arguments of the correlation coefficient are the frequency
separation Af = |f] —f»|, the time separation At = |t; —13],
and the spatial separation Az = ||z; — z]|.

W Figure 1. Received signal level.

Doppler spread (or frequency dis-
persion) as a result of mobile motion
causes time-selective fading in the
channel. The coherence time of the
channel can be used to characterize
the time variation of the time-selec-
tive channel. It represents the time
separation for which the correlation
between the envelopes of the
received signal at two time instants
becomes 0.5 [13] and can be com-
puted from Eq. 1 by setting Af and
Az to zero. The coherence time is
inversely proportional to the
Doppler spread [14, 15] and is a
measure of how fast the channel changes in time. Fast fading
channels are characterized by a small coherence time.

Delay spread, on the other hand, causes ISI and is a result
of a multipath propagation environment. The channel becomes
frequency-selective, and the selectivity can be measured in
terms of coherence bandwidth, which represents the maximum
frequency separation for which the correlation of the signal
amplitudes at two distinct frequencies becomes 0.5 [4, 13]. The
coherence bandwidth is inversely proportional to the delay
spread [14, 15]. A small ratio of coherence band-
width to signal bandwidth indicates a frequency-
selective channel.

Angle spread at the receivers refers to the
spread of angles of arrival of the multipaths at the
receiving antenna array. Likewise, angle spread at
the transmitter refers to the spread of departure
angles of the multipaths. The angle of arrival (or
departure) of a path can be statistically related to
the path delay based on a uniform distribution of
scatterers on a constant delay ellipse assuming a
single-bounce scattering model. The resulting
joint angle of arrival and delay probability density
function is shown in Fig. 3 (see [16] for further
details of such a model). Angle spread causes space selective
fading and is characterized by the coherence distance. The larg-
er the angle spread, the shorter the coherence distance. As with
the definitions of coherence time and bandwidth of a channel, we
define the coherence distance as the maximum spatial separation
for which the correlation between the received signal amplitudes
at two antennas becomes 0.5 and can be computed from Eq. 1.
Table 1 summarizes the different channel characteristics.

. Assumes 4 km
base-mobile separation..

...... Guemronts

[ ] Flgur 3 }oint pfodbility density function of angle of arrival
and delay.
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wide angles), and remote scatterers at other
locations.

Multipath Propagal;ian in Microcells

The multipath propagation environment in a
microcell is complicated since it is difficult to

W Figure 4. Macrocell impulse response.

Mﬁltipath Propagation in Macrocells

In macrocells'with high base station antenna elevation
above the rooftop level, multipath scattering arises from
three sources. These are scatterers local to the mobile,
remote dorminant scatterers, and scatterers local to the base.
Scattering may include reflection and diffraction (see [17]
for a discussion on propagation mechanisms). It is impor-
tant to understand the different types of scatterers and their
contribution to channel behavior. Our description below
refers to the reverse link channel but applies equally to the
forward link channel.

Scatterers Local to the Mobile — Scattering local to the
mobile is caused by buildings and terrain features in the vicin-
ity of the mobile (a féw tens of meters). Mobile motion and
local scattering give rise to Doppler spread which causes time-
selective fading. For a mobile traveling at 65 mph, the Doppler
spread is about 180 Hz in the 1900 MHz band. While local
scatterers contribute to Doppler spread, the delay spread they
contribute is usuvally insignificant because of the small scatter-
ing radius. Likewise, the angle spread induced is also small for
mobiles distant from the base station (the majority of mobile
users are in this class).

Remote Scatterers — The emerging wavefront from the local
scatterers may then travel directly to the base or may be scat-
tered or reflected toward the base by remote dominant scat-
terers, giving rise to specular multipath. These remote
scatterers can be either terrain features or high-rise building
complexes. Remote scattering can cause significant delay and
angle spreads.

Scatterers Local 1o the Base Station— Once these multiple
wavefronts reach the base station, they may be scattered fur-
ther by local structures such as buildings or other structures in
the vicinity of the base. Such scattering is less pronounced for
antennas well above the rooftop. Seattering local to the base
station can cause severe angle spread, which in turn causes
space-selective fading.

A useful way of visualizing the channel characteristics (at a
fixed time) of a macrocell is to plot the channel impulse
response as a function of angle and delay. The impulse
response itself is clearly a function of the geographical posi-
tion of the mobile with respect to the base station. Figure 4
shows a typical angle-delay channel impulse response for a
macrocell. The different impulses represent scatterers in the
channel that contribute energy to the received signal. This
response contains contributions from scatterers close to the
mobile (shown as small impulses near the larger impulses),
scatterers close to the base (shown at near zero delay but at

identify distinct classes of scatterers when the
base station antenna is at a low elevation
below the rooftop level. Figure 5 shows a typi-
cal propagation situation in a microcell envi-
ronment. The channel impulse response is
usually characterized by high angle spreads
and small delay spreads, and may have
Doppler spreads that can be as high-as in
macro-cell when the subscriber or base station
is on a sidewalk located on roads with high-
speed traffic. Figure 6 is a typical example of
the angle-delay impulse response in a microcell environment.
Note that there is no dominant impulse at the origin as in the
macrocell case unless there is a line of sight from the mobile to
the base station antenna.

Signal Model

In the previous section, we discussed the physical wireless
channel characteristics by examining various aspects of radio
propagation. In this section, we focus on developing a signal
model of the wireless channel for space-time processing appli-
cations. We assume that antenna arrays are used at the base
stations and that the mobile has a single antenna. This leads
to four interesting channel configurations.

Channel Configurations

Before we begin discussing the signal models, some general
remarks on the principle of reciprocity for the forward and
reverse link channels are in order. This principle implies that
the channels are identical on the forward and reverse links as
long as the channels are measured at the same frequency and
at the same time instant. In time-division duplexing (TDD)
systems, the principle of reciprocity applies as long as the
“ping-pong” time is very small compared to the channel
coherence time. In frequency-division duplexing (FDD) sys-
tems (most macrocell wireless systems are FDD), the separa-

Coherence measure

W Table 1. Channel chamétensncs. ’

e B

W Figure 5. Microcell propagation.
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tion between the forward and reverse link
frequencies is about 5 percent of the
mean carrier frequency. This means that
the principle of reciprocity must be used
with care. Given the small frequency sep-
aration, the forward and reverse channels
will share many common features. In a
specular multipath channel as described
earlier, the paths used by both links can
be assumed to be identical. Therefore the
number of paths, the path delays and
path angles (arrival/ departure) are the
same for both links. However the path
amplitudes and phases (that is, the fad-
ing) will not be the same on both links
and they will in fact be largely uncorrelat-
ed [4]. Also within any one link, the dif-
ferent paths fade independently. Since fading appears as a
multiplicative gain, the symbol response channel appears to be
uncorrelated between the forward and reverse links. We focus
here on TDMA systems. DS-CDMA signal models are dis-
cussed in [18].

Reverse Link SU-SIMO — This configuration refers to a sin-
gle-user (SU) with single antenna input (SI) at the mobile
and multiple antenna output (MO) at the base (SU-SIMO).
The signal model corresponds to the case when a single user
transmits the information signal and it is received at a base
station with m antennas. It can be shown that the received
signal vector at the base station for a specular multipath
channel is [19]

L B

=2 % a(0))or (gl 7 ~ kT )s(k) @
k1=t

where a(6;) is an m-dimensional complex vector representing
the antenna array response to a signal arriving from direction
), |oR(¥)| is the fade amplitude that can be modeled as a ran-
dom variable with a probability distribution (e.g. Rayleigh),
g(?) is the pulse shaping waveform,! L is the number of multi-
path and s(k) represents the user data.

Reverse Link MU-SIMO — This configuration refers to multi-
user (MU) with single antenna input (SI) at each mobile and
multiple antenna composite output (MO) at the base (MU-
SIMO). The signal model is a generalization of the SU-SIMO
case and refers to the case where multiple mobiles transmit
their information signals and they arrive at a base station
which uses an antenna array to separate individual signals.
The MU-SIMO can easily be obtained from the SU-SIMO
model. Assuming there are Q users, the composite received
signal at the antenna array is a sum of the signals from Q
mobiles and is given by

o L
x(t)=3, >, 3a(0y Jof (gt -ty —kT)s, (k)
k g=11=1
where we have indexed each user’s signal, and corresponding path
delay, angle, and fading parameters by the user index g and we
have assumed that the users use the same pulse shaping filters.

1 We have assumed a linear modulation scheme in order to obtain Eq. 2.
However, in the case of a nonlinear modulation scheme such as the Gaus-
sian minimum shift keying (GMSK) signal in the GSM cellular radio sys-
tem, an excellent linear approximation to the GMSK modulation can be
obtained [20, 21], and Eq. 2 still holds. However, see [22] for a nonlinear
signal model for the GSM system.

W Figure 6. Microcell impulse response.

Forward Link SU-MISO — This configuration refers to sin-
gle-user (SU) with multiple antenna input (MI) at the base
and single antenna output (SO) at the mobile unit (SU-
MISO). In this model, the base station uses an antenna array
to transmit an information signal to a single mobile. In the
forward link the paths that couple the signal to the mobile
will be the same as the paths available in the reverse link.
However, the space-time processing of a user signal is carried
out at the transmitter before the signal is launched into the
channel. Therefore, due to the effect of base station antennas
and transmit processing, the radiated signal will be direction-
al, and therefore the transmit beam pattern will selectively
weight the energy coupled into each of the multipaths. In an
extreme case, some paths may not be excited at all. If we use
space-only processing with a beamforming weight vector w,
the transmitted signal in each path will be the same, and the
signal received by the mobile will be the sum of arrivals from
different path signals.

With the simplifying assumption of space-only processing, the
received baseband signal at the mobile station x(f) is given by

MOEDY ZW a(6 ) (t)g(t-7,- kT)s(k)
k I=1

where w is the transmit weight vector that 1nﬂuences how the
transmitted signal couples into the channel, and # denotes
complex conjugate transpose. The path delay 1;, and an kg
parameters 6, are the same as those of the reverse link. oy (¢)
is the complex fading on the forward link which in (fast pmg—
pong time) TDD systems will be nearly identical to the
reverse link complex fade amplitude of(). In an FDD system
(xlF (t) and ocfz(t) will have the same statistics but will, in general,
be uncorrelated with each other.

Forward Link MU-MISO — This configuration refers to
multi-user (MU) with multiple antennas composite input
(MI) at the base and single antenna output (SO) at each
mobile (MU-MISO). In this model, the information signals

- from a base station antenna array are transmitted to multiple

mobiles. Once again the MU-SIMO model can be easily
derived from the SU-SIMO model. Again, assuming that
there are Q users, the signal received at the mth mobile is
given by

*m (t ) = 2

k q

The Q different user data {s,(k)} couple into the L, paths

of the mth user through the corresponding weight vectors w,.

As in SU-MISO, the forward link path parameters are related
to the reverse link path parameters.

Mtc

L
y ; ( i )alm (1)glt— Ty - kT) (k).
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A Discrete Time Signal Model

When the received signal is sampled at the receiver at symbol rate
or higher, it is more convenient to use a symbol response signal
model. If we assume that the channel responses are of finite
duration, such a signal model for the MU-SIMO case is given by

ZH k)+n(k) (3)

where Hq(k) are the channel matrices for the Q users, s,(k)
are the corresponding user data sequence vectors, and n(lg) is
a vector of additive noise. The signal model in Eq. 3 is a lin-
ear time-varying (LTV) model. There is a relationship
between the elements of the channel matrices Hy(k) and the
physical path parameters such as path angle of arrival, delay,
fade amplitude, and the pulse shape g(r) described earlier (see
[23] for more details). The channel matrix offers a rich struc-
ture that can be exploited for improved algorithm design.
Note that this model can also be used to model the case of a
signal with CCI. The symbol response signal model can also
be obtained for the forward link channels (SU-MISO and
MU-MISO) where the channel matrices will iniclude the
weighting vectors.?

The time-varying channel matrices are a direct conse—
quence of the time variation in the fading parameters a,f(z)
or o (t) due to motion of the mobiles, CCIL, or scatterers.
When the time slot within a TDMA frame is small compared
to the coherence time of the channel (non-time-selective),
the channel (as seen by the receiver or transmitter) can be
regarded as time-invariant, and hence, the channel matrices
H, are not functions of time. In addition, if the signal band-
width exceeds the coherence bandwidth of the channel (fre-
quency selectivity), there will be significant IST and this
increases the overall channel length, and hence, the width of
H,. A linear time-invariant (LTI) signal model is important
because there exist numerous techniques in signal processing
for blind channel estimation and equalization for this case.
An example of where a LTI signal model can be used is the
GSM system. We shall explore and discuss some of these
techniques later.

When the channel is both time- and frequency-selective,
adaptive equalization techniques must be used to enable
channel tracking and data detection. However, the underlying
structure of the channels enable new adaptive algorithms with
improved performance. We shall briefly discuss this in the
next section.

Spatial and Temporal Structure

A basic requirement for data detection is to estimate the
channel. The underlying structure in the channel can be used
to improve channel estimation. We briefly describe the chan-
nel and signal structures.

Spatial Structure — The spatial signature of a path arriving at
an antenna array at an angle 6 is captured by the array
response vector a(0). If we know the array response for every
0, we need only to estimate a single parameter 9 instead of
a(0), a vector of length m. Spatial structure can be utilized
effectively when the number of multipaths is small. Many
algorithms have been developed for estimating 0; the interest-
ed reader is referred to [24-28]. We have assumed that the
directions are time-invariant, which is reasonable since the
change in direction of the mobile with respect to the base sta-

2 Although the model in Eq. 3 is developed from the TDMA standpoint, it
is readily clear that the discrete time signal model also applies to frequen-
cy-hopping multiple access (FHMA) schemes.

tion is negligible during a small observation time such as a
time slot in a TDMA frame.

Temporal Structure — The temporal structure here refers to
the properties of the transmitted signal (which includes the
pulse shape and modulation format). One common temporal
structure found in some signals is a constant modulus (CM)
envelope. Practical examples include the class of continuous-
phase modulation (CPM) signals and the GMSK signal (which
is a special case of a CPM signal). Blind techniques (i.e., tech-
niques that do not require a training sequence) have been

proposed for CM signals for applications ranging from direc-

tion finding to blind equalization. The constant modulus algo-
rithm (CMA) was originally proposed for blind equalization
[29] of phase-modulated signals, and was shown to be a spe-
cial case of the Godard class of blind algorithms [30]. Other
variants of the CMA can be found in [31-36].

Another popular temporal structure is the finite alphabet
(FA) property of all digitally modulated signals. This refers to
the finite number of constellation points in a chosen digital
modulation scheme. A well-known technique using this prop-
erty for data detection is the Viterbi algorithm (VA) for maxi-
mum likelihood sequence estimation (MLSE) (see [37]) in the
presence of additive white Gaussian noise (AWGN). The VA
assumes that the channel is known. Blind equalization tech-
niques of multiple users using the FA property have also been
proposed [38-41].

A less well known but powerful temporal structure is the
pulse shaping function for a linear modulation scheme. For
example, the 1S-54 system uses pulse shapes that have a

. square root raised cosine spectrum for both the transmit and

receive filters. Methods that exploit the knowledge of the
transmit and receive pulse shaping filters for blind channel
identification can be found in [42-~44], and for nonblind chan-
nel estimation in [45]. An adaptive MLSE receiver for fast
time-varying channels using prior knowledge of the pulse
shape filters has also been proposed in [46].

Another temporal structure is the cyclostationarity of digital
communication signals which can be exploited for non-time-
selective channels. It was widely believed that blind channel
identification was only possible using higher-order statistics-
based techniques [47-49], since the phase of the channel is lost
if second-order statistics of baud-spaced data samples are
used for identifying a nonminimum phase channel. It was
observed in [50] that a cyclostationary signal contains phase
information that can be used to identify the channel. The work in
[51] proved that blind channel identification can be achieved
using second-order statistics of the oversampled (two or more
samples per symbol) data. The temporal oversampling of a
digital modulated signal results in a cyclostationary signal
which preserves the channel phase information. Spatial over-
sampling of the signal using multiple antennas can also achieve
cyclostationarity in the baud-rate sampled vector signal [52].

Channel Estimation

Channel estimation is an important step in signal detection. In
the reverse link, channel estimation is needed for equalization,
diversity, and CCI reduction. In the forward link, channel esti-
mation is needed to design weight vectors to deliver energy to
a selected user without causing significant CCI to other users.

Reverse Link Channel Estimation
We can broadly classify channel estimation techniques for the
reverse link channel into two categories: nonblind and blind. The
essential ingredient in nonblind channel estimation is the use of
a known training sequence embedded in the data. On the other

40

IEEE Personal Communications * February 1998



hand, blind techniques do not need a training sequence and
therefore eliminate this overhead. Also, using the rich underly-
ing structure of the channels, improved channel estimation can
be accomplished for both blind and nonblind methods.

Nonblind Channel Estimation — There are three methods to
estimate the reverse link channel corresponding to different
assumptions on the channel structure. We assume for now
that the channel is time-invariant. The case when the channel
is time-varying is deferred to the next section, where we will
discuss joint channel and data estimation techniques.

* Unstructured channel:3 In this method, we make no assump-
tion on the channel other than a finite channel length. We
can easily compute the least squares estimate of the reverse
link channel HR using the training sequence.

* Structured channel: In this method, we exploit the known
pulse shaping filter to describe the channel. It can be shown
that the channel lies in the subspace of a certain matrix G
whose elements are the sampled values of the pulse shaping
filter impulse response [45], that is, h® = Ge. The channel
depends only on the unknown coefficient vector ¢ (which
typically has a smaller number of elements than the channel
itself). The vector ¢ can be estimated via least squares using
the training sequence. )

* Parametric channel: Here we parameterize the channel in
terms of the angles of arrival, delays, and complex path
gains. It can be shown that the reverse link channel matrix
HR = A(0)B(0)G(t) [23], where A(O) is the spatial response
matrix, B(o) is a diagonal matrix containing the multipath
gains, and G(1) is a matrix containing sampled (and delayed)
versions of the pulse shaping waveform. Finding the param-
eters {0, o, T} is equivalent to estimating the channel.
Again, using the training sequence, subspace-based algo-
rithms can be used for estimating these parameters [23, 54].

Blind Channel Estimation — A significant amount of research
effort has been focused lately on blind channel estimation?
which we broadly categorize into three classes: higher-order
statistics (FHOS), second-order statistics (SOS), and maximum
likelihood (ML) methods. We will summarize briefly some of
the research results.

* Higher-order statistics (HOS) methods: Just as the autocorre-
lation function and power spectral density are important to the
study of the second-order statistics of a stationary random pro-
cess, the cumulants and their Fourier transforms, polyspectra,
are the foundations for the study into the HOS of stationary
random processes [55]. Two of the most important properties
of HOS that distinguish it from second-order statistics are the
preservation of phase information in the polyspectra and the
fact that the polyspectra of a stationary Gaussian random pro-
cess is zero. By virtue of these properties, methods based on
the HOS of the channel output can be used to identify non-
minimum-phase channels. Various techniques for blind chan-
-nel identification using HOS can be found in [47, 49, 56, 57].

3 A more traditional way to estimate the channel, such as in implementa-
tions of the MLSE receiver for the GSM system, is to use a filter that is
matched to the sounding sequence (GMSK modulated training sequence).
The estimated channel impuise response is then windowed to keep a mod-
est number of states in the Viterbi equalizer [13]. This method of channel
impulse response estimation is often used in time domain system identifi-
cation applications [53] and is known as correlation analysis.

4 There is a difference between channel estimation and equalization. Blind
channel equalization or deconvolution attempts to estimate the data
directly without estimating the unknown channel.

To obtain reliable estimates of the HOS of the received sig-
nal, a large amount of data is needed and the computational
complexity can be high. Its usefulness for estimating wireless
channels is thus limited.

*Second-order statistics (SOS) methods: 1t was shown in
[50] that the SOS of cyclostationary signals contain phase
information that can be used to identify a non-minimum-phase
channel. Loosely speaking, cyclostationary signals are signals
whose statistical properties are invariant to time shifts by inte-
gral multiples of some constant T, [58]. The pioneering work in
[51] enabled blind channel identification based on the tempo-
rally oversampled channel output. It turned out that oversam-
pling the channel output produces a cyclostationary sequence.
From a different perspective, oversampling the received signal
increases the number of samples in the signal and the number
of phases in the channel per symbol period but does not
change the data symbol value. Thus, oversampling results in a
tall channel matrix H. By making further use of the time
invariance and finite length properties of the channel, special
structures in the channel matrix (block Toeplitz) can be creat-
ed to allow SOS-based blind channel identification. Motivated
by subspace methods in array processing, blind subspace-
based channel identification has been proposed in [59-61].
Frequency domain approaches using the cyclic spectra have
been proposed in [62-64].

* Maximum likelihood (ML) methods: The principle of maxi-
mum likelihood is a popular method for statistical inference

* [65]. The ML method assumes that the probability density func-

tion of the received signal (conditioned on the channel) is
known, and seeks to maximize the likelihood function (or the
joint probability density function of the received signal) as a
function of the channel parameters. For the AWGN case, the
ML estimation for the channel parameters becomes a nonlin-
ear optimization problem [66]. The complexity of the algo-
rithm in [66] is O(N3P3) where N is the length of the data
sequence and P is the oversampling factor. It is clear that the
implementation of the ML algorithm is computationally pro-
hibitive except for very short data sequences.

* Channel identifiability: Channel identifiability from the
temporally oversampled channel output is an important issue.
We assume for now that there is a single user (¢ = 1) and a
single antenna, and that the data vector x(k) in Eq. 3 is
obtained from oversampling the received signal. Each row of
the channel matrix H is then the discrete time impulse
response for each of the P oversampled channels (these are
sometimes known as the polyphase channels). It can be shown
that the polyphase channels can be identified if the z-trans-
forms of the polyphase channel impulse responses do not
share any common roots [66—69]. An additional condition on
the input data sequence for the case when the amount of data
is small has also been found [70, 71]. For the case of a dis-
crete multipath channel, it has been shown that temporal
oversampling alone cannot identify the polyphase channels
when the multipath delays are exactly integer multiples of the
symbol period T or integer multiples of 7/2 for an even num-
ber of polyphase channels (P is even) [69]. In addition, it was
shown that band-limited multipath channels with frequency
nulls in [-(1 - B)/27, (1 — B)/2T], where B is the excess band-
width, also suffer from channel nonidentifiability. The intro-
duction of multiple antennas has been shown to eliminate this
class of identifiability problems [72]. When there are multiple
users, the same condition of no common zeros among all the
polyphase channels for all the different users is a necessary
condition for channel identifiability. In addition, another con-
dition is that the z-transform of the total channel matrix
should be column-reduced [73]. However, there exists a more
subtle ambiguity problem for SOS-based (or subspace-based)
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channel estimation methods in that the channels can only be
identified up to a d x d transformation matrix where d is the
number of co-channel users [74]. As noted in [39, 75], it
appears that this ambiguity cannot be resolved without resort-
ing to some additional property (e.g., the FA property) of the
user signals.

Forward Link Channel Estimation

We can estimate the forward link channel from the reverse
link channel using the principle of reciprocity or from feed-
back from the receiver. We describe these approaches below.

Channel Estimation in TDD — In a TDD system, if the
duplexing time is small compared to the coherence time of
the channel, both channels are the same and the base-station
can use its estimate of the rgverse link channe] to estimate the
forward link channel. i.e., Hf = HR where HR is the reverse
link channel estimate. It can be shown [13] that the coherence
time is approximately 9/16nf,,, where f,, is the maximum
Doppler frequency.®> As an example, for a mobile traveling at
65 mph, a mobile channel at 900 MHz exhibits a coherence
time of approximately 2 ms. Thus, if the duplexing time is
much smaller than 2 ms the forward link channel can be
assumed to be similar to the reverse link channel.

Channel Estimation in FDD — In FDD systems, the forward
and reverse link channels have different center frequencies
causing a difference in the instantaneous complex path gains
(i.e,. fading). However, the path angle of arrival and delay
remain the same. Thus, it is still possible to approximately
estimate the forward link channel from the reverse link chan-
nel. Since the difference in the up- and downlink carrier fre-
quencies is about 5 percent of the carrier frequencies, we
assume that the forward and reverse link array response vec-
tors are similar for any direction of arrival/departure (see [76]
for a discussion of the frequency dependencies of the array
response vector). Depending on the angle and delay spreads
of the channels, several methods can be used to estimate the
forward link channel (see [18] for more details).

Channel Estimation Using Feedback — Another approach to
estimate the forward link channel is to feedback the signal
from the mobile unit and then use either a blind or nonblind
method for estimating the channel. For time-invariant chan-
nels, a training signal is transmitted through each antenna,
one at a time, from the base station to the mobile. Based on

3 This assumes that the joint probability density function of the angle © and
delay ©is p(6, T) = 1/2r0(e~V%) where o is the delay spread of the channel
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B Figure 8. BER plots of the ST-MLSE for an indoor channel,

the received signals at the mobile, the total transmit channel
can then be estimated as the solution to a least squares
problem.

In LTV channels which need frequent tracking, more effi-
cient probing methods can be used to reduce the overhead of
multiple training signals. The common subspaces shared by -
the reverse and forward link channels can be used to mini-
mize the amount of training needed (see [77] for details).

Space-Time Modems for TDMA

Space-time modem (STM) techniques refer to the equaliza-
tion (pre-equalization and coding) of the space-time channel
observed at the receiver (transmitter) antenna array. Spatial
processing offers CCI suppression, signal-to-thermal-noise
enhancement, and spatial diversity against fading. Temporal
processing, on the other hand, offers reduced IST and tempo-
ral (path) diversity. The combination of space and time pro-
cessing allows us to exploit the advantages of both dimensions.

Nonblind ST Modems for Reverse Link

In nonblind STMs, we use training signals to estimate the chan-
nel. In GSM and IS-136 standards, training signals are provided
inside each burst for this purpose. Training signals can be used
for channel estimation or to determine the equalizer directly.

The standard MLSE seeks to estimate the transmitted data
sequence that best describes the received signal given the
channel estimate [37]. The extension to multiple antennas is
straightforward and requires a multichannel MLSE along with
an ST channel estimate. In most cases, the MLSE perfor-
mance is limited by errors in channel estimate due to either
the presence of noise or poor tracking of the time-varying
channel during a data burst.

The optimum receiver in' the presence of co-channel users
is a multi-user ST-MLSE. This receiver decodes all the users
jointly and in effect tries to estimate all the transmitted data
sequences that best describe the received signal given the mul-
tiple ST channel estimates. The problem with multi-user
methods is the exponential growth of complexity with the
number of users and the need for accurate channel estimates
for all co-channel users.

A computationally tractable ST-MLSE receiver structure
uses a modified metric based on the covariance of the CCI
plus noise with a single-user ST-MLSE structure [78, 79]. This
is also known as an interference-whitening MLSE receiver. A
much simpler receiver, which handles CCI robustly but is less
optimum in handling IS, is an ST-MMSE receiver. This receiver
is discussed later. We also discuss later an interesting hybrid
receiver [80], which combines the advantages of cancelling
CCI in an ST filter followed by a scalar MLSE structure.

42

IEEE Personal Communications * February 1998



s
= MEDD (structured)
ST-JCDE {unstructured
MEDD (unstructured)
Sl

s RLS (TU100, 1 CCl)
|| === RSL (TU100, 2 CC)

B Figure 9. BER for ST-JCDE receiver in a fast time-varying 1S-
54 channel with CCL o

In the presence of LTV channels, we need to incorporate
some form of channel tracking. Some approaches to handle
this situation are discussed later. Furthermore, the use of
channel structure can considerably improve channel estima-
tion and tracking, and some examples that demonstrate this
are also discussed in the following subsection.

ST-MLSE Receivers — Single-user ST-MLSE receivers are a
straightforward extension of the scalar MLSE. Since we only
have a finite training sequence, channel structure can be use-
ful to improve channel estimation and therefore ST-MLSE
performance [47]. This is shown in Fig. 7, where we plot the
ST-MLSE performance with and without using channel struc-
ture for a GSM receiver. The simulation model uses two
antennas and an oversampling factor of two. Figure 7 shows
an improvement of 1 to 2 dB with structured methods at 1
percent BER. Another example of structured channel estima-
tion is shown in Fig. 8. These results are plotted for an indoor
channel with two antennas and use measurements made at 2.4
GHz (see [81] for details). Once again, structured methods
offer a 2 dB gain in performance at a 1 percent BER.

In the presence of a time-varying channel, the ST-MLSE
receiver must carry out joint channel and data estimation (ST-
JCDE) [82-86]. These JCDE receivers can outperform con-
ventional adaptive MLSE receivers [15, 87]. In the ST-JCDE
receivers, the training sequence is used to obtain an initial
estimate of the channel. Thereafter, the channel is tracked by
associating a channel estimate (with fading memory) with
each survivor sequence at each state in the search trellis.

In the presence of CCI, the ST-JCDE receiver can be
modified if the CCI plus noise covariance is used in the met-
ric (Mahalanobis distance) computation [88]. Furthermore, as
seen above, the use of structured channels can further improve
receiver performance. Figure 9 compares the performances of
structured vs. unstructured receivers with and without the use
of the CCI covariance metric. The plots can be compared to
the receiver with perfect channel state information (CSI). We
can see that a ST-JCDE receiver with channel structure infor-
mation performs considerably better (6 dB) than unstructured
and minimum Euclidean distance decoding (MEDD)
receivers. However, CCI cancellation and channel tracking are
not perfect as indicated by the difference between the error
rates of the ST-JCDE receivers and the ST receiver with CSL
Despite its superior performance, the ST-MLSE receiver has
a computational complexity that grows exponentially with
channel length. Suboptimal techniques such as reduced-state
sequence estimation (RSSE) [89], delayed decision feedback
sequence estimation (DDFSE) [90], and channel memory
truncation [91] have been proposed to reduce the computa-
tional complexity.

W Figure 10. BER plots of the RLS-DD ST-MMSE equalizer for
an IS-54 mobile system.

ST-MMSE Equalizer — In an ST-MMSE equalizer, the over-
sampled channel output for each antenna is weighted and
summed to produce the desired output. The ST equalizer
weight vector w is chosen to minimize the expected squared
error, that is,

wp = argmin E |wHx(k) - s(k - D)|? 4)

where D is an integer delay. The subscript D on w indicates
that it depends on the delay D in the reference signal. The
optimal weight vector is given by the Wiener solution wp =
Ry'ry(D), where R,y is the covariance matrix of the x(k) and
r,(D) is the cross-correlation vector between x(k) and s(k —
D) (see [18] for more details).

In practice, we compute the finite sample estimate of Ry, and
ry(D) using the received samples during the training period.
The optimal weight vector computed during the training period
is then used for the entire time slot if the channel does not vary
significantly over the slot period. For fast time-varying chan-
nels, the ST weight vector obtained during the training period
should be tracked by using, for example, a decision-directed adap-
tive algorithm (see [92] for a tutorial on adaptive equalization).

Figure 10 shows BER plots of an ST recutsive least squares
decision-directed (RLS-DD) algorithm for a number of time-
varying urban channel models in the presence of CCI for the IS-
54 TDMA mobile system [93]. We observe that the
conventional differential demodulator (detector) for the IS-54
is interference-limited (CCI is 7 dB below signal), and the BER
does not improve as the SNR increases. Spatial filtering improves
performance significantly (see also [94]). The ST-MMSE equaliz-
er thus has a number of attractive advantages. It suppresses CCI
effectively and performs adequately against ISL.

STF/MLSE — A hybrid two-stage CCI/ISI reduction structure
with an ST filter (STF) followed by a scalar MLSE receiver
has been proposed in [80]. The objective of the STF is to sup-
press CCI while capturing spatial diversity, and the MLSE is
used to remove the residual ISI and capture temporal diversi-
ty. The filter weights and the target channel for the MLSE are
jointly optimized to yield the maximum SINR. Figure 11
shows the BER plots of this hybrid receiver as a function of
signal-to-interference ratio (SIR) for a GSM TU six-tap urban
channel model. A two-element antenna array, with different
numbers of STF tap weights, is used. The SNR is 20 dB.
There is one signal and one CCI with a speed of 30 mph each.
Both signal and CCI arrive at the array from random angles
within a 120° sector, each with a 30° angle spread. We
observe that the hybrid receivers with one and two taps per
antenna outperform the ST-MLSE at low SIR (both with and
without the incorporation of CCI statistics). For slow fading
channels, adaptive implementations under an MMSE criterion
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have been proposed in [95]. The STF/MLSE receiver can be
~ extended to cope with fast time-varying channels by using trel-
lis search techniques as described previously.

Blind ST Modems for Reverse Link

In space-time blind equalization,® the objective is to recover
the input data applied to unknown linear time-invariant (pos-
sibly non-minimum phase) channels, given only the output of
the channels. Blind algorithms do not need any training signal
and can be classified into block and adaptive methods.

Block ST Modems — In these methods, blind equalization is
performed on a block of oversampled received channel data,
corresponding to one time slot. These methods rely on the
temporal structures of the input data.

Approaches that exploit the FA structure of the input data
as well as the block Toeplitz property of the symbol matrix in
a multi-user case have been proposed in [39, 40]. In these
methods, the received ST signal is rearranged into a block
Toeplitz matrix. The main observation is that the null space of
the received signal matrix is also the null space of a block
Toeplitz data symbol matrix. So by finding the null space of
the received signal matrix, one could use the block Toeplitz
structure in the symbol matrix as well as its FA property to
estimate the multi-user data.

For small delay spread channels, approaches based on the
FA property include the iterative least squares techniques (ILSP
and ILSE) in [38], and an analytical CM algorithm (ACMA)
based on the CM property of input signals in [36]. The ACMA
finds the CM beamformer weights to separate multiple CM sig-
nals blindly. It is also able to detect the number of CM signals
and to retrieve them while rejecting other non-CM signals.

Adaptive ST Modems — Adaptive schemes to equalize an
unknown channel blindly have been the focus of intense
research. One class of blind adaptive equalization algorithms
18 widely referred to as Bussgang algorithms. This class of
algorithms are usually implemented by a transversal filter of
adjustable tap weights followed by a memoryless nonlinear
operator on the filter output.” The error between the nonlin-
ear operator output and the filter output is then used to
adjust the weights in the transversal filter by using a stochastic
gradient adaptive algorithm [97]. The Sato [98], Godard [30],
Benveniste-Goursat [99], and CM [29] algorithms are special
cases of the Bussgang class of algorithms and are designed to

6 In the signal processing literature, blind equalization is sometimes
referred to as blind deconvolution.

deal with IST in the single-user case. The differences lie in the
implementation of the memoryless nonlinear operator. Exten-
sions to deal with the blind equalization of multiple CM sig-
nals have been proposed in [31, 34, 100] by using multiple
antennas. Another class of blind equalization techniques is
based on the use of HOS of the input signal. The superexpo-
nential algorithms [101] are single-user methods based on the
cumulants of the input signal and have a fast convergence
rate. Both iterative and adaptive forms of the algorithms have
been proposed in [101].

Recently, an approach that exploits “delay” diversity has
been proposed based on the observation that a zero-forcing
linear equalizer is a function of the delay chosen by the user
(see Eq. 4 for the definition of the delay). Therefore, there
exists a relationship between equalizers with different delays.
This property can be exploited to obtain a bank of equalizers
known as blind mutually referenced equalizers (MRE). This
approach again requires either oversampling or multiple
antennas [102].

ST Modems for the Forward Link

ST Pre-Equalizers. — Space-time pre-equalization for the
forward link refers to the design of an optimal ST weight
vector at the base station to maximize the signal energy at
the desired mobile while minimizing ISI at the desired
mobile and CCI at other co-channel mobiles. The design of
STM pre-equalization algorithms for the forward link rep-
resents significant challenges. The main difficulty lies in the
fact that signal processing is done at the base station before
the signal is emitted into a channel which may not be
known exactly. Likewise, the channelsto other co-channel
mobiles HF also may not be known. Several schemes can
be proposed depending on the objective. Criteria such as
the maximization of the SINR at the mobile [77], minimiza-
tion of ISI subject to additional quadratic constraints on
CCI to other mobiles [76], and the joint minimization of
both the ISI and CCI at other mobiles [103] have been pro-
posed. All STM pre-equalization.schemes require some
knowledge of the forward channels to the desired and co-
channel mobiles. ~

Space-Time Coding — In FDD systems, the forward channel
is usually unknown or only partially known. Therefote, even if
we have multiple transmit antennas that exhibit low fade cor-
relation, transmit diversity cannot be implemented directly as
is possible in TDD systems. There is an emerging class of
techniques which offers transmit diversity in FDD systems by
using space-time channel coding. The diversity gain can then
be translated into significant improvements in data rates or
BER performance.

The basic approach in space-time coding (STC) is to split
the encoded data into multiple data streams, each of which is
modulated and simultaneously transmitted from a different
antenna [104]. Different choices of data to antenna mapping
can be used. All antennas can use the same modulation and
carrier frequency. Alternatively, different modulations (sym-
bol waveforms) or symbol delays can be used. Other approach-
es include the use of different carriers (multicarrier
techniques) or spreading codes. The received signal is a super-
position of the multiple transmitted signals. Channel decoding

7 The reason why the algorithms are known as Bussgang algorithms is
that the output of the transversal filter y(n) after convergence of the adap-
tive algorithm is approximately a Bussgang process, i.e., Ey(njy(n + k) =
y(n)g(y(n + k)) Yk where g(-) is the memoryless nonlinear operator

[96, 97].
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is used to recover the data sequence. Since the encoded data
arrived over uncorrelated fading branches, diversity gain can
be realized.

The key research issues in STC are optimum techniques
for encoded data-to-antenna mapping and code design. The
problem of mapping raises several issues and trade-offs such
as receiver complexity, robustness to delay and Doppler
spread in the channel, crest factor of transmitted waveforms,
ease of receiver synchronization, and channel tracking. The
code design problem relates to trading off code rate, diversity
gain, constellation size, and trellis complexity.

Yet another important issue in exploiting transmit diversity
is partitioning the resource, represented by multiple antennas,
between co-channel interference reduction (through transmit
null steering) and transmit diversity. Clearly transmit null
steering needs accurate knowledge of the channel, in which
case conventional transmit diversity can be implemented. The
more likely situation is that we have approximate channel
information; hence, the open problem is how to partition the
antenna resource to balance co-channel interference reduc-
tion with transmit diversity.

In summary, STC offers a rich and promising area for
research. Preliminary results [104, 105] show significant gains
from this emerging technology.

Space-Time Modems for DS-CDMA

Direct sequence code-division multiple access (DS-CDMA) is
a spread-spectrum multiple access scheme that is expected to
gain a significant share of the cellular market. DS-CDMA has
several attractive properties for personal communications,
namely its efficient use of bandwidth, and its resistance to
interference and casual eavesdropping. A good reference on
DS-CDMA can be found in [106]. Other books on DS-CDMA
include [107-109]. A DS-CDMA cellular system (IS-95) for
North America has been standardized and is currently enter-
ing service. As in other multiple access systems, the use of
multiple antennas in CDMA is expected to improve system
capacity, quality, and coverage.

In CDMA, the users operate in the same frequency chan-
nel at the same time. In DS-CDMA, each user has a unique
spreading code and the user’s data is modulated by the code
at a (chip) rate P times greater than the data rate. The value
of P typically lies between 32 and 512. The DS-CDMA link
is shared by multiple users and therefore needs a larger
bandwidth channel than TDMA or FDMA. The user codes
can be designed to be orthogonal or quasi-orthogonal. If
there is no multipath, the use of orthogonal codes ensures
no interference from other users. On the other hand, if mul-
tipath is present, the codes are no longer orthogonal and
multiple access interference (MATI) results. The set of quasi-
orthogonal codes is much larger than the set of orthogonal
codes for a given P.

The optimum receiver in an AWGN channel is shown to
consist of a bank of matched filters followed by a multi-user
VA [110]. The computational complexity of this receiver
grows exponentially with the number of users. Linear multi-
user receivers for synchronous and asynchronous DS-CDMA
have been proposed in [111, 112], where the computational
complexity is linear with the number of users. These receivers
exhibit the same degree of near-far resistance as the optimum
multi-user receiver. They also have error rate performances
comparable to the optimum multi-user receiver. These
receivers also require knowledge of all the users’ channels.

One difference between the DS-CDMA and TDMA radio
links is that there is little ISI in the DS-CDMA channels.
Instead, interchip interference (ICI) is often encountered.

Since the spreading codes of the users are known, novel chan-
nel estimation techniques have been proposed [113, 114].

ST Recetver Modems

A popular single-user receiver in the presence of multipath is
the RAKE combiner first proposed by Price and Green in 1958
[115]. The ST-RAKE is an extension of the RAKE receiver
and consists of an MMSE beamformer for each path followed
by a standard temporal RAKE receiver [116]. The beam-
former weights are calculated based on the covariances of the
received data and the channel vector for the desired path (fin-
ger). The ST-RAKE receiver reduces the amount of MAI and
hence improves coverage and capacity. Other ST DS-CDMA
receivers that have been proposed recently include [117-120].

ST Transmit Modems

On a DS-CDMA forward link, multiple antennas can be used
for transmit beamforming to minimize interference generation
to other users while maximizing the energy coupled to the
intended user. In multipath environments, signal transmission
must match the channel, and at the same time minimize gen-
eration of multi-user interference to other users. The problem
of estimating the forward channel from the reverse channel is
simpler in CDMA than in TDMA. This is because we can
decouple the channel mapping for each path and therefore
deal with a much lower angle spread. Beampattern optimiza-
tion however is more complex in DS-CDMA. Several trade-
offs exist between beamwidth, sidelobe level, cusping level,
beam overlap, and beam diversity (from softer handoff). See
[121] for more details.

Applications to Personal
- Communications Systems

In this section we review applications of space-time modems for
PCS base stations and also discuss industry trends. One broad
classification of space-time modem applications is based on
channel reuse. In channel reuse between cells (RBC), the chan-
nel is used only once within a cell and is reused only in an
external cell. On the other hand, in reuse within cell (RWC),
also known as space-division multiple access (SDMA), the
channel is used more than once within a cell and relies on
spatial discrimination to allow channel reuse. We first discuss
RBC apptications followed by RWC applications.

Reuse Between Cells

In RBC applications, space-time modems are used to improve
network performance without attempting to reuse a channel
within a cell. The simplest approach to spatial processing is to
use conventional beamforming followed by temporal process-
ing. Typically a set of 4-8 antennas/sector are deployed. The
antenna outputs are combined to form multiple preformed
conventional beams. Butler matrix beamforming at RF is typi-
cally used. In FDMA or TDMA systems, there is only one
subscriber per sector per channel (frequency or time slot). A
“sniffer” circuit examines the beam outputs (usually for signal
strength) to determine the best or two best beam(s). In order
to reduce the probability of incorrect beam selection, the
beam outputs are validated by checking the color code (e.g.,
CDVCC in 1S-54 or SAT tone in AMPS) prior to selecting
the best beam. A switch connects the selected beams to a two-
branch diversity receiver.

The main application of such conventional beamformers,
also known as switched beam systems, is the improvement in
cell coverage by exploiting array gain. Since the selected beam
is narrower than the sector, reduction in interference power
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can also be obtained when the desired signal and the interfer-
ence fall into different beams. This SINR improvement can
improve voice quality. In some cases, use of smaller reuse fac-
tor may also be possible if dynamic channel allocation can be
used. This can therefore increase capacity.

In CDMA systems, subscribers are present in every beam,
and therefore all the beams are fed to a bank of CDMA
receivers through a switch. Beam selection is carried out to
track an individual user as he moves across beams. This
results in essentially a narrow sector system and reduces MAI
This advantage can be traded for increased capacity, coverage,
or battery life. If multipath is present, a user’s signal may
arrive from more than one beam, and beam outputs are com-
bined for improved diversity performance.

Beamforming concepts can be used in transmit also. In
FDMA and TDMA systems, the receive beam with the best
signal is used as the transmit beam, and energy is radiated in
a narrow beam rather than across the entire sector. This
results in reduced interference generation and higher EIRP
for the desired mobile, although regulatory barriers may not
allow the use of a higher EIRP. In CDMA systems, users are
present in all beams, and therefore the signal to a particular
user is connected to the appropriate beam. If more than one
beam couples to the user, a signal can be transmitted on mul-
tiple beams. This is known as softer handoff.

More advanced applications for RBC will use space-time
techniques described in the fourth and fifth sections. These
approaches use joint space-time adaptive processing and offer
improved performance to mitigate CCI and ISI while maxi-
mizing diversity. Joint space-time adaptive processing consid-
erably improves its performance over conventional
beamforming systems. In general, uncertainties in channel
estimation for the forward link can degrade the performance
in the link, particularly in large-angle-spread environments.
Space-time modems have been developed for the IS-136
TDMA system primarily to improve link quality and coverage.
To improve capacity, we need to incorporate dynamic channel
allocation and forward link power control into the system,
making it then possible to double the system capacity. Like-
wise, applications to GSM have also emerged. Again, improv-
ing link quality and coverage is relatively easy. Capacity
improvements need the use of random frequency hopping,
forward link power control, discontinuous transmission, soft
blocking, and unity reuse factor, along with space-time pro-
cessing. Simulations have shown that capacity gains of two to
three are possible from the spatial dimension alone [122].

Reuse within Cell

RWC refers to the reuse of a channel within a cell by exploit-
ing differences in the structure of the spatial channels. This is
akin to spectrum reuse in cellular systems, where a channel or
a spectrum resource used in one cell is reused in another cell
based on differences in spatial locations of the users. RWC
exploits differences in spatial channels between users to make
CCI acceptably small via STP.

When RWC is used in conjunction with TDMA or FDMA,
a cell supports two or more users in a given channel, as com-
pared to a single user in RBC. Antenna arrays and STP are
used for joint demodulation of multiple users, assuming such
users are sufficiently separated in channel (direction). When
the channels of two or more users become closely aligned,
they are no longer separable, and one of the users should be
handed off to another frequency or time slot. RWC needs to
work on both the forward and reverse links; therefore, signal
separability must be achieved on both links.

The principal challenge in RWC when used with TDMA
or FDMA is to estimate and track the reverse and forward

channels to a high degree of accuracy. The problem is further
complicated by the near-far problem resulting in received
power imbalance at the base between users. The ability to
estimate and track the reverse link channel depends on angle, -
delay, and Doppler spreads. Channel estimation errors
increase with these spreads. Therefore, flat rural environ-
ments with low angle and delay spreads offer advantages over
urban applications and microcells, which often use antennas
below the rooftop. Likewise, fixed wireless applications, which
have low Doppler spreads, have a significant advantage over
mobile applications. In the forward link, we need to once
again predict the channel accurately. We can do this by an
open loop method, that is, use the reverse link channel to pre-
dict the forward channel. Alternatively, we can use feedback
from the mobile to estimate the forward channel. For open
loop methods, the source of channel estimation error in FDD
is angle spread, and in TDD it is Doppler spread. Due to the
above, RWC appears to have limited applicability in TDMA
and FDMA systems. Use of fast dynamic channel allocation
and interference diversity methods such as frequency hopping
may provide some relief from these problems.

The situation is different in CDMA systems due to the fact
that the users are inherently separated by spreading codes.
These spreading codes separate co-channel users by the process-
ing gain (21 dB in IS-95). Also, in CDMA users are power-con-
trolled, thus improving the power balance. These factors suggest
that channel estimation errors may be less critical in CDMA
and make it easy to implement RWC. In fact, CDMA air -
interfaces can use simple sector antennas to implement RWC.
1S-95 uses three sectors in mobile applications and six or nine
sectors in fixed applications. Each sector effectively reuses the
radio spectrum. Therefore, a three-sector CDMA system
offers nearly three times the capacity of an unsectored system.
Field trial results in [123] have shown that using simple nar-
row antenna array beams can decrease mobile transmit power
by 5-7 dB and increase the reverse link capacity by as much
as 40 percent. Much higher gains in capacity appear possible
but would require a careful redesign of the air interface.

Summary

Use of space-time modem technology is emerging as a useful
tool for improving the performance of PCS networks. Success-
ful field deployment of this technology is yet to emerge, and
in the short term is expected to be limited to beamforming or
space-time processing for modest (factor of two) improve-
ments in cell coverage or capacity. Larger improvements will
need substantial evolution of the current air interfaces or a
new-generation air interface. These solutions must fully
address the strengths and weaknesses of the spatial dimen-
sion. A review of the current state of the art in this technology
can be found in [124-126].
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