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Abstract—We provide an overview of the extensive recent
results on the Shannon capacity of single-user and multiuser
multiple-input multiple-output (MIMO) channels. Although
enormous capacity gains have been predicted for such channels,
these predictions are based on somewhat unrealistic assumptions
about the underlying time-varying channel model and how well
it can be tracked at the receiver, as well as at the transmitter.
More realistic assumptions can dramatically impact the potential
capacity gains of MIMO techniques. For time-varying MIMO
channels there are multiple Shannon theoretic capacity definitions
and, for each definition, different correlation models and channel
information assumptions that we consider. We first provide a
comprehensive summary of ergodic and capacity versus outage
results for single-user MIMO channels. These results indicate that
the capacity gain obtained from multiple antennas heavily depends
on the available channel information at either the receiver or
transmitter, the channel signal-to-noise ratio, and the correlation
between the channel gains on each antenna element. We then focus
attention on the capacity region of the multiple-access channels
(MACs) and the largest known achievable rate region for the
broadcast channel. In contrast to single-user MIMO channels,
capacity results for these multiuser MIMO channels are quite
difficult to obtain, even for constant channels. We summarize
results for the MIMO broadcast and MAC for channels that are
either constant or fading with perfect instantaneous knowledge
of the antenna gains at both transmitter(s) and receiver(s). We
show that the capacity region of the MIMO multiple access and
the largest known achievable rate region (called the dirty-paper
region) for the MIMO broadcast channel are intimately related
via a duality transformation. This transformation facilitates
finding the transmission strategies that achieve a point on the
boundary of the MIMO MAC capacity region in terms of the
transmission strategies of the MIMO broadcast dirty-paper region
and vice-versa. Finally, we discuss capacity results for multicell
MIMO channels with base station cooperation. The base stations
then act as a spatially diverse antenna array and transmission
strategies that exploit this structure exhibit significant capacity
gains. This section also provides a brief discussion of system level
issues associated with MIMO cellular. Open problems in this field
abound and are discussed throughout the paper.
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channels (BCs), channel distribution information (CDI), channel
state information (CSI), multicell systems, multiple-access chan-
nels (MACs), multiple-input multiple-output (MIMO) channels,
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I. INTRODUCTION

W
IRELESS systems continue to strive for ever higher

data rates. This goal is particularly challenging for

systems that are power, bandwidth, and complexity limited.

However, another domain can be exploited to significantly

increase channel capacity: the use of multiple transmit and

receive antennas. Pioneering work by Winters [81], Foschini

[20], and Telatar [69] ignited much interest in this area by

predicting remarkable spectral efficiencies for wireless systems

with multiple antennas when the channel exhibits rich scat-

tering and its variations can be accurately tracked. This initial

promise of exceptional spectral efficiency almost “for free”

resulted in an explosion of research activity to characterize the

theoretical and practical issues associated with multiple-input

multiple-output (MIMO) wireless channels and to extend these

concepts to multiuser systems. This tutorial summarizes the

segment of this recent work focused on the capacity of MIMO

systems for both single-users and multiple users under different

assumptions about spatial correlation and channel information

available at the transmitter and receiver.

The large spectral efficiencies associated with MIMO chan-

nels are based on the premise that a rich scattering environment

provides independent transmission paths from each transmit an-

tenna to each receive antenna. Therefore, for single-user sys-

tems, a transmission and reception strategy that exploits this

structure achieves capacity on approximately sepa-

rate channels, where is the number of transmit antennas and

is the number of receive antennas. Thus, capacity scales lin-

early with relative to a system with just one transmit

and one receive antenna. This capacity increase requires a scat-

tering environment such that the matrix of channel gains be-

tween transmit and receive antenna pairs has full rank and in-

dependent entries and that perfect estimates of these gains are

available at the receiver. Perfect estimates of these gains at both

the transmitter and receiver provides an increase in the constant

multiplier associated with the linear scaling. Much subsequent

work has been aimed at characterizing MIMO channel capacity

under more realistic assumptions about the underlying channel

model and the channel estimates available at the transmitter and

receiver. The main question from both a theoretical and prac-

tical standpoint is whether the enormous capacity gains initially

predicted by Winters, Foschini, and Telatar can be obtained in

more realistic operating scenarios and what specific gains result

from adding more antennas and/or a feedback link to feed re-

ceiver channel information back to the transmitter.
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MIMO channel capacity depends heavily on the statis-

tical properties and antenna element correlations of the

channel. Recent work has developed both analytical and

measurement-based MIMO channel models along with the cor-

responding capacity calculations for typical indoor and outdoor

environments [26]. Antenna correlation varies drastically as a

function of the scattering environment, the distance between

transmitter and receiver, the antenna configurations, and the

Doppler spread [1], [65]. As we shall see, the effect of channel

correlation on capacity depends on what is known about the

channel at the transmitter and receiver: correlation sometimes

increases capacity and sometimes reduces it [16]. Moreover,

channels with very low correlation between antennas can still

exhibit a “keyhole” effect where the rank of the channel gain

matrix is very small, leading to limited capacity gains [12].

Fortunately, this effect is not prevalent in most environments.

The impact of channel statistics in the low-power (wideband)

regime has interesting properties as well: recent results in this

area can be found in [71].

We focus on MIMO channel capacity in the Shannon

theoretic sense. The Shannon capacity of a single-user time-in-

variant channel is defined as the maximum mutual information

between the channel input and output. This maximum mutual

information is shown by Shannon’s capacity theorem to be the

maximum data rate that can be transmitted over the channel

with arbitrarily small error probability. When the channel

is time-varying channel capacity has multiple definitions,

depending on what is known about the channel state or its

distribution at the transmitter and/or receiver and whether

capacity is measured based on averaging the rate over all

channel states/distributions or maintaining a constant fixed or

minimum rate. Specifically, when the instantaneous channel

gains, called the channel state information (CSI), are known

perfectly at both transmitter and receiver, the transmitter can

adapt its transmission strategy relative to the instantaneous

channel state. In this case, the Shannon (ergodic) capacity is

the maximum mutual information averaged over all channel

states. This ergodic capacity is typically achieved using an

adaptive transmission policy where the power and data rate

vary relative to the channel state variations. Other capacity

definitions for time-varying channels with perfect transmitter

and receiver CSI include outage capacity and minimum-rate

capacity. These capacities require a fixed or minimum data rate

in all nonoutage channel states, which is needed for applica-

tions with delay-constrained data where the data rate cannot

depend on channel variations (except in outage states, where

no data is transmitted). The average rate associated with outage

or minimum rate capacity is typically smaller than ergodic

capacity due to the additional constraints associated with these

definitions. This tutorial will focus on ergodic capacity in the

case of perfect transmitter and receiver CSI.

When only the channel distribution is known at the trans-

mitter (receiver) the transmission (reception) strategy is based

on the channel distribution instead of the instantaneous channel

state. The channel coefficients are typically assumed to be

jointly Gaussian, so the channel distribution is specified by

the channel mean and covariance matrices. We will refer to

knowledge of the channel distribution as channel distribution

information (CDI). We assume throughout the paper that CDI is

always perfect, so there is no mismatch between the CDI at the

transmitter or receiver and the true channel distribution. When

only the receiver has perfect CSI the transmitter must maintain

a fixed-rate transmission strategy optimized with respect to its

CDI. In this case, ergodic capacity defines the rate that can

be achieved based on averaging over all channel states [69].

Alternatively, the transmitter can send at a rate that cannot be

supported by all channel states: in these poor channel states the

receiver declares an outage and the transmitted data is lost. In

this scenario, each transmission rate has an outage probability

associated with it and capacity is measured relative to outage

probability1 (capacity CDF) [20]. An excellent tutorial on

fading channel capacity for single antenna channels can be

found in [4]. For single-user MIMO channels with perfect

transmitter and receiver CSI the ergodic and outage capacity

calculations are straightforward since the capacity is known for

every channel state. Thus, for single-user MIMO systems the

tutorial will focus on capacity results assuming perfect CDI at

the transmitter and perfect CSI or CDI at the receiver. Although

there has been much recent progress in this area, many open

problems remain.

In multiuser channels, capacity becomes a -dimensional re-

gion defining the set of all rate vectors ( ) simulta-

neously achievable by all users. The multiple capacity defini-

tions for time-varying channels under different transmitter and

receiver CSI and CDI assumptions extend to the capacity region

of the multiple-access channel (MAC) and broadcast channel

(BC) in the obvious way [28], [48], [49], [70]. However, these

MIMO multiuser capacity regions, even for time-invariant chan-

nels, are difficult to find. Few capacity results exist for time-

varying multiuser MIMO channels, especially under the real-

istic assumption that the transmitter(s) and/or receiver(s) have

CDI only. Therefore, the tutorial focus for MIMO multiuser sys-

tems will be on ergodic capacity under perfect CSI at the trans-

mitter and receiver, with a brief discussion of the known results

and open problems for other capacity definitions and CSI/CDI

assumptions.

Note that the MIMO techniques described herein are appli-

cable to any channel described by a matrix. Matrix channels

describe not only multiantenna systems but also channels with

crosstalk [85] and wideband channels [72]. While the focus

of this tutorial is on memoryless channels (flat-fading), the re-

sults can also be extended to channels with memory (ISI) using

well-known methods for incorporating the channel delay spread

into the channel matrix [59], as will be discussed in the next

section.

Many practical MIMO techniques have been developed

to capitalize on the theoretical capacity gains predicted by

Shannon theory. A major focus of such work is space-time

coding: recent work in this area is summarized in [21]. Other

techniques for MIMO systems include space–time modulation

[30], [33], adaptive modulation and coding [10], space–time

1Note that an outage under perfect CSI at the receiver only is different than
an outage when both transmitter and receiver have perfect CSI. Under receiver
CSI only an outage occurs when the transmitted data cannot be reliably decoded
at the receiver, so that data is lost. When both the transmitter and receiver have
perfect CSI the channel is not used during outage (no service), so no data is lost.
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TABLE I
TABLE OF ABBREVIATIONS

equalization [2], [51], space–time signal processing [3],

space–time CDMA [14], [34], and space–time OFDM [50],

[52], [82]. An overview of the recent advances in these areas

and other practical techniques along with their performance

can be found in [25].

The remainder of this paper is organized as follows. In

Section II, we discuss the capacity of single-user MIMO

systems under different assumptions about channel state and

distribution information at the transmitter and receiver. This

section also describes the optimality of beamforming and

training issues. Section III describes the capacity region of the

MIMO MAC and the “dirty-paper” achievable region of the

MIMO BC, along with a duality connection between these

regions. The capacity of multicell systems under dirty paper

coding (DPC) and opportunistic beamforming is discussed in

Section IV, as well as tradeoffs between capacity, diversity, and

sectorization. Section V summarizes these capacity results and

describes some remaining open problems and design questions

associated with MIMO systems.

A note on notation: We use boldface to denote matrices and

vectors and for expectation. denotes the determinant and

the inverse of a square matrix . For any general matrix

, denotes the conjugate transpose and Tr denotes the

trace. denotes the identity matrix and diag denotes a diag-

onal matrix with the ( ) entry equal to . For symmetric ma-

trices the notation implies that is positive semidefinite.

A table of abbreviations used throughout the paper is given

in Table I.

II. SINGLE-USER MIMO

In this section, we focus on the capacity of single-user MIMO

channels. While most wireless systems today support multiple

users, single-user results are still of much interest for the in-

sight they provide and their application to channelized systems,

where users are allocated orthogonal resources (time, frequency

bands, etc.). MIMO channel capacity is also much easier to de-

rive for single users than for multiple users. Indeed, single-user

Fig. 1. MIMO channel with perfect CSIR and distribution feedback.

MIMO capacity results are known for many cases, where the

corresponding multiuser problems remain unsolved. In partic-

ular, very little is known about multiuser capacity without the as-

sumption of perfect channel state information at the transmitter

(CSIT) and at the receiver (CSIR). While there remain many

open problems in obtaining the single-user capacity under gen-

eral assumptions of CSI and CDI, for several interesting cases

the solution is known. This section will give an overview of

known results for single-user MIMO channels with particular

focus on special cases of CDI at the transmitter, as well as the

receiver. We begin with a description of the channel model and

the different CSI and CDI models we consider, along with their

motivation.

A. Channel Model

Consider a transmitter with transmit antennas and a re-

ceiver with receive antennas. The channel can be represented

by the matrix . The received signal is equal

to

(1)

where is the transmitted vector and is the addi-

tive white circularly symmetric complex Gaussian noise vector,

normalized so that its covariance matrix is the identity matrix.

The normalization of any nonsingular noise covariance matrix

to fit the above model is as straightforward as multiplying

the received vector with to yield the effective channel

and a white noise vector.

The CSI is the channel matrix . Thus, with perfect CSIT or

CSIR, the channel matrix is assumed to be known perfectly

and instantaneously at the transmitter or receiver, respectively.

When the transmitter or receiver knows the channel state per-

fectly, we also assume that it knows the distribution of this state

perfectly, since the distribution can be obtained from the state

observations.

1) Perfect CSIR and CDIT: The perfect CSIR and CDIT

model is motivated by the scenario where the channel state can

be accurately tracked at the receiver and the statistical channel

model at the transmitter is based on CDI fed back from the re-

ceiver. This distribution model is typically based on receiver es-

timates of the channel state and the uncertainty associated with

these estimates. Fig. 1 illustrates the underlying communication

model in this scenario, where denotes the complex Gaussian

distribution.

The salient features of the model are as follows.

• Conditioned on the parameter that defines the channel

distribution, the channel realizations at different time

instants are independent identically distributed (i.i.d.).
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Fig. 2. MIMO channel with perfect CSIR and CDIT (
�

fixed).

• In a wireless system the channel statistics change over

time due to mobility of the transmitter, receiver, and the

scattering environment. Thus, is time-varying.

• The statistical model depends on the time scale of interest.

For example, in the short term, the channel coefficients

may have a nonzero mean and one set of correlations

reflecting the geometry of the particular propagation

environment. However, over a long term the channel coef-

ficients may be described as zero-mean and uncorrelated

due to the averaging over several propagation environ-

ments. For this reason, uncorrelated, zero-mean channel

coefficients is a common assumption for the channel

distribution in the absence of distribution feedback or

when it is not possible to adapt to the short-term channel

statistics. However, if the transmitter receives frequent

updates of and it can adapt to these time-varying

short-term channel statistics then capacity is increased

relative to the transmission strategy associated with just

the long-term channel statistics. In other words, adapting

the transmission strategy to the short-term channel sta-

tistics increases capacity. In the literature adaptation to

the short-term channel statistics (the feedback model of

Fig. 1) is referred to by many names including mean and

covariance feedback, imperfect feedback and partial CSI

[38], [40], [42], [45], [46], [56], [66], [76].

• The feedback channel is assumed to be free from noise.

This makes the CDIT a deterministic function of the CDIR

and allows optimal codes to be constructed directly over

the input alphabet [8].

• For each realization of the conditional average transmit

power is constrained as .

• The ergodic capacity of the system in Fig. 1 is the ca-

pacity averaged over the different realizations

where is the ergodic capacity of the channel shown

in Fig. 2. This figure represents a MIMO channel with per-

fect CSI at the receiver and only CDI about the constant

distribution at the transmitter. Channel capacity calcu-

lations generally implicitly assume CDI at both the trans-

mitter and receiver except for special channel classes, such

as the compound channel or arbitrarily varying channel.

This implicit knowledge of is justified by the fact that the

channel coefficients are typically modeled based on their

long-term average distribution. Alternatively, can be ob-

tained by the feedback model of Fig. 1. Thus, motivated

by the distribution feedback model of Fig. 1, we will pro-

vide capacity results for the system model of Fig. 2 under

different distribution ( ) models. For clarity, we explic-

itly state when CDI is available at either the transmitter

or receiver, to contrast with the case where CSI is also

available.

Computation of for general is a hard problem.

Almost all research in this area has focused on three special

cases for this distribution: zero-mean spatially white channels,

spatially white channels with nonzero mean, and zero-mean

channels with nonwhite channel covariance. In all three

cases, the channel coefficients are modeled as complex jointly

Gaussian random variables. Under the zero-mean spatially

white (ZMSW) model, the channel mean is zero and the

channel covariance is modeled as white, i.e., the channel

elements are assumed to be i.i.d. random variables. This

model typically captures the long-term average distribution of

the channel coefficients averaged over multiple propagation

environments. Under the channel mean information (CMI)

model, the mean of the channel distribution is nonzero while

the covariance is modeled as white with a constant scale factor.

This model is motivated by a system where the channel state

is measured imperfectly at the transmitter, so the CMI reflects

this measurement and the constant factor reflects the estimation

error. Under the channel covariance information (CCI) model,

the channel is assumed to be varying too rapidly to track its

mean, so the mean is set to zero and the information regarding

the relative geometry of the propagation paths is captured by a

nonwhite covariance matrix. Based on the underlying system

model shown in Fig. 1, in the literature the CMI model is

also called mean feedback and the CCI model is also called

covariance feedback. Mathematically, the three distribution

models for can be described as follows:

Zero-Mean Spatially White (ZMSW):

;

Channel Mean Information (CMI):

;

Channel Covariance Information (CCI):

.

Here, is an matrix of i.i.d. zero mean, unit variance

complex circularly symmetric Gaussian random variables. The

channel mean and are constants that may be interpreted as

the channel estimate based on the feedback and the variance of

the estimation error, respectively. and are called the re-

ceive and transmit fade covariance matrices. Although not com-

pletely general, this simple correlation model has been validated

through recent field measurements as a sufficiently accurate rep-

resentation of the fade correlations seen in actual cellular sys-

tems [13]. Under CMI the channel mean and the variance

of the estimation error are assumed known and under CCI

the transmit and receive covariance matrices and are as-

sumed known.

2) CDIT and CDIR: In highly mobile channels, the as-

sumption of perfect CSI at the receiver can be unrealistic.

Thus, we now consider a model where both transmitter and

receiver only have information about the channel distribution.

Even for a rapidly fluctuating channel where reliable channel

estimation is not possible, it might be possible for the receiver

to track the short-term distribution of the channel fades, as

the channel distribution changes much more slowly than the

channel itself. The estimated distribution can be made available

to the transmitter through a feedback channel. Fig. 3 illustrates

the underlying communication model.
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Fig. 3. MIMO channel with CDIR and distribution feedback.

Fig. 4. MIMO channel with CDIT and CDIR (� fixed).

Note that the estimation of the channel statistics at the

receiver is captured in the model as a genie that provides the

receiver with the correct channel distribution. The feedback

channel represents the same information being made available

to the transmitter simultaneously. This model is slightly opti-

mistic because in practice the receiver estimates only from the

received signal and therefore will not have a perfect estimate.

As in the previous section, the ergodic capacity turns out to

be the expected value (expectation over ) of the ergodic ca-

pacity , where is the ergodic capacity of the channel

in Fig. 4. In this figure, is constant and known at both the

transmitter and receiver (CDIT and CDIR). As in the previous

section, the computation of is difficult for general , so we

restrict ourselves to the same three channel distribution models

described in the previous subsection: the ZMSW, CMI, and CCI

models.

Next, we summarize the single-user MIMO capacity results

under various assumptions on CSI and CDI.

B. Constant MIMO Channel Capacity

When the channel is constant and known perfectly at the

transmitter and the receiver, the capacity is

Tr
(2)

where is the input covariance matrix. Telatar [69] showed that

the MIMO channel can be converted to parallel, noninterfering

single-input single-output (SISO) channels through a singular

value decomposition (SVD) of the channel matrix. The SVD

yields parallel channels with gains corresponding

to the singular values of . Waterfilling the transmit power

over these parallel channels leads to the power allocation

(3)

where is the waterfill level, is the power in the th

eigenmode of the channel and is defined as . The

channel capacity is shown to be

(4)

Although the constant channel model is relatively easy to an-

alyze, wireless channels in practice are not fixed or constant.

Instead, due to the changing propagation environment wireless

channels vary over time, assuming values over a continuum. The

capacity of fading channels is investigated next.

C. Fading MIMO Channel Capacity

With slow fading, the channel may remain approximately

constant long enough to allow reliable estimation of the channel

state at the receiver (perfect CSIR) and timely feedback of this

state information to the transmitter (perfect CSIT). However,

in systems with moderate to high user mobility, the system

designer is inevitably faced with channels that change rapidly.

Fading models where only the channel distribution is available

to the receiver (CDIR) and/or transmitter (CDIT) are more

applicable to such systems. Capacity results under various

assumptions regarding CSI and CDI are summarized in this

section.

1) Capacity With Perfect CSIT and Perfect CSIR: Perfect

CSIT and perfect CSIR model a fading channel that changes

slow enough to be reliably measured by the receiver and fed

back to the transmitter without significant delay. The ergodic

capacity of a flat-fading channel with perfect CSIT and CSIR is

simply the average of the capacities achieved with each channel

realization. The capacity for each channel realization is given

by the constant channel capacity expression in the previous sec-

tion. Thus, the fading MIMO channel capacity assuming perfect

channel knowledge at both transmitter and receiver is

Tr
(5)

2) Capacity With Perfect CSIR and CDIT: ZMSW

Model: Seminal work by Foschini and Gans [22] and Telatar

[69] addressed the case of perfect CSIR and a ZMSW channel

distribution at the transmitter. Recall that in this case, the

channel matrix is assumed to have i.i.d. complex Gaussian

entries (i.e., ). As described in the introduction, the

two relevant capacity definitions in this case are capacity versus

outage (capacity CDF) and ergodic capacity. For any given

input covariance matrix the input distribution that achieves the

ergodic capacity is shown in [22] and [69] to be complex vector

Gaussian, mainly because the vector Gaussian distribution

maximizes the entropy for a given covariance matrix. This

leads to the transmitter optimization problem—i.e., finding the

optimum input covariance matrix to maximize ergodic capacity

subject to a transmit power (trace of the input covariance ma-

trix) constraint. Mathematically, the problem is to characterize

the optimum to maximize

Tr
(6)

where

(7)

is the mutual information with the input covariance matrix

and the expectation is with respect to the channel

matrix . The mutual information is achieved by

transmitting independent complex circular Gaussian symbols

along the eigenvectors of . The powers allocated to each

eigenvector are given by the eigenvalues of .
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It is shown in [22] and [69] that the optimum input covariance

matrix that maximizes ergodic capacity is the scaled identity

matrix, i.e., the transmit power is divided equally among all the

transmit antennas. Thus, the ergodic capacity is given by

(8)

An integral form of this expectation involving Laguerre poly-

nomials is derived in [69]. If and simultaneously become

large, capacity is seen to grow linearly with . Ex-

pressions for the growth rate constant can be found in [32] and

[69].

Telatar [69] conjectures that the optimal input covariance

matrix that maximizes capacity versus outage is a diagonal

matrix with the power equally distributed among a subset of the

transmit antennas. The principal observation is that as the ca-

pacity CDF becomes steeper, capacity versus outage increases

for low outage probabilities and decreases for high outage

probabilities. This is reflected in the fact that the higher the

outage probability, the smaller the number of transmit antennas

that should be used. As the transmit power is shared equally

between more antennas the expectation of increases (so

the ergodic capacity increases) but the tails of its distribution

decay faster. While this improves capacity versus outage for

low outage probabilities, the capacity versus outage for high

outages is decreased. Usually, we are interested in low outage

probabilities2 and, therefore, the usual intuition for outage

capacity is that it increases as the diversity order of the channel

increases, i.e., as the capacity CDF becomes steeper. Foschini

and Gans [22] also propose a layered architecture to achieve

these capacities with scalar codes. This architecture, called Bell

Labs Layered Space–Time (BLAST), shows enormous capacity

gains over single antenna systems. For example, at 1% outage,

12 dB signal-to-noise ratio (SNR) and with 12 antennas, the

spectral efficiency is shown to be 32 b/s/Hz as opposed to the

spectral efficiencies of around 1 b/s/Hz achieved in present day

single antenna systems. While the channel models in [22] and

[69] assume uncorrelated and frequency flat fading, practical

channels exhibit both correlated fading, as well as frequency

selectivity. The need to estimate the capacity gains of BLAST

for practical systems in the presence of channel fade correla-

tions and frequency selective fading sparked off measurement

campaigns reported in [24] and [55]. The measured capacities

are found to be about 30% smaller than would be anticipated

from an idealized model. However, the capacity gains over

single antenna systems are still overwhelming.

3) Capacity With Perfect CSIR and CDIT: CMI and CCI

Models: Recent results indicate that for MIMO channels

the capacity improvement resulting from some knowledge

of the short-term channel statistics at the transmitter can be

substantial. These results have ignited much interest in the

capacity of MIMO channels with perfect CSIR and CDIT

under general distribution models. In this section, we focus on

the cases of CMI and CCI channel distributions, corresponding

to distribution feedback of the channel mean or covariance

2The capacity for high outage probabilities becomes relevant for schemes that
transmit only to the best user. For such schemes, it is shown in [6] that increasing
the number of transmit antennas reduces the average sum capacity.

matrix. Key results on the capacity of such channels have been

recently obtained by several authors including Madhow and

Visotsky [76], Trott and Narula [58], [57], Jafar and Goldsmith

[42], [40], [38], Jorsweick and Boche [45], [46], and Simon

and Moustakas [56], [66].

Mathematically the problem is defined by (6) and (7), with

the distribution on determined by the CMI or CCI. The op-

timum input covariance matrix in general can be a full rank ma-

trix which implies either vector coding across the antenna array

or transmission of several scalar codes in parallel with succes-

sive interference cancellation at the receiver. Limiting the rank

of the input covariance matrix to unity, called beamforming, es-

sentially leads to a scalar coded system which has a significantly

lower complexity for typical array sizes.

The complexity versus capacity tradeoff is an interesting

aspect of capacity results under CDIT. The ability to use scalar

codes to achieve capacity under CDIT for different channel

distribution models, also called optimality of beamforming,

captures this tradeoff and has been the topic of much research

in itself. Note that vector coding refers to fully unconstrained

signaling schemes for the memoryless MIMO Gaussian

channel. Every symbol period, a channel use corresponds to the

transmission of a vector symbol comprised of the inputs to each

transmit antenna. Ideally, while decoding vector codewords the

receiver needs to take into account the dependencies in both

space and time dimensions and therefore the complexity of

vector decoding grows exponentially in the number of transmit

antennas. A lower complexity implementation of the vector

coding strategy is also possible in the form of several scalar

codewords being transmitted in parallel. It is shown in [38] that

without loss of capacity, any input covariance matrix, regardless

of its rank, can be treated as several scalar codewords encoded

independently at the transmitter and decoded successively at

the receiver by subtracting out the contribution from previously

decoded codewords at each stage. However, well-known

problems associated with successive decoding and interference

subtraction, e.g., error propagation, render this approach

unsuitable for use in practical systems. It is in this context that

the question of optimality of beamforming becomes important.

Beamforming transforms the MIMO channel into a single-input

single-output (SISO) channel. Thus, well established scalar

codec technology can be used to approach capacity and since

there is only one beam, interference cancellation is not needed.

In the summary given below, we include the results on both the

transmitter optimization problem, as well as the optimality of

beamforming.

Multiple-Input Single-Output (MISO) Channels: We first

consider systems that use a single receive antenna and multiple

transmit antennas. The channel matrix is rank one. With per-

fect CSIT and CSIR, for every channel matrix realization it is

possible to identify the only nonzero eigenmode of the channel

accurately and beamform along that mode. On the other hand,

with perfect CSIR and CDIT under the ZMSW model, it was

shown by Foschini and Gans [22] and Telatar [69] that the op-

timal input covariance matrix is a multiple of the identity ma-

trix. Thus, the inability of the transmitter to identify the nonzero

channel eigenmode forces a strategy, where the power is equally

distributed in all directions.
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Fig. 5. Plot of necessary and sufficient conditions (9). <Author: Fig. 5 not cited in text>

For a system using a single receive antenna and multiple

transmit antennas, the transmitter optimization problem under

CSIR and CDIT is solved by Visotsky and Madhow in [76] for

the distribution models of CMI and CCI. For the CMI model

( ) the principal eigenvector of the optimal input

covariance matrix is found to be along the channel mean

vector and the eigenvalues corresponding to the remaining

eigenvectors are shown to be equal. When beamforming is

optimal, all power is allocated to the principal eigenvector.

For the CCI model ( ) the eigenvectors of the

optimal input covariance matrix are shown to be along

the eigenvectors of the transmit fade covariance matrix and

the eigenvalues are in the same order as the corresponding

eigenvalues of the transmit fade covariance matrix. More-

over, Visotsky and Madhow’s numerical results indicate that

beamforming is close to the optimal strategy when the quality

of feedback improves, i.e., when the channel uncertainty

decreases under CMI or when a stronger channel mode can be

identified under CCI. We will discuss quality of feedback in

more detail below. Under CMI, Narula and Trott [58] point out

that there are cases where the capacity is actually achieved via

beamforming. While they do not obtain fully general necessary

and sufficient conditions for when beamforming is a capacity

achieving strategy, they develop partial answers to the problem

for two transmit antennas.

A general condition that is both necessary and sufficient for

optimality of beamforming is obtained by Jafar and Goldsmith

in [40] for both the CMI and CCI models. The result can be

stated as follows.

The ergodic capacity can be achieved with a unit rank matrix

if and only if the following condition is true:

(9)

where for the CCI model

1) are the two largest eigenvalues of the channel

fade covariance matrix ;

2) is exponential distributed with unit mean, i.e.,

;

and for the CMI model

1) ;

2) has a noncentral chi-squared distribution. More

precisely, where

is the zeroth-order modified Bessel function of the

first kind.

Further, for the CCI model the expectation can be evaluated

to express (9) explicitly in closed form as

(10)

The optimality conditions are plotted in Fig. 5. For the CCI

model the optimality of beamforming depends on the two largest

eigenvalues of the transmit fade covariance matrix and

the transmit power . Beamforming is found to be optimal

when the two largest eigenvalues of the transmit covariance ma-

trix are sufficiently disparate or the transmit power is suffi-

ciently low. Since beamforming corresponds to using the prin-

cipal eigenmode alone, this is reminiscent of waterpouring so-

lutions where only the deepest level gets all the water when it

is sufficiently deeper than the next deepest level and when the

quantity of water is small enough. For the CMI model the opti-

mality of beamforming is found to depend on transmit power

and the quality of feedback associated with the mean informa-

tion, which is defined mathematically as the ratio of the

norm squared of the channel mean vector and the channel un-

certainty . As the transmit power is decreased or the quality

of feedback improves beamforming becomes optimal. As men-

tioned earlier, for perfect CSIT (uncertainty so quality

of feedback ) the optimal input strategy is beamforming,

while in the absence of mean feedback (quality of feedback

so the CMI model becomes the ZMSW model), as shown by

Telatar [69], the optimal input covariance has full rank, i.e.,

beamforming is necessarily suboptimal. Note that [40], [57],

[58], and [76] assume a single receive antenna. Next, we sum-

marize the analogous capacity results for MIMO channels.

MIMO Channels: With multiple transmit and receive an-

tennas, capacity with CSIR and CDIT under the CCI model with

spatially white fading at the receiver ( ) is obtained by
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Jafar and Goldsmith in [42]. Like the single receive antenna

case the capacity achieving input covariance matrix is found

to have the eigenvectors of the transmit fade covariance matrix

and the eigenvalues are in the same order as the corresponding

eigenvalues of the transmit fade covariance matrix. Jafar and

Goldsmith also presented in closed form a mathematical condi-

tion that is both necessary and sufficient for optimality of beam-

forming in this case. The same necessary and sufficient condi-

tion is also derived independently by Jorsweick and Boche in

[45] and Simon and Moustakas in [66]. In [46], Jorsweick and

Boche extend these results to incorporate fade correlations at

the receiver as well. Their results show that while the receive

fade correlation matrix does not affect the eigenvectors of the

optimal input covariance matrix, it does affect the eigenvalues.

The general condition for optimality of beamforming found by

Jorsweick and Boche depends upon the two largest eigenvalues

of the transmit covariance matrix and all the eigenvalues of the

receive covariance matrix.

Capacity under the CMI model with multiple transmit and

receive antennas is solved by Jafar and Goldsmith in [38] when

the channel mean has rank one and is extended to general

channel means by Moustakas and Simon in [67]. Similar to

the MISO case, the principal eigenvector of the optimal input

covariance matrix and of the channel mean are the same and

the eigenvalues of the remaining eigenvectors are equal. For

the case where the channel mean has unit rank, a necessary

and sufficient condition for optimality of beamforming is also

determined in [38].

These results summarize our discussion of channel capacity

with CDIT and perfect CSIR under different channel distri-

bution models. From these results we notice that the benefits

of adapting to distribution information regarding CMI or CCI

fed back from the receiver to the transmitter are twofold. Not

only does the capacity increase with more information about

the channel distribution, but this feedback also allows the

transmitter to identify the stronger channel modes and achieve

this higher capacity with simple scalar codewords.

We conclude this section with a discussion on the growth of

capacity with number of antennas. With perfect CSIR and CDIT

under the ZMSW channel distribution, it was shown by Foschini

and Gans [22] and by Telatar [69] that the channel capacity

grows linearly with . This linear increase occurs

whether the transmitter knows the channel perfectly (perfect

CSIT) or only knows its distribution (CDIT). The proportion-

ality constant of this linear increase, called the rate of growth,

has also been characterized in [15], [31], [68], [69]. Chuah et al.

[15] show that with perfect CSIR and CSIT, the rate of growth of

capacity with is reduced by channel fading correla-

tions at high SNR but is increased at low SNR. They also show

that the mutual information under CSIR increases linearly with

even when a spatially white transmission strategy

is used on a correlated fading channel, although the slope is re-

duced relative to the uncorrelated fading channel. As we will

see in the next section, the assumption of perfect CSIR is cru-

cial for the linear growth behavior of capacity with the number

of antennas.

In the next section, we explore the capacity when only CDI

is available at the transmitter and the receiver.

4) Capacity With CDIT and CDIR: ZMSW Model: We saw

in the last section that with perfect CSIR, channel capacity

grows linearly with the minimum of the number of transmit and

receive antennas. However, reliable channel estimation may

not be possible for a mobile receiver that experiences rapid

fluctuations of the channel coefficients. Since user mobility

is the principal driving force for wireless communication

systems, the capacity behavior with CDIT and CDIR under the

ZMSW distribution model (i.e., is distributed as with

no knowledge of at either the receiver or transmitter) is of

particular interest. In this section, we summarize some MIMO

capacity results in this area.

One of the first papers to address the MIMO capacity with

CDIR and CDIT under the ZMSW model is [53] by Marzetta

and Hochwald. They model the channel matrix components as

i.i.d. complex Gaussian random variables that remain constant

for a coherence interval of symbol periods after which they

change to another independent realization. Capacity is achieved

when the transmitted signal matrix is equal to the

product of two statistically independent matrices: a

isotropically distributed unitary matrix times a certain

random matrix that is diagonal, real, and nonnegative. This

result enables them to determine capacity for many interesting

cases. Marzetta and Hochwald show that, for a fixed number

of antennas, as the length of the coherence interval increases,

the capacity approaches the capacity obtained as if the receiver

knew the propagation coefficients. However, perhaps the most

surprising result in [53] is the following: In contrast to the linear

growth of capacity with under the perfect CSIR

assumption, [53] showed that in the absence of CSIT and CSIR,

capacity does not increase at all as the number of transmit an-

tennas is increased beyond the length of the coherence interval

. The MIMO capacity for this model was further explored by

Zheng and Tse in [89]. They show that at high SNRs capacity

is achieved using no more than

transmit antennas. In particular, having more transmit antennas

than receive antennas does not provide any capacity increase

at high SNR. Zheng and Tse also find that for each 3-dB SNR

increase, the capacity gain is .

Notice that [53], [89] assume block fading models, i.e., the

channel fade coefficients are assumed to be constant for a block

of symbol durations. Hochwald and Marzetta extend their

results to continuous fading in [54] where, within each indepen-

dent -symbol block, the fading coefficients have an arbitrary

time correlation. If the correlation vanishes beyond some lag

, called the correlation time of the fading, then it is shown in

[54] that increasing the number of transmit antennas beyond

antennas does not increase capacity. Lapidoth and

Moser [47] explored the channel capacity of this CDIT/CDIR

model for the ZMSW distribution at high SNR without the

block fading assumption. In contrast to the results of Zheng and

Tse for block fading, Lapidoth and Moser show that without

the block fading assumption, the channel capacity grows only

double logarithmically in SNR. This result is shown to hold

under very general conditions, even allowing for memory and

partial receiver side information.

5) Capacity With CDIR and CDIR: CCI Model: The results

in [53] and [89] seem to leave little hope of achieving the high
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capacity gains predicted for MIMO systems when the channel

cannot be accurately estimated at the receiver and the channel

distribution follows the ZMSW model. However, before re-

signing ourselves to these less-than-optimistic results we note

that these results assume a somewhat pessimistic model for

the channel distribution. That is because most channels when

averaged over a relatively small area have either a nonzero

mean or a nonwhite covariance. Thus, if these distribution

parameters can be tracked, the channel distribution corresponds

to either the CMI or CCI model.
Recent work by Jafar and Goldsmith [37] addresses the

MIMO channel capacity with CDIT and CDIR under the
CCI distribution model. The channel matrix components are
modeled as spatially correlated complex Gaussian random
variables that remain constant for a coherence interval of
symbol periods after which they change to another independent
realization based on the spatial correlation model. The channel
correlations are assumed to be known at the transmitter and
receiver. As in the case of spatially white fading (ZMSW
model), Jafar and Goldsmith show that with the CCI model the
capacity is achieved when the transmitted signal matrix
is equal to the product of a isotropically distributed
unitary matrix, a statistically independent random
matrix that is diagonal, real and nonnegative and the matrix
of the eigenvectors of the transmit fade covariance matrix .
It is shown in [37] that the channel capacity is independent
of the smallest eigenvalues of the transmit fade
covariance matrix, as well as the eigenvectors of the transmit
and receive fade covariance matrices and . Also, in
contrast to the results for the spatially white fading model
where adding more transmit antennas beyond the coherence
interval length ( ) does not increase capacity, [37] shows
that additional transmit antennas always increase capacity as
long as their channel fading coefficients are spatially correlated.
Thus, in contrast to the results in favor of independent fades
with perfect CSIR, these results indicate that with CCI at the
transmitter and the receiver, transmit fade correlations can be
beneficial, making the case for minimizing the spacing between
transmit antennas when dealing with highly mobile, fast fading
channels that cannot be accurately measured. Mathematically,
[37] proves that for fast fading channels ( ), capacity
is a Schur-concave function of the vector of eigenvalues of
the transmit fade correlation matrix. The maximum possible
capacity gain due to transmitter fade correlations is shown to
be 10 db.

6) Frequency Selective Fading Channels: While flat fading
is a realistic assumption for narrowband systems where
the signal bandwidth is smaller than the channel coherence
bandwidth, broadband communications involve channels that
experience frequency selective fading. Research on the capacity
of MIMO systems with frequency selective fading typically
takes the approach of dividing the channel bandwidth into
parallel flat fading channels and constructing an overall block
diagonal channel matrix with the diagonal blocks given by the
channel matrices corresponding to each of these subchannels.
Under perfect CSIR and CSIT, the total power constraint then
leads to the usual closed-form waterfilling solution. Note
that the waterfill is done simultaneously over both space and
frequency. Even SISO frequency selective fading channels can

be represented by the MIMO system model (1) in this manner
[59]. For MIMO systems, the matrix channel model is derived
by Bolcskei, Gesbert and Paulraj in [5] based on an analysis
of the capacity behavior of OFDM-based MIMO channels
in broadband fading environments. Under the assumption of
perfect CSIR and CDIT for the ZMSW model, their results
show that in the MIMO case, unlike the SISO case, frequency
selective fading channels may provide advantages over flat
fading channels not only in terms of ergodic capacity but also
in terms of capacity versus outage. In other words, MIMO
frequency selective fading channels are shown to provide both
higher diversity gain and higher multiplexing gain than MIMO
flat-fading channels. The measurements in [55] show that
frequency selectivity makes the CDF of the capacity steeper
and, thus, increases the capacity for a given outage as compared
with the flat-frequency case, but the influence on the ergodic
capacity is small.

7) Training for Multiple-Antenna Systems: The results

summarized in the previous sections indicate that CSI plays a

crucial role in the capacity of MIMO systems. In particular,

the capacity results in the absence of CSIR are strikingly

different and often quite pessimistic compared with those that

assume perfect CSIR. To recapitulate, with perfect CSIR and

CDIT MIMO channel capacity is known to increase linearly

with when the CDIT assumes the ZMSW or CCI

distribution models. However, in fast fading when the channel

changes so rapidly that it cannot be estimated reliably at the

receiver (CDIR only) the capacity does not increase with the

number of transmit antennas at all for where is the

channel decorrelation time. Also at high SNR under the ZMSW

distribution model, capacity with perfect CSIR and CDIT

increases logarithmically with SNR, while the capacity with

CDIR and CDIT increases only double logarithmically with

SNR. Thus, CSIR is critical for obtaining the high capacity

benefits of multiple-antenna wireless links. CSIR is often

obtained by sending known training symbols to the receiver.

However, with too little training the channel estimates are

poor, whereas with too much training there is no time for data

transmission before the channel changes. So the key question

to ask is how much training is needed in multiple-antenna

wireless links. This question itself is the title of the paper

[29] by Hassibi and Hochwald where they compute a lower

bound on the capacity of a channel that is learned by training

and maximize the bound as a function of the receive SNR,

fading coherence time, and number of transmitter antennas.

When the training and data powers are allowed to vary, the

optimal number of training symbols is shown to be equal to

the number of transmit antennas—which is also the smallest

training interval length that guarantees meaningful estimates

of the channel matrix. When the training and data powers are

instead required to be equal, the optimal training duration may

be longer than the number of antennas. Hassibi and Hochwald

also show that training-based schemes can be optimal at high

SNR, but are suboptimal at low SNR.

D. Open Problems in Single-User MIMO

The results summarized in this section form the basis of our
understanding of channel capacity under different CSI and CDI
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Fig. 6. System models of the (left) MIMO BC and the (right) MIMO MAC
channels.

assumptions. These results serve as useful indicators for the ben-
efits of incorporating training and feedback schemes in a MIMO
wireless link to obtain CSIR/CDIT and CSIT/CDIT, respec-
tively. However, our knowledge of MIMO capacity with CDI
only is still far from complete, even for single-user systems. We
conclude this section by pointing out some of the many open
problems.

1) Combined CCI and CMI: Capacity under CDIT and per-
fect CSIR is unsolved under a combined CCI and CMI
distribution model even with a single receive antenna.

2) CCI: With perfect CSIR and CDIT capacity is not known
under the CCI model for completely general correlations.

3) CDIR: Almost all cases with only CDIR are open prob-
lems.

4) Outage capacity: Most results for CDI only at either the
transmitter or receiver are for ergodic capacity. Capacity
versus outage has proven to be less analytically tractable
than ergodic capacity and contains an abundance of open
problems.

III. MULTIUSER MIMO

In this section, we consider the two basic multiuser MIMO
channel models: the MIMO MAC and the MIMO BC. Since
the capacity region of a general MAC has been known for quite
a while, there are many results on the MIMO MAC for both
constant channels and fading channels with different CSI and
CDI assumptions at the transmitters and receivers. The MIMO
BC, however, is a relatively new problem for which capacity
results have only recently been found. As a result, the field is
much less developed, but we summarize the recent results in the
area. Interestingly, the MIMO MAC and MIMO BC have been
shown to be duals, as we will discuss in Section III-C2.

A. System Model

To describe the MAC and BC models, we consider a cel-
lular-type system in which the base station has antennas and
each of the mobiles has antennas. The downlink of this
system is a MIMO BC and the uplink is a MIMO MAC. We
will use to denote the downlink channel matrix from the base
station to user . Assuming that the same channel is used on the

uplink and downlink, the uplink matrix of user is . A pic-
ture of the system model is shown in Fig. 6.

In the MAC, let be the transmitted signal of user
(i.e., mobile) . Let denote the received signal and

the noise vector where is circularly
symmetric complex Gaussian with identity covariance. The re-
ceived signal at the base station is then equal to

... where

In the MAC, each user (i.e., mobile) is subject to an individual
power constraint of . The transmit covariance matrix of user
is defined to be . The power constraint implies
Tr for .

In the BC, let denote the transmitted vector signal
(from the base station) and let be the received signal
at receiver (i.e., mobile) . The noise at receiver is represented
by and is assumed to be circularly symmetric com-
plex Gaussian noise ( ). The received signal of
User is equal to

(11)

The transmit covariance matrix of the input signal is
. The base station is subject to an average power con-

straint , which implies Tr .

B. MIMO Multiple-Access Channel

In this section, we summarize capacity results on the mul-
tiple-antenna MAC. We first analyze the constant channel sce-
nario and then consider the fading channel. Since the capacity
region of a general MAC is known, the expressions for the ca-
pacity of a constant MAC are quite straightforward. For the
fading case, one must consider different assumptions about the
CSI and CDI available at the transmitter and receiver. We con-
sider three cases: perfect CSIR and CSIT, perfect CSIR and
CDIT, and CDIT and CDIR. As above, under CDI, we consider
three different distribution models: the ZMSW, CMI, and CCI
models.

1) Constant Channel: The capacity of any MAC can be
written as the convex closure of the union of rate regions cor-
responding to every product input distribution
satisfying the user-by-user power constraints [18]. For the
Gaussian MIMO MAC, however, it has been shown that it is
sufficient to consider only Gaussian inputs and that the convex
hull operation is not needed [11], [86]. For any set of powers

, the capacity of the MIMO MAC is shown
in (12), at the bottom of the next page. The th user transmits a
zero-mean Gaussian with spatial covariance matrix . Each
set of covariance matrices ( ) corresponds to a

-dimensional polyhedron (i.e.)

and the capacity region is equal to the union (over all
covariance matrices satisfying the trace constraints) of
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Fig. 7. Capacity region of MIMO MAC for � � � .

all such polyhedrons. The corner points of each polyhe-
dron can be achieved by successive decoding, in which
users’ signals are successively decoded and subtracted
out of the received signal. For the two-user case, each set
of covariance matrices corresponds to a pentagon, sim-
ilar in form to the capacity region of the scalar Gaussian

MAC. The corner point where

and

corresponds to decoding
user 2 first (i.e., in the presence of interference from user 1)
and decoding user 1 last (without interference from user 2).
Successive decoding can reduce a complex multiuser detection
problem into a series of single-user detection steps [27].

The capacity region of a MIMO MAC for the single transmit
antenna case ( ) is shown in Fig. 7. When , the co-
variance matrix of each transmitter is a scalar equal to the trans-
mitted power. Clearly, each user should transmit at full power.
Thus, the capacity region for a -user MAC for is the
set of all rate vectors ( ) satisfying

(13)

For the two-user case, this reduces to the simple pentagon seen
in Fig. 7.

When , however, a union must be taken over all co-
variance matrices. Intuitively, the set of covariance matrices that
maximize are different from the set of covariance matrices
that maximize the sum rate. In Fig. 8, a MAC capacity region
for is shown. Notice that the region is equal to the union
of pentagons (each pentagon corresponding to a different set of
transmit covariance matrices), a few of which are shown with
dashed lines in the figure. The boundary of the capacity re-
gion is in general curved, except at the sum rate point, where
the boundary is a straight line [86]. Each point on the curved
portion of the boundary is achieved by a different set of covari-
ance matrices. At point A, user 1 is decoded last and achieves
his single-user capacity by choosing as a water-fill of the
channel (independent of or ). User 2 is decoded first,
in the presence of interference from user 1, so is chosen as

Fig. 8. Capacity region of MIMO MAC for � � � .

a waterfill of the channel and the interference from user 1.
The sum-rate corner points B and C are the two corner points of
the pentagon corresponding to the sum-rate optimal covariance
matrices and . At point B user 1 is decoded last,
whereas at point C user 2 is decoded last. Thus, points B and
C are achieved using the same covariance matrices but different
decoding orders.

Next, we focus on characterizing the optimal covariance
matrices ( ) that achieve different points on the
boundary of the MIMO MAC capacity region. Since the MAC
capacity region is convex, it is well known from convex theory
that the boundary of the capacity region can be fully character-
ized by maximizing the function over
all rate vectors in the capacity region and for all nonnegative

priorities ( ) such that . For a fixed
set of priorities ( ), this is equivalent to finding the
point on the capacity region boundary that is tangent to a line
whose slope is defined by the priorities. See the tangent line
in Fig. 8 for an example. The structure of the MAC capacity
region implies that all boundary points of the capacity region
are corner points of polyhedrons corresponding to different sets
of covariance matrices. Furthermore, the corner point should
correspond to successive decoding in order of increasing

priority, i.e., the user with the highest priority should be
decoded last and, therefore, sees no interference [70], [73].
Thus, the problem of finding the boundary point on the capacity
region associated with priorities assumed to be
in descending order (users can be arbitrarily re-numbered to
satisfy this condition) can be written as

subject to power constraints on the trace of each of the covari-
ance matrices. Note that the covariances that maximize the func-

Tr

(12)
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tion above are the optimal covariances. The most interesting
and useful feature of the optimization problem above is that
the objective function is concave in the covariance matrices.
Thus, efficient convex optimization tools exist that solve this
problem numerically [7]. A more efficient numerical technique
to find the sum-rate maximizing (i.e., ) covari-
ance matrices, called iterative waterfilling, was developed by Yu
et al. [86]. This technique is based on the Karush Kuhn Tucker
(KKT) optimality conditions for the sum-rate maximizing co-
variance matrices. These conditions indicate that the sum-rate
maximizing covariance matrix of any user in the system should
be the single-user water-filling covariance matrix of its own
channel with noise equal to the actual noise plus the interfer-
ence from the other transmitters.

2) Fading Channels: As in the single-user case, the capacity
of the MIMO MAC where the channel is time-varying depends
on the definition of capacity and the availability of CSI and CDI
at the transmitters and the receiver. The capacity with perfect
CSIT and CSIR is very well studied, as is the capacity with
perfect CSIR and CDIT under the ZMSW distribution model.
However, little is known about the capacity of the MIMO MAC
with CDIT at either the transmitter or receiver under the CMI or
CCI distribution models. Some results on the optimum distribu-
tion for the single antenna case with CDIT and CDIR under the
ZMSW distribution can be found in [62].

With perfect CSIR and CSIT the system can be viewed as a set
of parallel non interfering MIMO MACs (one for each fading
state) sharing a common power constraint. Thus, the ergodic
capacity region can be obtained as an average of these parallel
MIMO MAC capacity regions [87], where the averaging is done
with respect to the channel statistics. The iterative waterfilling
algorithm of [86] easily extends to this case, with joint space
and time waterfilling.

The capacity region of a MAC with perfect CSIR and CDIT
under the ZMSW distribution model was found in [23] and [63].
In this case, Gaussian inputs are optimal and the ergodic ca-
pacity region is equal to the time average of the capacity ob-
tained at each fading instant with a constant transmit policy (i.e.,
a constant covariance matrix for each user). Thus, the ergodic
capacity region is given by

Tr

If the channel matrices have i.i.d. complex Gaussian entries
and each user has the same power constraint, then the optimal
covariances are scaled versions of the identity matrix [69].

There has also been some work on capacity with perfect
CSIR and CDIT under the CCI distribution model [41]. In
this paper, Jafar and Goldsmith determine the optimal transmit
covariance matrices when there is transmit antenna correlation
that is known at the transmitters. This topic has yet to be fully
investigated.

Asymptotic results on the sum capacity of MIMO MAC
channels with the number of receive antennas and the number
of transmitters increasing to infinity were obtained by Telatar
[69] and by Viswanath et al. [80]. MIMO MAC sum capacity
with perfect CSIR and CDIT under the ZMSW distribution
model (i.e., each transmitter’s channel is distributed as )
is found to grow linearly with [69]. Thus, for
systems with large numbers of users, increasing the number
of receive antennas at the base station ( ) while keeping the
number of mobile antennas ( ) constant can lead to linear
growth. Sum capacity with perfect CSIR and CSIT also scales
linearly with , but perfect CSIT is of decreasing
value as the number of receive antennas increases [32], [80].
Furthermore, the limiting distribution of the sum capacity with
perfect CSIR and CSIT was found to be Gaussian by Hochwald
and Vishwanath [32].

C. MIMO Broadcast Channel

In this section, we summarize capacity results on the

multiple-antenna BC. When the transmitter has only one

antenna, the Gaussian broadcast channel is a degraded broad-

cast channel (i.e., the users can be absolutely ranked by their

channel strength), for which the capacity region is known [18].

However, when the transmitter has more than one antenna, the

Gaussian broadcast channel is generally nondegraded.3 The

capacity region of general nondegraded broadcast channels is

unknown, but the seminal work of Caire and Shamai [9] and

subsequent research on this problem have shed a great deal

of light on this channel and the sum capacity of the MIMO

BC has been found. In subsequent sections, we focus mainly

on the constant channel, but we do briefly discuss the fading

channel as well which is still an open problem. Note that the

BC transmitter (i.e., the base station) has antennas and each

receiver has antennas, as described in Section III-A.

1) Dirty Paper Coding (DPC) Achievable Rate Region: An

achievable region for the MIMO BC was first obtained for the

case by Caire and Shamai [9] and later extended to the

multiple-receive antenna case by Yu and Cioffi [83] using the

idea of DPC [17]. The basic premise of DPC is as follows. If the

transmitter (but not the receiver) has perfect, noncausal knowl-

edge of additive Gaussian interference in the channel, then the

capacity of the channel is the same as if there was no additive

interference, or equivalently as if the receiver also had knowl-

edge of the interference. DPC is a technique that allows non-

causally known interference to be “presubtracted” at the trans-

mitter, but in such a way that the transmit power is not increased.

A more practical (and more general) technique to perform this

presubtraction is the cancelling for known interference tech-

nique found by Erez et al. in [19].

In the MIMO BC, DPC can be applied at the transmitter when

choosing codewords for different receivers. The transmitter first

picks a codeword (i.e., ) for receiver 1. The transmitter then

chooses a codeword for receiver 2 (i.e., ) with full (noncausal)

knowledge of the codeword intended for receiver 1. Therefore,

3The multiple-antenna broadcast channel is nondegraded because users re-
ceive different strength signals from different transmit antennas. See [18] for a
precise definition of degradedness.
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Fig. 9. Dirty paper rate region, � � �� � � � � , � � �� � � � � , � � � � .

the codeword of user 1 can be presubtracted such that receiver

2 does not see the codeword intended for receiver 1 as interfer-

ence. Similarly, the codeword for receiver 3 is chosen such that

receiver 3 does not see the signals intended for receivers 1 and 2

(i.e ) as interference. This process continues for all

receivers. If user is encoded first, followed by user ,

etc., the following is an achievable rate vector:

(14)

The dirty paper region is defined as the convex

hull of the union of all such rates vectors over all positive

semi-definite covariance matrices such that

Tr Tr and over all permutations

:

(15)

where is given by (14). The transmitted signal is

and the input covariance matrices are of the

form . From the dirty paper result we find that

are uncorrelated, which implies

.

One important feature to notice about the dirty paper rate

equations in (14) is that the rate equations are neither a concave

nor convex function of the covariance matrices. This makes nu-

merically finding the dirty paper region very difficult, because

generally a brute force search over the entire space of covariance

matrices that meet the power constraint must be conducted. The

dirty paper rate region for a two-user channel with and

is shown in Fig. 9.

Note that DPC and successive decoding (i.e., interference

cancellation by the receiver instead of the transmitter) are

completely equivalent capacity-wise for scalar channels, but

this equivalence does not hold for MIMO channels. It has been

shown [36] that the achievable region with successive decoding

is contained within the DPC region.

2) MAC-BC Duality: In [74], Vishwanath, Jindal, and

Goldsmith showed that the dirty paper rate region of the

multiantenna BC with power constraint is equal to the union

of capacity regions of the dual MAC, where the union is taken

over all individual power constraints that sum to

(16)

This is the multiple-antenna extension of the previously estab-

lished duality between the scalar Gaussian broadcast and mul-

tiple-access channels [44]. In addition to the relationship be-

tween the two rate regions, for any set of covariance matrices in

the MAC/BC (and the corresponding rate vector), [74] provides

an explicit set of transformations to find covariance matrices in
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the BC/MAC that achieve the same rates. The union of MAC

capacity regions in (16) is easily seen to be the same expression

as in (12) but with the constraint Tr instead of

Tr (i.e., a sum constraint instead of individual

constraints).

The MAC-BC duality is very useful from a numerical

standpoint because the dirty paper region leads to nonconcave

rate functions of the covariances, whereas the rates in the dual

MAC are concave functions of the covariance matrices. Thus,

the optimal MAC covariances can be found using standard

convex optimization techniques and then transformed to the

corresponding optimal BC covariances using the MAC-BC

transformations given in [74]. A specialized algorithm to

find the optimal MAC covariances can be found in [35]. An

algorithm based on the iterative waterfilling algorithm [86] that

finds the sum rate optimal covariances is given in [43].

The dirty paper rate region is shown in Fig. 9 for a channel

with two-users, and . Notice that the dirty paper

rate region shown in Fig. 9 is actually a union of MAC regions,

where each MAC region corresponds to a different set of in-

dividual power constraints. Since , each of the MAC re-

gions is a pentagon, as discussed in Section III-B1. Similar to the

MAC capacity region, the boundary of the DPC region is curved,

except at the sum-rate maximizing portion of the boundary. For

the case, duality also indicates that rank-one covari-

ance matrices (i.e., beamforming) are optimal for DPC. This

fact is not obvious from the dirty paper rate equations, but fol-

lows from the transformations of [74] which find BC covari-

ances that achieve the same rates as a set of MAC covariance

matrices (which are scalars in the case).

Duality also allows the MIMO MAC capacity region to be

expressed as an intersection of the dual dirty paper BC rate re-

gions [74, Corollary 1]

(17)

3) Optimality of DPC: DPC was first shown to achieve the

sum-rate capacity of the MIMO BC for the two-user, ,

channel by Caire and Shamai [9]. This was shown by

proving that the Sato upper bound [61] on the broadcast channel

sum-rate capacity is achievable using DPC. The sum-rate op-

timality of DPC was extended to the multiuser channel with

by Viswanath and Tse [79] and to the more general

case by Vishwanath et al. [74] and Yu and Cioffi [84].

It has also recently been conjectured that the DPC rate region

is the actual capacity region of the multiple-antenna broadcast

channel. Significant progress toward proving this conjecture is

made in [75] and [77].

4) Fading Channels: Most of the capacity problems for

fading MIMO BCs are still open, with the exception of sum-rate

capacity with perfect CSIR and CSIT. In this case, as for the

MIMO MAC, the MIMO BC can be split into parallel channels

with an overall power constraint (see Li and Goldsmith [48] for

a treatment of the scalar case).

Asymptotic results for the sum-rate capacity of the MIMO

BC for under the ZSMW model can be obtained by com-

bining the asymptotic results for the sum-rate capacity of the

MIMO MAC with duality [32]. Thus, the role of transmitter side

information reduces with the growth in the number of transmit

antennas and, hence, the sum capacity of the MIMO BC with

users and transmit antennas tends to the sum capacity of

a single-user system with only receiver CSI and receive an-

tennas and transmit antennas, which is given by

. Thus, the asymptotic growth under CSIR and CSIT

or CDIT under the ZMSW model is linear as and

the growth rate constant can be found in [32]. As seen for

the MIMO MAC, for systems with large numbers of users, in-

creasing the number of transmit antennas at the base station ( )

while keeping the number of mobile antennas ( ) constant can

lead to linear growth.

D. Open Problems in Multiuser MIMO

Multiuser MIMO has been the primary focus of research in

recent years, mainly due to the large number of open problems

in this area. Some of these are as follows.

1) BC with perfect CSIR and CDIT: The broadcast channel

capacity is only known when both the transmitter and the

receivers have perfect knowledge of the channel.

2) CDIT and CDIR: Since perfect CSI is rarely possible, a

study of capacity with CDI at both the transmitter(s) and

receiver(s) for both MAC and BC is of great practical

relevance.

3) Non-DPC techniques for BC: DPC is a very powerful ca-

pacity-achieving scheme, but it appears quite difficult to

implement in practice. Thus, non-DPC multiuser trans-

missions schemes for the downlink (such as downlink

beamforming [60]) are also of practical relevance.

IV. MULTICELL MIMO

The MAC and the BC are information theoretic abstractions

of the uplink and the downlink of a single cell in a cellular

system. However, a cellular system, by definition, consists of

many cells. Due to the fundamental nature of wireless propaga-

tion, transmissions in a cell are not limited to within that cell.

Users and base stations in adjacent cells experience interfer-

ence from each other. Also, since the base stations are typically

not mobile themselves there is the possibility for the base sta-

tions to communicate through a high-speed reliable connection,

possibly consisting of optical fiber links capable of very high

data rates. This opens up the opportunity for base stations to co-

operate in the way they process different users’ signals. Anal-

ysis of the capacity of the cellular network, explicitly taking

into account the presence of multiple cells, multiple users and

multiple antennas, and the possibilities of cooperation between

base stations is inevitably a hard problem and runs into sev-

eral long-standing unsolved problems in network information

theory. However, such an analysis is also of utmost importance

because it defines a common benchmark that can be used to

gauge the efficiency of any practical scheme, in the same way

that the capacity of a single-user link serves as a measure of the

performance of practical schemes. There has been some recent
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research in this area that extends the single-cell MAC and BC

results to multiple cells. In this section, we summarize some of

these results.

The key to the extension of single-cell results to multiple-cell

systems is the assumption of perfect cooperation between base

stations. Conceptually, this allows the multiple base stations

to be treated as physically distributed antennas of one com-

posite base station. Specifically, consider a group of coor-

dinated cells, each with antennas and mobiles, each with

antennas. If we define to be the downlink

channel of user from base station , then the composite down-

link channel of user is and the composite

uplink channel is . The received signal of user can then be

written as , where is the composite trans-

mitted signal defined as . Here, we let

represent the transmit signal from base .

First, let us consider the uplink. As pointed out by Jafar

et al. [36] the single-cell MIMO MAC capacity region results

apply to this system in a straightforward way. Thus, by as-

suming perfect data cooperation between the base stations,

the multiple-cell uplink is easily seen to be equal to the

MAC capacity region of the composite channel, defined as

in (12), where the power

constraints of the th mobile is .

On the downlink, since the base stations can cooperate per-

fectly, DPC can be used over the entire transmitted signal (i.e.,

across base stations) in a straightforward manner. The applica-

tion of DPC to a multiple-cell environment with cooperation be-

tween base stations is pioneered in recent work by Shamai and

Zaidel [64]. For one antenna at each user and each base sta-

tion, they show that a relatively simple application of DPC can

enhance the capacity of the cellular downlink. While capacity

computations are not the focus of [64], they do show that their

scheme is asymptotically optimal at high SNRs.

The MIMO downlink capacity is explored by Jafar and

Goldsmith in [39]. Note that the multicell downlink can be

solved in a similar way as the uplink. But this requires perfect

data and power cooperation between the base stations. If we

let represent the transmit vector for User from base

station , the composite transmit vector intended for User

is . Thus, the composite covariance of

user is defined as . The covariance matrix

of the entire transmitted signal is . Assuming

perfect data cooperation between the base stations, DPC can be

applied to the composite vectors intended for different users.

Thus, the dirty paper region described in Section III-C1, (15),

can be achieved in the multicell downlink.

While data cooperation is a justifiable assumption for ca-

pacity computations in the sense that it captures the possibility

of base stations cooperating among themselves as described

earlier in this section, in practice each base station has its

own power constraint. The per-base power constraint can be

expressed as , where is the power constraint

at base . Thus power cooperation, or pooling the transmit

power for all the base stations to have one overall transmit

power constraint, is not realistic. Note that on the uplink

the base stations are only receiving signals and, therefore,

Fig. 10. Optimal sum rate relative to HDR.

no power cooperation is required. The per-base power con-

straints restrict consideration to covariance matrices such that

Tr . This is equivalent

to a constraint of on the sum of the first diagonal entries

of , a constraint of on the sum on the next diagonal

entries of , etc. These constraints are considerably stricter

than a constraint on the trace of as in the single-cell case.

Though DPC yields an achievable region, it has not been

shown to achieve the capacity region or even the sum-rate

capacity with per-base power constraints. Additionally, the

MAC-BC duality (Section III-C2) which greatly simplified

calculation of the dirty paper region does not apply under

per-base power constraints. Thus, even generating numerical

results for the multicell downlink is quite challenging.

However, data and power cooperation does give a simple

upper bound on the capacity of the network. Based on numer-

ical comparisons between this upper bound and a lower bound

on capacity derived in [39], Jafar and Goldsmith find that the

simple upper bound with power and data cooperation is also a

good measure of the capacity with data cooperation alone.

Note that current wireless systems use the high data rate

(HDR) protocol and transmit to only one user at a time on

the downlink, where this best user is chosen to maximize the

average system data rate. In contrast, DPC allows the base

station to transmit to many users simultaneously. This is par-

ticularly advantageous when the number of transmit antennas

at the base station is much larger than the number of receive

antennas at each user—a common scenario in current cellular

systems. To illustrate the advantages of DPC over HDR, even

for a single cell, the relative gains of optimal DPC over a

strategy that serves only the best user at any time are shown

in Fig. 10. Note that this single-cell model is equivalent to the

multicell system with no cooperation between base stations so

that the interference from other cells is treated as noise. With

cooperation between base stations the gains are expected to be

even more significant as DPC reduces the overall interference

by making some users invisible to others.
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The capacity results described in this section address just a

few out of many interesting questions in the design of a cellular

system with multiple antennas. Multiple antennas can be used

not only to enhance the capacity of the system but also to drive

down the probability of error through diversity combining. Re-

cent work by Zheng and Tse [88] unravels a fundamental diver-

sity versus multiplexing tradeoff in MIMO systems. Also, in-

stead of using isotropic transmit antennas on the downlink and

transmitting to many users, it may be simpler to use directional

antennas to divide the cell into sectors and transmit to one user

within each sector. The relative impact of CDIT and/or CDIR on

each of these schemes is not fully understood. Although in this

paper we focus on the physical layer, smart schemes to handle

CDIT can also be found at higher layers. An interesting example

is the idea of opportunistic beamforming [78]. In the absence

of CSIT, the transmitter randomly chooses the beamforming

weights. With enough users in the system, it becomes very likely

that these weights will be nearly optimal for one of the users. In

other words, a random beam selected by the transmitter is very

likely to be pointed toward a user if there are enough users in

the system. Instead of feeding back the channel coefficients to

the transmitter the users simply feed back the SNRs they see

with the current choice of beamforming weights. This signifi-

cantly reduces the amount of feedback required. By randomly

changing the weights frequently, the scheme also treats all users

fairly.

V. CONCLUSION

We have summarized recent results on the capacity of MIMO

channels for both single-user and multiuser systems. The great

capacity gains predicted for such systems can be realized in

some cases, but realistic assumptions about channel knowledge

and the underlying channel model can significantly mitigate

these gains. For single-user systems the capacity under perfect

CSI at the transmitter and receiver is relatively straightforward

and predicts that capacity grows linearly with the number of an-

tennas. Backing off from the perfect CSI assumption makes the

capacity calculation much more difficult and the capacity gains

are highly dependent on the nature of the CSI/CDI, the channel

SNR, and the antenna element correlations. Specifically, as-

suming perfect CSIR, CSIT provides significant capacity gain at

low SNRs but not much at high SNRs. The insight here is that

at low SNRs it is important to put power into the appropriate

eigenmodes of the system. Interestingly, with perfect CSIR and

CSIT, antenna correlations are found to increase capacity at low

SNRs and decrease capacity at high SNRs. Finally, under CDIT

and CDIR for a zero-mean spatially white channel, at high SNRs

capacity grows relative to only the double log of the SNR with

the number of antennas as a constant additive term. This rather

poor capacity gain would not typically justify adding more an-

tennas. However, at moderate SNRs the growth relative to the

number of antennas is less pessimistic.

We also examined the capacity of MIMO broadcast and mul-

tiple-access channels. The capacity region of the MIMO MAC

is well-known and can be characterized as a convex optimiza-

tion problem. Duality allows the DPC achievable region for

the MIMO BC, a nonconvex region, to be computed from the

MIMO MAC capacity region. These capacity and achievable

regions are only known for ergodic capacity under perfect CSIT

and CSIR. Relatively little is known about the MIMO MAC

and BC regions under more realistic CSI assumptions. A mul-

ticell system with base station cooperation can be modeled as

a MIMO BC (downlink) or MIMO MAC (uplink), where the

antennas associated with each base station are pooled by the

system. Exploiting this antenna structure leads to significant ca-

pacity gains over HDR transmission strategies.

There are many open problems in this area. For single-user

systems the problems are mainly associated with CDI only

at either the transmitter or receiver. Most capacity regions

associated with multiuser MIMO channels remain unsolved,

especially ergodic capacity and capacity versus outage for the

MIMO BC under perfect receiver CSI only. There are very few

existing results for CDI at either the transmitter or receiver for

any multiuser MIMO channel. Finally, the capacity of cellular

systems with multiple antennas remains a relatively open area,

in part because the single-cell problem is mostly unsolved and

in part because the Shannon capacity of a cellular system is

not well-defined and depends heavily on frequency assump-

tions and propagation models. Other fundamental tradeoffs

in MIMO cellular designs such as whether antennas should

be used for sectorization, capacity gain, or diversity are not

well understood. In short, we have only scratched the surface

in understanding the fundamental capacity limits of systems

with multiple transmitter and receiver antennas, as well as

the implications of these limits for practical system designs.

This area of research is likely to remain timely, important, and

fruitful for many years to come.
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