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Abstract

We explore the optimal input distributions to maximize
average received SNR and to achieve beamforming capac-
ity on the downlink for two different channel models. First
we model a scenario where the mobile unit is surrounded by
local scatterers while the base station (BS) is relatively un-
obstructed, so that the channel matrix consists of i.i.d. rows
and correlated columns. For this model we show that the
average SNR maximizing input distribution also achieves
the beamforming capacity. Then we model a scenario where
the transmit antennas at the BS are placed significantly far
apart, so that the fades are independent but not identically
distributed. For this model we obtain necessary and suf-
ficient conditions under which the average SNR maximiz-
ing solution also achieves beamforming capacity. We find
that for typical mobile unit antenna spacings, increasing
the BS antenna spacing not only improves the capacity but
achieves this higher capacity using just one transmit an-
tenna at a time, thus saving significantly on the cost of
power amplifiers at the BS.

1 Introduction

One of the most promising approaches towards improv-
ing the data rates achievable in wireless systems is to use
multiple transmit and receive antennas. By utilizing space
as an additional dimension, these multiple input multiple
output (MIMO) systems easily surpass the data rates achiev-
able by conventional systems utilizing time and frequency
alone. An interesting aspect of these systems is the tradeoff
between the feedback quality and coding complexity, ex-
plored in [2]. It is shown in [2] that a good feedback qual-
ity allows us to achieve a higher Shannon capacity with a
lower decoding complexity. However for a MIMO channel
a sufficiently accurate channel state feedback is hard to im-
plement due to the multiple channel coefficients that need to
be estimated and the limited processing power at the mobile
unit. The quality of feedback gets worse when the channel
exhibits fast fading. A more practical scenario, assumed in
this work, is a MIMO system where the transmitter knows

only the statistics of the channel. The receiver is still as-
sumed to have perfect channel state information. This as-
sumption is reasonable since the receiver can wait until it
has enough received symbols to form a good channel esti-
mate.

From the Shannon capacity point of view, in the absence
of Channel State Information at Transmitter (CSIT), vector
codes are needed to achieve the highest data rates possi-
ble. Alternatively, in theory, with a BLAST-like approach
[1], one could transmit several scalar codes in parallel to
achieve the same capacity. In practice however both these
approaches have severe drawbacks in terms of the decoding
complexity required at the mobile unit. Also, in contrast to
the well established scalar codec technology, good vector
codes have not been found. In the light of these obser-
vations, beamforming becomes an interesting alternative.
Beamforming allows scalar code transmission with multi-
ple antennas. The numerical results in [4] show that beam-
forming is usually close to the capacity achieving strategy.
Moreover, if the channel covariance matrix exhibits dis-
parate modes then beamforming is the capacity achieving
strategy [2][3].

We focus on optimizing the input to achieve either Shan-
non capacity Cpy or the maximum average SNR using
beamforming, i.e. using input covariance matrices with unit
rank. Achieving Cpy and maximizing average SNR repre-
sent different objectives and therefore in general lead to dif-
ferent optimal input distributions. However we find that for
several common fading models the two objectives lead to
the same optimal input distribution. Typically, it is harder
to optimize input to achieve capacity as the capacity expres-
sion tends to be less tractable, and therefore finding the in-
put distribution to maximize average SNR provides a sim-
pler alternative problem. Next, we further analyze the rela-
tionship between these two objectives.

2 System Model and Problem Definition

A MIMO system using nr transmit and ng receive an-
tennas (an (nr,ng) system) is characterized by y = Hx +
n, where y is the ng dimensional output vector, x is the np
dimensional input vector, n is the nz dimensional white



Gaussian noise vector, and H describes the channel ma-
trix. The elements of H are modeled as zero mean complex
Gaussian random variables (Rayleigh fading).

The Shannon capacity of this system for a transmit
power P can be expressed as
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Beamforming, by definition, implies a unit rank input co-
variance matrix Q = vvt where v is an ny dimensional
vector. Using the proper ty |I + AB| = |I + BA| we ex-
press the beamforming capacity as
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Note that ¥ EHY is the received SNR. Thus the problems
we tackle are:

Cry = max
v:V'V=P

1. Beamforming Capacity Determine the optimum v to
achieve the beamforming capacity Cpy.

2. Average SNR Determine the optimum v to maximize
the average SNR E[”*HTH”]

We consider two different models for the covariances of
the elements of the channel matrix H.
e L.i.d. rows and correlated columns: In the first model the
rows of H are assumed to be i.i.d. while the columns are
correlated. This is a common assumption [3] for the down-
link where the scatterers surrounding the mobile unit decor-
relate the fades associated with different receive antennas,
while the base station is relatively unobstructed so that the
fades associated with different transmit antennas are corre-
lated. Mathematically, the distribution of the 3t* row of H
is given by H;. ~ N(0,%) for 1 <4 < ng, and the covari-
ance matrix X has an eigendecomposition ¥ = UEAEU;.
e Independent but not identically distributed fades: To
achieve a richer scattering environment, i.e. to achieve in-
dependent fades we need significant spacing (of the order of
meters for Gigahertz carrier frequency) between the trans-
mit antennas [3]. While the base station does not have very
stringent size constraints and can place the transmit anten-
nas far enough apart to achieve independent fades, the path
between each transmit antenna and the mobile unit is now
sufficiently distinct so that the fades can not be assumed to
be identically distributed. This forms the basis for our sec-
ond model, where we assume that the elements of H are in-
dependent but not necessarily identically distributed. So the
second model is more general in that we no longer constrain
the rows to be identically distributed. However it is more
constrained than the previous model in that all elements are
assumed to be independent of each other. We model the el-
ements of H as independent zero mean complex Gaussian

random variables with variances E[H;; H;] = ~;. So the
i** row of H has a covariance matrix I'* = E[}"7"%, H] H; |=
diag{~},7%,--- ,74, }- Without loss of generality we as-
sume the rows are numbered so that v > 7% > .- > A%

3 Solution

3.1 Channd matrix withi.i.d rowsand correlated
columns

Let us define the vector
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The 7** component of v is given by v; = NS Since

the rows of H are i.i.d., so are the random variables v;.
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Since v does not depend on v, the capacity is maximized
by maximizing v'£v subject to ||v|| = v/P. But this is the
standard quadratic form which is maximized by choosing v
as the dominant eigenvector of X scaled to meet the power
constraint. However note that v X is also the average SNR
with maximum ratio combining at the receiver. Hence we
conclude that in this case the capacity achieving solution
also maximizes the average received SNR.

3.2 Channd Matrix with Independent Elements

3.21 Maximizing Average SNR

First we maximize the average received SNR given by
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where T'; = Y%, 'y; But (5) is maximized by choosing

= /P for i = 4* and 0 otherwise, where i* = arg
max; I';. Thus we make our first observation - average
SNR is maximized by using one transmit antenna alone.
This transmit antenna is the one corresponding to the max-
imum sum of channel gain powers from a transmit antenna
to each of the receive antennas. To save space we write A; is
S-optimal when we mean that “average SNR is maximized
by using transmit antenna 7 alone”.

E[SNR] =



3.2.2 Beamforming Capacity
The capacity with beamforming @ = vv can be expressed

as
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where v is an ng dimensional vector with components

A
v; = \/T so that v; are independent complex Gaussian

random variables distributed as v; ~ N(O, 1). To simplify
notation we make the following definitions

Zw]wl, (6)

so that w; are i.i.d. exponential random variables with unit
mean. Now since I'* are diagonal matrices we can rewrite

this as
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Since SNR is maximized by using only one transmit an-
tenna, we wish to determine the conditions under which ca-
pacity is also achieved by using only one transmit antenna.
Similar to the notation introduced earlier we express the
statement “capacity is maximized by using transmit antenna
7 alone” as A; is C-optimal. Note that the power allocated
to transmit antenna ¢ is given by |v;|2. Without loss of gen-
erality let us allocate a power P — p to antenna 1, and di-
vide the power p among the remaining antennas such that
antenna j gets power a;p where >"", o; = 1and o; > 0
for 1 < j < ng. So the capacity with this power allocation
becomes

Cyy =E llog (1+(P—p)% +pw>] . (8)
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Now if Al is C-optimal we must have (necessary condition)
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(10) has to be true for all non-negative choices of «; that
sum up to unity. So the necessary condition becomes
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Further, taking the second derivative of Cy; it is easily seen

that 2> g"f < 0. Thus (12) is both necessary and sufficient
for Al to be C-optimal.

Using this necessary and sufficient condition one can
easily come up with numerical examples that lead to the
following observation - Beamfor ming capacity cannot al-
ways be achieved by using just one transmit antenna
alone. As an example consider a (2, 2) channel with the
variances given by v{ = 10,v; = 15,77 =4 and 73 = 1.
Numerically evaluating the z and plugging into (12) we
find that neither A1l nor A2 is C-optimal. Similarly con-
sider another (2,2) channel, this time with variances given
by i = 12,~4 = 16,7 = 4 and v2 = 1. Obviously for
this channel A2 is S-optimal. However numerically test-
ing the necessary and sufficient condition we find that Al
is C-optimal. Thus we note that - It is possible that the S-
optimal transmit antennaisnot used at all in the beam-
forming capacity maximizing solution.

Next we want to obtain simpler conditions under which
the S-optimal antenna is also C-optimal. Without loss of
generality suppose Al is S-optimal, i.e. (13) holds. Re-
call that the average SNR is maximized by using transmit
antenna 1 alone if and only if
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Now notice that if the gains from transmit antenna 1 to all
receive antennas are identically distributed, i.e. if the vari-
ances vi = v, for 1 < i < ng then from the definition of
z} and since w; are i.i.d. it follows that all z} are also equal,
ie z; =z =--- =z, = . Substituting into (12) and
using (13) we see that the necessary and sufficient condtion
is always satisfied. Hence we make our next observation -
If Alis S-optimal and the channel gains from transmit
antenna 1toall receiveantennasarei.i.d. then Alisalso
C-optimal.

In order to gain further insight into the relationship be-
tween the C-optimal and S-optimal solutions we need the
following propositions. The proofs for propositions 1 and 2
are given in the appendix and proposition 3 is proved in [3].
Proposition 1 For all 4,5 € {1,2,--- ,np}, if i < A
then z; > 3.



Proposition 2 For
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and 1 < i,j < ng, i.e. when the coefficient of w; is greater
than or equal to that of w;,

G(A) £ E[wig(A)] (15)

is convex and attains its minimum at A = 0. Thus as the
coefficients of w; in the denominator become more spread
out, or less equal, the value of G(A) increases.

Proposition 3 For any two given positive real vectors o =
las],B = [Bi] € R the permutation 7* that minimizes
the sum >, % is such that a,-(;y and g; are in the
same order. That is\Vi,j € {1,2,---,n}, if am) <
Olrx (4 then B; < ,8]'.

Since we assumed ~: are arranged in decreasing order, from
proposition 1 it follows that we musthave z} < z} < --- <
x,, .. From proposition 3, of all the permutations 7 of [v];

the one that minimizes the sum Y7, ;] ()1 is the one for

which »y”(’ are arranged in decreasing order. Note that in
general [’y] can be in any order for 1 < ¢ < ngr. How-
ever v are arranged such that the LHS of (12) is mini-
mized. Since the LHS has to be greater than or equal to
the RHS for A; to be C-optimal and the RHS depends on
the way ['y;'-],- are arranged, we note that the C-optimality
of A; is a function of the ordering of [i];. However if
we impose the additional constraint that all [fyj.]i are in de-
creasing order, i.e. if we assumeI'! > T2 > ... > "z
and further that [v{] majorizes [vi]; = {v; 7 v )
then it follows from proposition 3 that the condltlon for C-
optimality of A, is satisfied. Thus we note that if the co-
variance matrices of the rows of H can be arranged in
decreasing order and, for somel, [v}]; weakly majorizes
[vili for all j such that 1 < j < ng then A; is both
S-optimal aswell as C-optimal. Note that although propo-
sition 3 was proved for strong majorization the same proof
holds for weak majorization too. Recall that a real vector
a = [o;] € R™ majorizes another real vector 8 = [5;] € R”
if and only if the sum of the k smallest entries of « is
greater than or equal to the sum of the £ smallest entries
of Bfork =1,2,--- ,n — 1. The majorization is strong if
Y=Y, Biand weak if Y1 ;> D00 B
The necessary and sufficient condition for C-optimality
of A; given in (12) requires a numerical computation to

evaluate the z%. A closed form expression for the inequality
is hard to obtain. However we can obtain a sufficient condi-
tion in closed form by bounding techniques. Starting with
(12) and using the properties vi > 42 > ... > 1'% and
wp <z <--- <z} webound
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to obtain the following sufficient condition:
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where I'(.,.) is the incomplete Gamma function. (19) fol-

lows from proposition 1 and (20) is obtained by straightfor-
ward integration. Also we have
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where (21) follows from proposition 1 and (22) makes use
of the fact that w,, , is independent of wy, -+, wy,_1 and
has unit mean. Proposition 2 implies (23) and (24) follows
from straightforward integration.

Combining (24), (20), and (18) we obtain the following
sufficient condition
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4 Conclusions

We obtain the SNR maximizing input and the beamform-
ing capacity achieving input for a channel with correlated
columns and i.i.d. rows. We find that the SNR maximizing
input also achieves the beamforming capacity for this chan-
nel. However, for a channel model where the elements of
the channel matrix are independent but not identically dis-
tributed, we find that while the average SNR is maximized
by transmitting on one antenna alone, beamforming capac-
ity may require more than one transmit antenna. More-
over, the transmit antennas used to achieve beamforming
capacity may in some cases not even include the average
SNR maximizing transmit antenna. Thus the problems are
quite distinct and the solutions in general reflect that. How-
ever, we also noticed that when the fades from a transmit
antenna to the receive antennas are identically distributed,
the SNR maximizing input also achieves beamforming ca-
pacity. Since the identical fading distribution property is
true for typical antenna spacings at the mobile unit, we con-
clude that for practical multiple antenna systems with only
the channel statistics available to the transmitter, the aver-
age SNR maximizing input also achieves the beamforming
capacity.

As explained in [5], the cost of a transmitter is dominated
by that of power amplifiers. Antennas on the other hand are
cheaper by typically two orders of magnitude. So it is eco-
nomically advantageous to use a small number of amplifiers
and a larger number of antennas and connect the amplifiers
to a selected set of antennas to achieve maximum possible
system capacity. This is particularly interesting in the light
of our result that by placing the transmit antennas at the base
station far enough apart to achieve independent fades we
can achieve the beamforming capacity using just one trans-
mit antenna. So we conclude that increasing the antenna
spacing at the transmitter not only improves the capacity of
the channel by providing a richer fading environment but
also saves on the cost of power amplifiers by achieving this
higher capacity with just one transmit antenna.

5 Appendix
5.1 Proof of Proposition 1

Consider the functions

z (A) = E[w;ig(A)] and z}(A) = E[w;g(A)].  (25)
For A = @ we have z;(A) = zj and zj(A) = zj
as defined earlier. Notice that «; (0) = x}(0). We wish to
prove that as A increases from 0, z}(A) increases mono-
tonically and by the same token x}(A) decreases monoton-

ically so that z} = x}(#) > m}(#) = zj. Differ-
entiating (25) with respect to A we obtain
oz} (A)
0A Ao

= E[wi(wi —wj)g(A)?] (26)
= E[X7 - XiX;] @27)
where X; = w;g(A) and X; = w;g(A). From symmetry

it follows that X; and X; are identically distributed random
variables. Therefore it follows from the Cauchy-Schwartz

inequality that E[X?] >E[X;X,;]. This proves that
% > 0. It is easily verified that the second
derivative ai;i(ﬁ) > 0 and the result in proposition 1
follows.

5.2 Proof of Proposition 2

The proof is very similar to the proof of proposition 1. It

is easily seen that %&‘) = 0 and % > 0. That

A=0
is all we need to establish the statement of proposition 2.
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